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We propose an entanglement tensor to quantitatively compute the entanglement of a
general pure multipartite quantum state. We compare the ensuing tensor with the
concurrence for bipartite state and apply the tensor measure to some interesting examples
of entangled three-qubit and four-qubit states. It is shown that in defining the degree
of entanglement of a multi-partite state, one needs to make assumptions about the
willingness of the parties to cooperate. For such states our tensor becomes a measure of
generalized entanglement of assistance. We also discuss the degree of entanglement and
the concurrence of assistance of two generic multi-qubit states.
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1 Introduction

Quantum theory is a fundamental theory that can describe the subatomic world with a fasci-
nating accuracy. Since 1935, quantum entanglement [1, 2] has been central for the understand-
ing of the foundations of quantum theory. Besides, its fundamental interest, entanglement
has become an essential resource for quantum communication applications created in recent
years, which have potential applications such as quantum cryptography [3, 4] and quantum
teleportation [5]. One widely used measure of entanglement for a pair of qubits is the con-
currence, that gives an analytic formula for the entanglement of formation [6, 7, 8]. In recent
years, there have been proposals to generalize this measure to general bipartite states, e.g.,
Uhlmann [9] has generalized the concept of concurrence by considering arbitrary conjugation,
then Audenaert, Verstraete, and De Moor [10], in the spirit of Uhlmann’s work, generalized
the measure by defining a concurrence vector for pure states. Another generalization of con-
currence has been done by Rungta et al. [11] based on the idea of a super operator called
universal state inversion. Moreover, Gerjuoy [12], Albeverio and Fei [13], and Miyake and
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Wadati [14, 15], gave an explicit expression of generalized concurrence in terms of the coeffi-
cients of a general, pure, bipartite state. It is, therefore, interesting to be able to generalize
this measure from bipartite to multipartite systems [16, 17]. Quantifying entanglement of
multipartite states [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], is complicated task.
In [32, 33, 34] we proposed a measure of entanglement for a general pure multipartite state. In
this paper we will take one step further in generalizing of concurrence to multipartite states
by giving an explicit formula for this measure and verifying the well established result for
bipartite states. Then, we give some results related to the simplest example of a multipartite
state, namely a tripartite state. Moreover, we give some examples of four-partite states in
such way as to show the idea behind our measure. Finally, we will discuss Diir et al’s con-
jecture [28], and Koashi et al’s subsequent proof [35], about the general multi-qubit |[Wy,)
state.

The concurrence of a two qubit, bipartite state is defined as C(¥) = |(¥|¥)|, where the tilde
represents the ”spin-flip” operation |¥) = oy ®0y|T*), [T*) = Zik:l aj, 1|k, 1) is the complex
—1i
0
was noted by Peres [36] that for a separable state, |¥) is orthogonal to |¥), whereas for any

conjugate of |¥) = Zikzl ak|k, 1), and o, = < ? ) is a Pauli spin-flip operator. It

Bell-state, the states are parallel. The concurrence can also be written as follows
C(¥) = (¥|¥)] = [Tr(oy @ ay|¥)(T™])]. (1)

In the following section we will introduce an entanglement tensor, of a form similar to con-
currence. For a bipartite qubit state, our measure coincides with the concurrence, or by the
generalization of concurrence developed in [12, 13, 14]. In contrast, e.g., the bipartite en-
tanglement of a tripartite state depends on what action the third party takes [37, 38, 39].
It is possible to find states where the third party can vary the remaining two parties’ state
continuously between a separable state and a maximally entangled state. Only the M-partite
entanglement of an M-partite state can be defined unambiguously.

2 Entanglement tensor for general pure multipartite quantum state

In this section, we will give an expression for the entanglement of a general pure multipartite
state. The derivation of the measure is tedious, and follows almost exactly that of our measure
based on the density matrix of a pure state [34]. Therefore, it will not be repeated here. It
suffices to point out that the mathematical derivation of the measure is based on the relative-
phase correlations between a quantum system’s various sub-systems.

Let
Ny No

Nm
|\IJ> = Z Z o Z akl,kz,..-,km‘klak%---akm>a (2)

k1=1kz=1 km=1

be a general pure state defined on the Hilbert space Hg, ® Ho, ® -+ ® Hg,,. To simplify
subsequent notation we introduce projection probabilities by projecting the state |¥) onto the
basis states in one or more of the subspaces g, and computing the norm of the projection.
E.g., reducing the j:th subspace, we get the probabilities

Pr; = (Ykj) (k; | P). (3)
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In the same vein, the projection probabilities if we project onto the j:th and r:th subspace
are

Phj k. = (UK, ki) (kj, or | 0). (4)

We also need an index permutation operator P; operating on the state coeflicient product
Ok koo ks QDL ol @S fOLlOWS:

POy iz ekt Qs ool ) = Okt kel Ol L e ooyl (5)

T Oy, k2l km Qa2 kel

In an M-partite state, there are many ways to share entanglement. There are e.g. M (M —1)/2
different kinds of of bipartite entanglement, entanglement that can be shared between parties
1 and 2, 1 and 3, et.c. until parties M — 1 and M. In general, there are

( Al;[ ) - D!(]\f.\f/“ D)! (6)

different kinds of D-partite entanglement in an M-partite state, where M > D. Each of
these components have an associated entanglement tensor coefficient. Using our permutation
operator above, we can define a D-partite tensor coefficient c, . ., containing information
about the entanglement between the D parties r,..., 2, where parties 7,...,z can be chosen
any way among the M, as

N1
c = NV )t
TyeenZ D pkl: okr_1,kzq1,. kM
k1=1 kr_1=1k,+1=1
N,.—1N,.—1 N,—-1N,-1

Yy y (7)

Lp>ke kp=0 1>k, k=0
PrgtPria [P kg ks ns 1ot b ool is s ene )| 70 1) 2
Assume that we have a state where subsystem j is separable from all other subsystems.
In such a case, it holds that g, k,,....k;,....km Qlilzycliseln = oy kzseeliyeo Qo kgl -
That is, every entanglement tensor component involving the entanglement between subsystem
j and any other subsystem(s) is identically zero. Hence, separability of any subsystem can
be detected directly by looking at all entanglement tensor components associated with a
certain subsystem. Note that one needs to look through all different kinds of entanglement
(bipartite, tripartite, etc.) to ensure separability. We also see that the expression for ¢, . .
is independent of local phase-transformations, e.g. transformations of the type

Ny

> e k) k), (8)

kj:].

where ¢y, are real numbers, because such a transformation will result in the same change of
phase in the factors ak, ky,.. k;,....km Qly lay.cljyeil 0D Qky by L ke @y L.k

yeeorlm®



H. Heydari and G. Bjork 149

3 Concurrence for bipartite quantum states

As we have already mentioned, there has been considerable progress to generalize concurrence
for bipartite states in arbitrary dimensions [12, 13, 14, 15, 16, 17, 34]. As our first example,
we show that our entanglement tensor component (there is only one component for a bipartite
state) coincide with the well established formula for the generalized concurrence of a bipartite
state. Let |¥) = ZkNlﬁo Zf:?:o Ok ko |1, k2) be a general pure state defined on a bipartite
Hilbert space Hg, ® Hg,. Then, the bipartite entanglement tensor component of the state
is given by

N1 N1 N2 Na %
2
s = (Nz 33 St S ||) | o

l1 >k k1=112>ko ko=1

where, if we choose the normalization constant N5 = 4, that is, a normalization constant based
on setting the entanglement of an EPR-pair to unity, we get identically the concurrence of
the state [12, 13, 14, 16, 17]. In particular, for a pair of qubits [8], we have

c12 = Nalag 100 — g 0] (10)
The component is independent of any unitary operations, local to subsystems 1 and 2.

4 Entanglement of tripartite quantum states

The first step towards the more complex states goes through the tripartite state, which is the
“simplest” state that can be called a multipartite state.

Let |T) = Zgro 222270 ZZVO Qky ks kg |K1, k2, k3) be a general pure state. This state
has three bipartite entanglement tensor components and one tripartite tensor component.
They are:

N1 N1 Nz N: 1/2
ci2 = [ N2 E :pks § : § : E : E :‘aklyk2yk3allyl27k3 ak17l2yk3allyk2ak3| ) (11)

k3=1 l1>k1 k1=112>k2 k2=1

N1 N1 Nz Ns 1/2
€13 = N2 E :pkz E : E : § : § :‘aklyk2yk3allyk2al3 ak17k21l3allyk2ak3| ) (12)

k2=1 l1>k1 k1=113>k3 k3=1

Nz Nz N3 Ns 1/2
€23 = N2 2 :pkl § : § : § : § :‘aklykZ:k3ak11l21l3 ak17k21l3aklyl21k3| ) (13)

k1=1 la>ko ko=113>k3 kz=1
and

Ni—1N1—1N3—1Ns—-1 N3—1 N3—1
C123 = (N3 E :{HakthkaallylZ:ls - ak1,k27l3a117l2:k3| (14)
Iy >ky k1=0 la3>ko ko=0 l3>k3 k3=0
2)1\1/2
_|ak1,12,k3all,k2113 - aklyl2al3allvk21k3| ‘}) / :
In this case, the bipartite tensor components are, in general, dependent of local unitary trans-
formations (except for local phase shifts). The entanglement of multipartite states depends,
in general, both on local operations and on whether or not the parties choose to cooperate.



150 Entanglement tensor for a general pure multipartite quantum state

That is, the local operations one party chooses to perform on his subsystem, and the extent
to which he chooses to communicate his result, determines the entanglement of the remaining
state. This has been called hidden entanglement by Cohen [37] and entanglement of assistance
by DiVincenzo et al. [38]. Laustsen et al. separate between two kinds of entanglement of as-
sistance, denoted “sharp” and ‘flat” [39], where the former kind includes joint measurements
on subsystems, whereas the latter only includes local measurements on each subsystem. Our
entanglement tensor essentially represents flat entanglement of assistance, but, as we shall se
below, in a certain respect it goes a little bit further than the work in [39].

A necessary requirement for an entanglement measure is its monotonicity under local op-
erations and classical communication. The measure should not increase under such transfor-
mations. As discussed in, e.g., [37, 38, 39], if one makes a local measurement on a multipartite
state, both the amount and the form of the entanglement may be changed. In the preced-
ing paragraph we observed that our entanglement tensor component as given by (8), is not
monotonic under local transformations. Hence, the entanglement tensor must be defined as
the supremum of (8) under all unitary transformations. If this is not done, then our bipartite
entanglement tensor components will show the structure of the state’s associated entangle-
ment graph [40, 41]. That is, for a given pure state it is possible to immediately see what
subsystems have bipartite entanglement. Entanglement cannot shared freely between any of
M parties [42]. It is therefore interesting to find states that share entanglement in ways rep-
resented by the different topological M-partite entanglement graphs. Our tensor can assist in
the analysis of pure systems, but is probably less suited for the synthesis of states associated
with a certain graph.

To complicate the issue of multipartite entanglement, there is an intrinsic problem with an
optimization over local operations. It is well known that, e.g., tripartite entanglement may be
transformed into bipartite entanglement and vice versa. Neither transformation is reversible.
One can get a maximum of one EPR-state per initial GHZ state. At the same time, in the
limit of many EPR-states, we can only obtain 2 GHZ-states from 3 EPR-states [25]. The
optimal conversion rates between most tripartite and higher-partite states are still unknown.
Before such conversion rates are known, (and a classification of the irreversible sets of states
is done [28, 43]) it is not possible to give appropriate weights to the tripartite, fourpartite,
etc. tensor components. This implies that until then, it is only possible to find the supremum
of our entanglement measure for each kind of entanglement separately [34]. This precludes a
unique entanglement quantification of, e.g. the state

(11,1,0) +1,0,1) +10,1,1) +1,0,0))/2, (15)

a state that contains both bipartite and tripartite entanglement and that cannot be converted
by invertible local operators neither to a W-state nor to a GHZ-state [43]. In this respect,
however, our tensor goes further than the entanglement of assistance, that is defined as the
maximum remaining bipartite entanglement in a state after the other parties have cooper-
ated to “concentrate” as much entanglement as possible to the remaining two subsystems
[37, 38, 39]. Our measure also quantifies the “entanglement of assistance” for three, four,
etc., remaining subsystems. The problem, as just discussed, is that the different kinds of
remaining entanglement cannot be directly compared for the lack of an operational measure
of multipartite entanglement.
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Let us first study the W-state |W3) that is given by
1
V3

The tripartite entanglement tensor component c;23 of this state is zero, and it can be shown
that it remains zero under all local transformations. Each of the state’s three bipartite tensor

|W3> = (|1a070> + ‘07 170> + |0707 1>) (16)

components’ supremal values are equal to

Ne
C12 = C13 = C23 = 6 (17)
The state is known for its robustness under loss of one qubit. If any of the three qubits
is traced out, the ensuing mixed two-qubit state has the same average entanglement as the
original pure three-qubit state.

Next, consider the GHZ-state
1
V2

The bipartite tensor components of the state in this basis are all zero, whereas the tripartite

IGHZ) = —(0,0,0) + |1, 1,1)). (18)

tensor component attains its maximal value cj23 = 1/N3/2. Now assume that a Hadamard
transformation is made on the first qubit. The ensuing state becomes

1
5(‘07070>+|1a070>+|071a1>7|17171>)' (19)

The state in this basis has cj23 = ¢c12 = c13 = 0 and ca3 = \//_\/5/2 The component ca3
reaches its supremum in this basis. This result can easily be interpreted. If the leftmost
qubit is measured in the computational basis, the results zero and unity will occur with
equal probability, 1/2. If one obtains the result zero, the remaining state will be in the
EPR-state (|0,0) + |1,1))/+/2. If one obtains the result unity, then the he remaining state
will be in the EPR-state (|0,0) — |1,1))/+/2, orthogonal to the one above. However, if the
measurement result is communicated to the parties holding the remaining two qubits, either
party can convert one of the EPR-states to the other using local operations (a local phase
shift). Therefore, irrespective of the measurement result, the remaining state can be made
to be a deterministic EPR-state, and this is what our result predicts. If, on the other hand,
the measurement result is not communicated, then the ensuing bipartite, qubit mixed state
is separable.

In order to use the state’s symmetry to the fullest, now suppose that all three qubits of
the GHZ-state are Hadamard-transformed. The ensuing state is

- 1
‘W> = 5(‘07070> + |0a ]-7 ]-> + ‘1707 1> + |17 170>) (20)

This state has c123 = 0 and c12 = ¢13 = ca3 = v/N3/2, and this is the basis in which all three
components ¢z, c13, and co3 simultaneously attain their suprema. In this case, measurement
of the value of any of the three qubits and subsequent communication of the result will enable
the parties holding the remaining two qubits to transform their state into a deterministic
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EPR-state. We see that the entanglement tensor components give the entanglement of the
corresponding state, provided that the parties assist each other. In this case, the entanglement
of each bipartite subsystem is equal to that of a EPR-state. Hence, the average entanglement
of the |WW) state is higher than that of the W-state, a state that is sometimes referred to as
the most biparte entangled tripartite state. The latter statement is true if one assumes that
one of the qubits is simply discarded, corresponding to a trace-operation.

In earlier papers [32, 33, 34], we have defined the entanglement in a way that can be
interpreted as a tensor norm. Such a crude measure has some merit. However, as only
one number is obtained, a large norm does not signal whether or not the state is highly
entangled (a GHZ-state being a simple example), or if the state is not highly entangled, but
has entanglement “all over the place” (such as a W-state). In other words, the entanglement
tensor norm gives no hint about the state’s entanglement graph. Giving all the entanglement
tensor components rather than the norm of the tensor of course gives more information about
the particular type of entanglement of a state, such as its graph.

5 Entanglement of four-partite quantum states

As a first example of four qubit state, let us consider the state
1
|¥) = §(|O, 1,1,0) +/1,0,0,1) +|0,1,1,1) 4+ |1, 0,0, 0)). (21)

The state has no four-partite entanglement and, in the given computational basis, it has no
bipartite entanglement. The tripartite entanglement tensor components cj24,c134,and co34 are
all zero, while, inserting the state’s expansion coefficients in (8) we have

2))z (22)

Ci23 = (2N3[|Ot122 102,11 1|2 + |041 2,2,2002.1,1,2

14y4, ISRt 1494, ISRt

1 1. .1 N-
= (2N3[1_6+1_6])2:VTS'

It is quite clear that this is the supremal value of this tripartite tensor component. The result
can most easily be checked by writing the state

) = 20,11 +[1,0,0) @ (0} + )

V2 V2

In this case, any local action on the rightmost qubit will not change the state’s its entangle-

ment. However, as shown in the previous section, local actions on the remaining three qubits

may transform the tripartite entanglement to various degrees of bipartite entanglement.
The state

[¥) = % ([10,0) + 11, )] ® [0, 1) + [1,0)] + [|0, 1) + [1,0)] ® [|0,0) + [1, D)), (23)
is an example of a state that has nested entanglement. That is, the state is a (bipartite)
entangled state of (bipartite) entangled states. Computing the entanglement for this state
in the given basis, we find that the state has no four-partite entanglement, no tripartite
entanglement, whereas all six bipartite entanglement tensor components are equal to v/N3/2,
indicating EPR-type entanglement. Again, assistance between the parties is needed to exploit
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this entanglement. However, this state has the feature that we also can see it as a bipartite
Ha ® Ha state, if each of two parties have access to two of the qubits. The bipartite H4 @ Ha
entanglement of the state can also be obtained by the expression (8). In this particular case
we get the supremal value v/N2/2.

It is obvious that, in general, a state’s entanglement depend on the chosen Hilbert space
factorization of the state. Operationally, this can be stated that the entanglement of the state
depends on how the state’s subsystems are shared among the parties because this division
defines what operations are considered to be local. This is why, in this paper, we have made
a distinction between subsystems and parties.

As a last example of a four-qubit state, consider the four qubit W-state

W) = %(|0001> +(0010) + |0100) + |1000)). (24)

Quite expectedly, the state has no four-partite, nor any tripartite entanglement. The supremal
values of the six bipartite entanglement tensor components are all equal to 1/N3>/8. The state
is robust to the loss of any two qubits, and a rather obvious analysis show that the parties
need not cooperate to get this result. Note, that the state |¢) in Eq. (23), above, give a
substantially higher average bipartite entanglement, but only if the parties cooperate.

6 Entanglement of multi-qubit W-states

As a very last example, we would like to show how to apply the formula (8) on generic classes
of multipartite states. A simple case of a multipartite state is the generalization of |W3) and
|[W4) to |[War), where M signifies M qubits. This state can symbolically be written as

Wi = <— (M - 1,1), (25)

where |[M —1,1) denotes the totally symmetric superposition state including M — 1 zeros and
1 one. The entanglement of this state is, again, very robust against particle losses, i.e., the
state |Wp) remains entangled even if any M — 2 parties discards, or loses, the information
about their particle.

In a paper by Diir, Vidal, and Cirac, [28], it was conjectured that the average value of the
square of the concurrence for |[Wy) is given by

=T 2 2 i) = 37z (26)
k kAl

It was also conjectured by Diir et al. that the |Wy,)-state is the state with the highest average
bipartite entanglement (if all other subsystems are traced out). This conjecture was proven
by Koashi et al. [35]. The expression for the entanglement tensor, Eq. (8), confirms this
result, as all tensor components are equal to zero, except for the bipartite components that
all simultaneously can have the supremal values 1/N2/2M. As discussed in Sec. 3, we should
set Ao = 4 to make our tensor components equal to unity for an EPR-state. Doing so, we
obtain the value 2/M for all of the tensor components squared. That is, the average of the
components squared is also 2/M. The interpretation of this result is rather simple. If all
but two qubits of the state are lost, we stand a 2/M chance of having an EPR-pair and a
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(M —2)/M chance of having the state |0,0). From a large number N of |[W,)-states, we can
hence statistically obtain 2N/M pure EPR states. Assistance among the parties holding the
“traced out” M — 2 qubits will not help. However, as demonstrated for tri- and four-partite
systems, this is not the highest achievable average concurrence of assistance for a M-partite
state. This (the concurrence squared) is instead N2 /4, or unity if Vs is set to four. (Moreover,
in this case, the sharp and the flat concurrence of assistance are equal).

7 Discussion and conclusion

In conclusion we have proposed an explicit formula for an entanglement tensor of a general,
pure, multipartite quantum state. To demonstrate the nature of the measure, and some of the
aspects involved in entanglement classification such as generalized entanglement of assistance,
we have given some example for bipartite, tripartite, four-partite, and M-partite states. In
Sec. 6 we reconfirm the conjecture by Diir et al. about the concurrence of multi-qubit |Wys)-
states. However, we note that a higher value of the average concurrence of a state is possible,
provided that the parties assist each other. That is, the entanglement of assistance is higher
than the entanglement computed from the state’s entanglement graph.
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