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‘We show the possibility to entangle radiation modes through a simple reflection on a
moving mirror. The model of an optical cavity having a movable end mirror, and sup-
porting different modes is employed. The mechanical motion of the mirror mediates
information between the modes leading to an effective mode-mode interaction. We char-
acterize the modes’ entanglement on the basis of recent separability criteria. The effect
of the thermal noise associate to the mirror’s motion is accounted for. Then, we evalu-
ate the performances of such ponderomotive entanglement in possible applications like
teleportation and telecloning.
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1. Introduction

Ponderomotive systems in optics are physical systems where the electromagnetic pressure
force gives rise to relevant effects. The optomechanical coupling between a movable mirror and
a radiation field, is realized in such systems when the field is reflected by the moving mirror.
This coupling was introduced in the context of quantum limited measurements [1] and then
used in interferometric gravitational-wave detection [2] as well as in atomic force microscope
[3]. Since then, a wide literature has been devoted to such a coupling. In particular, it has been
shown that it may lead to nonclassical states of both the radiation field [4, 5], and the motion
of the mirror [6]. The interest about ponderomotive systems also relies on the possibility to
investigate, with them, the tricky borderline between the quantum and the classical world
[7, 8]. Moreover, recent technical progresses have made this area experimentally accessible
[9, 10].

The appearance of quantum effects in ponderomotive systems, paves the way to use them
also for quantum information purposes [11]. These require as main ingredient the entangle-
ment [12, 13]. Furthermore, information processing, in the quantum optical framework, can
be implemented when applied to continuous quadratures of electromagnetic modes [14]. Then,
the use of a ponderomotive meter for continuous variable entanglement purification has been
investigated in Ref.[15]. Furthermore, the possibility to obtain quantum correlated quadra-
tures of the field reflected by a movable mirror has been proposed in Refs. [16, 17]. Here,
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Fig. 1. A possible scheme implementing the studied ponderomotive system.

following the line sketched in Ref.[16], we study a ponderomotive system, namely a radiation
field reflected by an oscillating mirror, from the quantum information perspective. In partic-
ular, we shall show that the mechanical motion of the mirror mediates information between
the field modes leading to an effective mode-mode interaction. Then we shall characterize
the modes’ entanglement on the basis of recent criteria [8, 18, 19], and we shall evaluate the
performances of such ponderomotive entanglement in possible applications like teleportation
[20, 21] and telecloning [22]. In our analysis we shall also account for the effect of the thermal
noise associate to the mirror’s motion. Then, it will become clear the importance of such
systems from both foundational and applicative aspects.

The structure of the paper is the following. In Section II, we introduce a multimode
ponderomotive model. In Section III, we consider the outgoing fields and their quantum
correlations. Then, in Section IV, we study some possible applications. Finally, Section V is
for concluding remarks.

2. A ponderomotive system

The model we are going to consider is schematically depicted in Fig.1. It consists of a
linear cavity, with an oscillating end mirror, plunged in a thermal reservoir at the equilibrium
temperature T. This completely reflecting mirror, with mass m, can move back and forth
along the cavity axes. When the cavity is empty the moving mirror undergoes harmonic
oscillations at frequency w,,, damped at rate <,, by the coupling to the external bath. In
presence of a radiation field, the cavity length varies under the action of the radiation pressure
force, which causes the instantaneous displacement of the mirror.

The resonant frequencies of the cavity are calculated at the equilibrium position of the

oscillating mirror, resulting

Wen = %Cﬁ, (1)

where 71 is an arbitrary integer number corresponding to the index n, c is the speed of light,
and L is the equilibrium cavity length. We consider the possibility to have several input fields
at frequencies wp, ~ wey, driving the corresponding cavity modes. In the adiabatic limit in
which the mirror frequency is much smaller than the cavity free spectral range ¢/(2L) we can
focus only on the driven cavity modes, obtaining the following Hamiltonian

Htot - Hf'ree + Hdm’ve + Hint 3 (2)
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P 1 2 52
Hfree = hzwan A + 2— + 2mwm (3)
Hdrive — Zh\/%z in —szntAT zn *ezw0ntA ) , (4)
wcn

where the sum must be intended over the driven modes. Hy,¢. is the Hamiltonian for the free
motion of the mechanical oscillator (moving mirror) having position @ and momentum P, and
of the cavity modes characterized by the ladder operators A, , A. Here we are considering
a multimode radiation model, focusing on the longitudinal modes, differentely from Ref.[17]
where transverse effects were investigated. For n = 2 the present model reduces to that
studied in Ref.[16].

The Hamiltonian H ;.. describes the input fields, with amplitudes afl”, entering the cavity
through the fixed mirror whose partial transmission determines the input-output rate ~..
Finally, H;,: represents the ponderomotive interaction between the mirror and the radiation
fields [23]. Such interaction is generated by the radiation pressure induced variation of the
cavity length, which corresponds to a variation of the frequencies (energy levels) through
Eq.(1), that is
Jwen Wen

aL oL = — L Q7 (6)
with @ = §L < L. Since we shall consider few modes whose 71 < ¢/(2L) differ not too much
each other, we can set (w.,/L) >~ G, Vn, as the optomechanical coupling constant.

SWwep =

By using Eq.(2), and accounting for the losses and the noises, we can describe the complete
dynamics of the system through the following quantum Langevin equations

P(t)

Q) = e (7)
P(t) = —-muw? Q) +hGZAT An(t) = 27m P(t) — £(t), (8)
An(t) = —1 (wcn - wOn) ( ) + ZGA (t) ( ) + 'Ycaizn

— % Au(t) + VAeall(0), (9)

where we have used the replacements A, (t) — Ane t“o~t. Furthermore, a!® are the vacuum
noise operators associated to the input radiation fields, while £(¢) is the noise operator for the
quantum Brownian motion of the mirror. The noise correlations are [24, 25]

(a" (D) a;* (1))

(e ="t fad” oot (sher ) ~ 1] (1)

T exp (—iw (t—1t))

S(t—t) 8k, (10)

where kp is the Boltzmann constant. It is worth noting that Eq.(11) gives the exact thermal
noise correlations at any temperature T' [25].



268 Information theoretic aspects in ponderomotive systems

We are now going to study the dynamics of the small fluctuations around the steady state,
i.e. the dynamics of the operators

q(t) = Q@) — =, (12)
p(t) = P(t) -y, (13)
an(t) = A, — an, (14)

where the (classical) stationary values are given by

T = <Q>ss = T:(f; Z |an |27 (15)
vy = (Plu=0, (16)
an = (Ap)es = n (17)

with
A, = Won — Wen + Gz , (18)
Ve

the (dimensionless) overall detuning due to the frequency mismatch and to the radiation phase
shift caused by the stationary displacement = of the mirror.

For the sake of simplicity we assume, from now on, symmetric conditions for the various
radiation modes, that is, A,, = A and a,, = a € R, Vn. Then, it is easily recognizable in
Eq.(17) the nonlinear relation between input and intracavity intensity field which give rise to
the bistable behavior of the system [26].

Linearizing Egs.(7)-(9) around the steady state {15)-(17) we obtain

iy = 2 (19)
B) = —molalt) + G Y [a%anlt) + aah(®)] - 2umplt) — £(1),  (20)
in®) = (18- ) wanld) + iGadt) + yra (). (21)

Going into the frequency domain, and eliminating the mirror’s variables we are left with a set
of 2N linear equations (N being the number of driven modes, so that n = 1,..., N) for the
modes quadratures

Such equations can be written in compact form as

iwv(w) = MW)v(w) + V7V (W) + sw)€w), (24)
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where we have introduced the 2N dimensional vectors

V(w) = (Xl(w)v Yl(w)"'- s XN(‘”)? YN(w) )T ’ (25)
virw) = (XPMW), W), XB (W), YirW)T (26)
s(w) = V2Gx(w) (0, —a,...0, —a)", (27)
with L
x(w) = (28)

mw2 — w? + 2iypw)’

the mirror’s mechanical response function. Furthermore, M(w) is a 2N X 2N matrix written
as

[ Mg M, o My \
M, My -+ M,
M= . ) ) , (29)
M, M, - My
where My and M, are 2 X 2 matrices given by
— —Ye/2 —Ay,
Ma = < Ay, + 2RG?x(w)a?  —v./2 ) ’ (30)
0 0
Mo = < 2hG2x(w)a? 0 ) ' (31)
The useful noise correlations for Eq.(24) come from Eqgs.(10),(11),(22),(23) and read
) . 1
(XPMw) XiMw')) = éﬁj’k(?(w + o), (32)
) ; 1
(@ YN)) = i + o), (33
. ; 1
(XMw)iMw')) = 3 i85k 0(w + '), (34)

and

e = {11 com (g0 )} ws b o), (35)

Thus Eqs.(24)-(35) completely describe the dynamics of the small fluctuations of radiation
modes. Practically, we can see from Eqs.(39),(40) that the mirror mediates information
between the radiation modes leading to an effective mode-mode interaction as results from

Egs.(24), (29) and (30) (31).

3. Output fields entanglement

The above discussed mode-mode interaction will presumably lead to entanglement between
intracavity modes, which, in turn, should be reflected on the fields outgoing the cavity. On
the other hand, only these latter become really useful. Hence, we are going to characterize
their correlations. First of all we notice, by the the input-output theory [24], that

voUl W) = Ve vw) — v (w), (36)
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then, we introduce the hermitian output quadrature operators

Xt (w) + X (-w)

szut = 9 ’
Yout Yout _
RY;ut = n (w) +2 n ( w) . (37)

Their correlations are described by the 2N x 2N matrix

G = (v VW) + veee) e, (38)
= K@) (v v w) ) o))
b 3K (vin(-w) )] W)
b2 L W) s(w) )T (27 (w)] T {Ew) E(-w))
+ 2L (w)s(—w) s@)]T [T @) (g(-w)Ew)),
where
K@) = 7L7'w) -1, (39)
Lw) = iw - M), (40)

with 7 the identity 2N x 2N matrix.

By virtue of the linearization procedure adopted in Sec.Il we have in output, for each
frequency, a multivariate Gaussian state. Such states can be described by a Wigner function
with a frequency dependent symmetric correlation matrix. However, the matrix G is not
symmetric and, moreover, it concerns quadratures with frequency dependent commutator,
ie.,

([Rxout(w), Ryout(—w)]) = icw), Vn, (41)

with ¢ a real positive definite function of frequency w, i.e. ic(w) = Gan—1.21n(w) — Gap 2n—1(w)
for n = 1,... N. Then, since the entanglement criteria [19, 16, 18] are formulated in terms
of quadratures with canonical commutation relations, i.e., [Rx, Ry| = i, we construct from
Eqs.(38), (41) a symmetric correlation matrix concerning such type of quadratures, that is

_ Gik(w) + Gg,j(w)

Vk(w) = 20() . (42)

We henceforth consider multivariate Gaussian states completely characterized by Eq.{42).

3.1. Bipartite entanglement

We now restrict the attention to only two mode (N = 2) in order to study the entanglement
of a bipartite system. Practically we consider

Mg M,
M-(MO Md), (43)
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Table 1. Parameters values.

W 10% s~ 1
Won 1015 g1
m 107 kg
L 1073 m
Ym 1st

Ve 108 51

P" = hwy,|af®? 13 mW per mode

and we introduce the matrices

0 1 1 0
j:<_10>, R:(O_l). (44)
Then, Eq.(43) leads to
A C
V= < cT 4 ) ’ (45)

where A and C are 2 X 2 matrices. In this case the Simon’s criterion [19] is necessary and
sufficient for entanglement, and, according to Eq.(19) of Ref.[19] we can define a marker of
entanglement as

2
E =1+ (detA) + G - |detC|> —r {ATCTATCTT) — %detA, (46)

so that, if it goes below 1, the state is entangled. Instead, the product criterion introduced
in Ref.[8], and reminiscent of nonlocality criterion [27], gives

E = 4(A11 +C11)( Az — Ca2) . (47)
Finally, the sum criterion, expressed by Eq.(3) of Ref.[18], can be rewritten as
E=tct{A} +tr {CR} . (48)

Then, in Fig.2 we report the marker of entanglement E versus w, for the three criteria a)
Simon, b) product, ¢} sum. At any given frequency w, F is calculated from the corresponding
output quadrature correlations. The latter can be detected, for instance, by two separate
homodyne receivers having the same (fixed) analysis frequency w (see Ref.[28]).

The parameters values of Fig.2 are taken similar to those of the experimental set up of
Ref.[10]. They are written in Tab.l. Fig.2 shows that in case of no detuning the product
and the sum criteria do not reveal any entanglement, while the Simon criterion does. This
proves the weakness of the the entanglement coming in this case from the interaction of only
amplitude quadratures as can be evicted from Eqgs.(43) and (30),(31). Such type of entan-
glement, although resistant to thermal effects, is practically useless in information processing
like teleportation whose performance are much more related to the product and sum criteria
[29].

As stated above, the Simon’s criterion, being necessary and sufficient in our case, recognizes
all the possible entangled states. In this sense it is weaker than the other criteria. Since we are
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Fig. 2. The marker of entanglement F is plotted versus w with respect to the three criteria a)
Simon, b) product, ¢) sum. Here A = 0 and the other parameter values are given in Tab.I. The
dashed lines indicate the limiting value below which entanglement is recognized. The three plots
remain unalterated in the temperature range 7'= 0 + 300 K.
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Fig. 3. The entanglement indicator E of Eq.(48) is plotted versus w. Here A = —0.1, and solid
lines are for T = 0, T' = 10, T' = 50 K from botton to top. The other parameter values are given
in Tab.I. The dashed line indicates the limiting value below which entanglement is recognized.

interested on possible applications requiring strong enough entanglement, we leave the Simon’s
criterion aside. Due also to the fact that the sum criterion always implies the product one
[30] we henceforth consider only the sum criterion. Then in Figs.3 and 4 we have shown the
beneficial effect of the detuning on the entanglement. As matter of fact it allows interaction of
both amplitude and phase quadratures as can be seen in Eq.(43). In particular Fig.4 exhibits
the presence of entanglement at low frequencies (according to Ref.[16]) as well as near the
mechanical resonance. Neverthless, the latter turns out to be more sensible to the thermal
noise. This behavior resembles that of the light squeezing studied in Refs.[4, 5].

3.2. Tripartite entanglement

Characterization of multipartite entanglement (N > 2) is a more complex issue [14]. In
general, multi-party inseparability criteria cannot be formulated in compact form as for the
two-party. Here, we consider N = 3, thus the matrix

Md Mo Mo
M = Mo Md Mo 9 (49)
My, M, My
which leads to
A C C
V= cr A C . (50)
cT ¢t A

Although for three-mode Gaussian states there exist a necessary and sufficient separabil-
ity criterion [31], its violation does not necessarily witness genuine tripartite entanglement.
However, from the symmetry of matrix (50) we easily deduce that the conditions for bipartite
entanglement also give tripartite entanglement. As matter of fact a tripartite fully inseparable
state is that which cannot be separate for any grouping of the parties [31]. But, due to the
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Fig. 4. The entanglement indicator E of Eq.(48) is plotted versus w. Here A = 0.1, and solit
lines are for T = 0, T = 10, T = 50, T = 100 K from botton to top. The other parameter
values are given in Tab.l. The dashed line indicates the limiting value below which entanglement
is recognized.

symmetry among the parties, if two of them show entanglement according to Sec. III A, then
any two of them show entanglement, thus revealing a fully inseparable state.

4. Applications to remote state transfer

This ponderomotive entanglement find possible applications in quantum information process-
ings with continuous variables [14]. Here, we deal with the possibility of using it for remote
state transfer. By referring to Fig.1, the modes outgoing the cavity can be separated and
one of them can reach a sending station while the others reach receiving stations. Then, all
these modes constitute the quantum channel to exploit for transferring a quantum state from
the sending station to the receiving ones. We will analyze in detail the case for N = 2, i.e.,
teleportation [20, 21], and N = 3, i.e., telecloning [22].

4.1. Teleportation

The standard teleportation protocol for continuous variable [20, 21] can be described by
a convolution of the Wigner functions [32]

W,(8) = / PEW,(O) K(B—€), (51)
K@B-¢ = / PEWE" ¢, 8-¢), (52)

where W, is the Wigner function of the received state, W, that of the unknown state to be
transferred (sent), and W that describing the quantum channel between the two stations,
i.e., the two entangled modes characterized by the correlation matrix (45). Here, small greek
letters are for complex variables.

By Fourier transforming Eqs.(52), we get a simple relation for the characteristic functions
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P, namely )

where

K = /d2li K(r) exp(—ir1A; — ikaAa)
= /dzli d?ud*z (z) exp (—iki Ay — ikos)
x exp{iz- (p1,—p2, 81 — p1, K2 — p2)} , (54)

where the variables with the subscript 1 (2) represent the real (imaginary) part of the corre-
sponding complex variables, and z is a four dimensional real variables vector. Moreover,

®(z) = exp{—iz VZT} , (55)

is the characteristic function describing the two-mode channel, thus characterized by the
matrix V given in Eq.(45).
We also consider a Gaussian state to be transferred, so that

®,(\) = exp [—i (A1, A2) D (Al,)\g)T] , (56)

with D the 2 x 2 correlation matrix.

Finally, the fidelity of the protocol, resulting from the overlap between the “r” and the
Wigner functions, can be written in terms of characteristic functions as

“S”
= i/d2>\ B, (N) BN (57)
T 4x ¢ T

Then, by using Eqs.(53)-(56), we arrive at (see also [33])

F

1 1
E/cm exp [—§(A1,A2)D(A1,A2)T]

X

()\17 _>\27)\17)‘2) Vv ()\17 _)\27)\17)‘2)T1|

= . (58)
"~ /det 2D+ RTAR+ RTC+CTR + A)

[ 1
exp _Z

In Fig.5 we show the teleportation fidelity as function of w. As a state to be teleported we
have chosen the coherent state for which D = diag(1/2,1/2). In such a case the upper bound
for the fidelity achievable with only classical means and no quantum resources is 1/2 [29].
Then, we see that this bound is overcame just in correspondence of the minima of Fig.3.
Also the behavior of the fidelity in terms of thermal noise reflects that of the entanglement
recognized by the sum criterion (see Fig.4). Instead this behavior is not strictly related to
the Simon’s criterion [29].
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Fig. 5. Teleportation fidelity versus w. Curves from top to bottom are for T =0, T = 10, T' = 50,
T — 100 K. Here A — 0.1 and the values of other parameters listed in Tab.l. The dashed line
indicates the classical upper bound.

4.2. Telecloning

As a simple extension of the arguments used for teleportation, we can write the Wigner
function of the received state (at the two stations) by the convolution [22]

W,(8,m) = / PEW.(E) K(B—€,n—6), (59)
R@B-en-¢) = /dZE’W(E’*—5*,6—5’,77—5’), (60)

where W is the Wigner function describing the quantum channel between sending and receiv-
ing stations, i.e. the three entangled modes characterized by the correlation matrix (50).

The state at one receiving station can be obtained by tracing the received state (59) over
the other receiving station. Due to the symmetry, the two possible states coming out coincide.
Thus, we can assume

W, (8) = / P W,(6,m) = / PEW,(K(B— ), (61)

where now
K@-¢) = [@nk@-6n-9). (62)

By again Fourier transforming Eq.(61), we end up with a relation for the characteristic func-
tions identical to Eq.(53),

where now

K\ = /d% exp (—ik1 A1 — ika)a)

x /d2ud24d6z ®(z) exp {iz - (11, —p2, K1 — p1, K2 — p2, (1 — p1, G2 — p2)” H(64)
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Fig. 6. Telecloning fidelity versus w. Curves from top to bottom are for T = 0, T = 10, T = 50,
T = 100 K. Here A = 0.1 and the values of other parameters listed in Tab.l. The dashed line
indicates the classical upper bound.

and
®(z) = exp [—iz VZT] : (65)

is the characteristic function describing the three-mode channel, thus characterized by the
matrix V given in Eq.(50), with z a 6 dimensional real variables vector.

We again consider a Gaussian state to be transferred, as in Eq.(56). Then, the fidelity,
being expressed by Eq.(57), results, by means of Egs. (56), (63), (64), (65) as

1 1
F = E/dzk exp [—5(&,)\2)@0\1’)‘2)1
X exp [i(xl,h,Al,AQ,o,o)V(Al,Az,Al,Az,O,O)T]

= . (66)
"~ Jdet2D+ RTAR+RTC+CTR+ A)

It practically coincides with Eq.(58). However, in this case, F is limited above by 2/3 [34],
due to the no-cloning theorem [35].

In Fig.6 we show the telecloning fidelity as function of w. As state to be telecloned we
have choosen again a coherent state for which D = diag(1/2,1/2). Also in this case the upper
classical bound for the fidelity is 1/2 [34]. Then, we see that this bound is overcome again in
correspondence of the minima of Fig.4 confirming the arguments at the end of the previous
subsection.

5. Conclusions

In conclusion, we have studied ponderomotive entanglement, that is entanglement between
radiation modes generated by the radiation pressure effects. In doing so we have also provided
a comparison between different entanglement criteria. Practically, we have shown that even a
classical force, like radiation pressure force, together with macroscopic objects can be used for
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quantum information purposes. This is novel and unexpected result, as quantum information
is usually recognized to be very fragile. We have further investigated the role played by the
thermal noise related to the mechanical motion of the mirror. We have seen that purely
quantum effects can survive up to a temperature ~ 10 K. This is within reach in experiments
with really macroscopic mirrors [10]. Thus, the present study has a fundational interest for
better understanding the tricky borderline between classical and quantum worlds (see also
[7]). Quantum teleportation is, indeed, thought to be degraded to the classical limit by only
one thermal phonon [18]. Instead, we have shown that this transition strongly depends on the
way the noise comes into the system. Moreover, an experimental evidence of the cross-over
between quantum and classical regime in terms of information aspects seems at the hands by
just varying the bath temperature.

From an applicative point of view, our model could be suitable as well for micro-opto-
mechanical-systems (MOMS) [36] used for quantum information purposes. These could be-
come alternative to other systems for producing entangled states for continuous variables.
In fact, such systems usually work at mechanical frequencies higher than the macroscopic
mirrors (up to GHz) and they allow to reach lower temperatures (down to few mK), assuring
better performances. On the other hand, the fidelity in remote state transfer we have shown,
although overcome the classical bounds, does not reach the optimal values. Theoretically,
these could be obtained by an optimization of all involved parameters. Also the local opera-
tions could be optimized for the studied type of Gaussian entangled channel [33]. However, all
that would require large numerical resources without adding new physics to the problem. So
it has been left apart by only providing a qualitative study of ponderomotive entanglement.
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