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We study necessary conditions for the efficient simulation of both bipartite and multi-
partite Hamiltonians, which are based on the algebraic-geometric invariants introduced
in [1-2], but independent of the eigenvalues of Hamiltonians. Our results indicate that
the problem of efficient simulation of Hamiltonians for arbitrary bipartite or multipar-
tite quantum systems cannot be described by using only eigenvalues, unlike that in the
two-qubit case.
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The idea of simulating Hamiltonian time evolutions was a first motivation for quantum
computation [3]. Recently the study of nonlocal Hamiltonians simulating one another becomes
popular, since the result has applications in quantum control theory [4], quantum computation
[5-8] and the task of generating entanglement [9-10]. The problem to parameterize nonlocal
properties of interaction Hamiltonians, so as to characterize the efficiency with that they can
be used to simulate one another, is important, for both theories and experiments. There have
been very active researches on this problem [11-17]. For a general treatment of this topic, we
refer to [11] as a main reference.

It was shown in [11] that the efficiency with that a Hamiltonian H, together with local
operations , simulates another Hamiltonian H’, can be used as a criterion to endow the set of
Hamiltonians with a partial order structure, that allows to compare the nonlocal capabilities
of H and H'. For two-qubit Hamiltonians, it was shown that the problem of simulation of
Hamiltonians can be reduced to the case of so-called normal forms of these Hamiltonians (see
Theorem V A in [11]). For these Hamiltonians in their normal forms, a beautiful necessary and
sufficient condition for the simulating capability in terms of the majorization of eigenvalues
of these Hamiltonians was given. This indicated that the partial order structure endowed on
the two-qubit Hamiltonians is in close analogy to the partial ordering of bipartite pure states
endowed by their capabilities to be converted by LOCC [18].

It is natural to consider the simulation problem of Hamiltonians on arbitrary bipartite
quantum systems. We can imagine that in higher dimensions, Hamiltonians have more non-
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250 Necessary conditions for efficient simulation of Hamiltonians using local unitary operations

local degrees of freedom than the two qubit case, and there is no result about "normal forms”
of Hamiltonians on arbitrary bipartite quantum systems, this may make the problem more
difficult and it seems hopeless to give a characterization based only on the majorization of
some numerical quantities (as in Theorem of section F of [11]). In [19] it is proved that
m?n? — m? — n? + 1 nonlocal parameters are needed to describe the set of equivalent classes
of bipartite mixed states on H}' ® Hf under local unitary operations. A similar parameter
counting argument as [19] shows that there must be at least m?n? — 2(m? + n?) + 3 nonlo-
cal parameters for the equivalent classes of bipartite Hamiltonians on H}' ® Hp under local
unitary operations. When we consider the ability of nonlocal Hamiltonians to simulate one
another with the help of local unitary operations, it is natural to imagine that these continu-
ous invariants of Hamiltonians under local unitary operations may give constraints on these
Hamiltonians H and H' if there is a simulation relation using local unitary operations between
them, and any such constraint must be expressed by these invariants. In our previous works
[1] and [2] the algebraic-geometric invariants of bipartite mixed states (i.e. semi-positive
self-adjoint operators) were introduced as their nonlocal invariants (i.e., these algebraic sets
are kept invariant under local unitary operations). These algebraic-geometric invariants de-
pends only on eigenvectors and are independent of eigenvalues of the semi-positive adjoint
operators. We can think these algebraic-geometric invariants as nonlocal invariants of semi-
positive bipartite Hamiltonians and ask if there exists any constraint on these invariants of
two semi-positive Hamiltonians H and H' if H can be simulated by H' using local unitary
operations.

In this paper, we show that the efficient simulation relation between two semi-positive
bipartite Hamiltonians of the same rank implies the equalities of these algebraic-geometric
invariants of them. This necessary condition is also extended to the efficient simulation
of multipartite Hamiltonians. Since these algebraic-geometric invariants are independent of
the eigenvalues and only measure the position of eigenvectors of the Hamiltonians, our results
strongly suggest that the eigenvectors play a more fundamental role in the efficient simulation
problem of Hamiltoians on arbitrary bipartite or multipartite systems. This is quite different
to the two-qubit case studied in [11].

In this paper, we say, for two bipartite Hamiltonians H and H' on Hy @ HE, H' can
be efficiently simulated by H with local unitary operations, write as H' <ry H, if H' can
be written as a convex combination of conjugates of H by local unitary operations, H' =
p1(U @ VI)H(U, @ Vi)t + ... + p,(Us ® Vo.)H(U, ® V3)t, where py,...,p, are positive real
numbers such that p; + ... + ps = 1, Uy,...,Us and Vi,...,V, are unitary operations on
H7}' and HE respectively. Here we use { for the adjoint. This is equivalent to the notion
”infinitesimal simulation” in [11] and ”first order simulation in [16]. In [11] and [16] it is
shown that ”local terms” like I ® Kp and K 4 ® I are irrelevant to the simulation problem up
to the second order, thus they considered the simulation problem for Hamiltonians without
local terms’ effect. Our definition here is more restricted without neglecting the local terms.

If H <py H, where H is a semi-positive self-adjoint operator, it is clear that H' has to

be a semi-positive self-adjoint operator and ¢r(H') = ¢tr(H). Thus it is clear that H' <y H
tr(H
mn

is equivalent to H' — %Imn <v H — Iyn, so we do not restrict to the traceless
Hamiltonians in this paper.

We have the following observation. First we recall the following result in [20].
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Lemma 1. Let T = ¥;p;|v;){(v;|, where p;’s are positive real numbers, be a positive self-
adjoint operator on a finite dimensional Hilbert space. Then the range range(T) of T is the
linear span of vectors v;’s.

If H = |v)(v| and H' = |v')(v'| where |v) and |v") are pure states and H’ can be simulated
by H efficiently, i.e. H' <py H, actually the Schmidt ranks of |v) and |v’) have to be
the same. In fact, if there exist positive numbers pi,...,ps and local unitary operations
U1 ®V1,...,Us®@V,, such that, ;p;U; @V, H(U; ®V;)t = H', it is clear that U; @ V; H(U; @ V;)T =
[(U; ® V;))u){(U; ® V;)v|, and from Lemma 1, |(U; ® V;)v) is in the range of H'. Hence
[v"} = |(U; ® V;)v) and the Schmidt ranks of |v) and |v’) have to be the same.

For semi-positive bipartite Hamiltonians (equivalently, bipartite mixed states, i.e., semi-
positive self-adjoint operators) on HT ® HZ, algebraic sets VF(H) in CP™ 1 (respectively
VE(H) in CP"~1) are introduced in [1] as the degenerating locus of the measurement of
them by separable pure states. For any given semi-positive self-adjoint operator (bipartite
mixed states or semi-positive Hamiltonians) p on H ® Hp, we consider the expression
(91 @ P2|p|p1 ® ¢2) for any pure states ¢; € Hf and ¢, € HE. For any fixed ¢; € P(HY),
where P(H') is the projective space of all pure states in H, ($1 ® d2|p|¢1 @ ¢2) is a
Hermitian bilinear form on Hp, denoted by (¢1|p|¢1) . We consider the degenerating locus
of this bilinear form, i.e. V¥(p) = {¢1 € P(HT) : rank((¢1]p|¢1)) < k} for k =0,1,...,n — 1.
We can use the coordinate form of this formalism. Let {|11),...,|1n},...,|m1),...,|mn)} be
the standard orthogonal basis of H' ® Hp and p be an arbitrary semi-positive self-adjoint
operator. We represent the matrix of p in the basis {|11),...]1n),...,|m1),...,|mn})}, and
consider p as a blocked matrix p = (pij)i<i<m,1<j<m With each block p;; a n x n matrix
corresponding to the [il),...,|in) rows and the |j1),...,|jn) columns. For any pure state
¢1 =71|1) + ...+ 7|m) € P(H') the matrix of the Hermitian linear form (¢1|p|¢1) with the
basis |1}, ..., |n) is Emrir;pij. Thus the “degenerating locus” is actually as follows.

VE(p) = {(r1, ., rm) € CP™ 1 rank(S; jrirl pij) < k} (1)

for k=0,1,...,n — 1. Similarly Vg(p) C CP™ ! can be defined. It is known from Theorem
1 and 2 of [1] that these sets are algebraic sets (zero locus of several multi-variable polyno-
mials, see [21]) and they are invariants under local unitary operations depending only on the
eigenvectors of p. Actually these algebraic sets can be computed easily as follows.

Let {|11), ...,|1n), ...,|m1), ..., |mn) } be the standard orthogonal basis of H’} @ HE as above
and p = X!_ p|v;)(v| be any given representation of p as a convex combination of projections
with p1,...,p¢ > 0 (for example, we can take the spectral decomposition p = XI_; A;|1);) (1]
as a such representation). Suppose v = X% a;;lij) , X = (aiji)i<i<m,1<j<ni<i<t 18
the mn X t matrix. Then it is clear that the matrix representation of p with the basis
{I11),..., [1n), ..., |m1),...,|mn)} is X PXT, where P is the diagonal matrix with diagonal en-
tries pi, ..., pt. We may consider the mn X ¢t matrix X as a m X 1 blocked matrix with each
block X,,, where w = 1,...,m, a n X t matrix corresponding to {|wl),...,|wn)}. It is clear
pij = XiPX]J-r and Em-rir;pij = (% X;)P(Zi: X;)T. From simple linear algebra VE(p) is just
the set of points (rq, ..., ) in CP™ ! such that rank(X;r;X;) is less than k + 1, ie., V£ (p)
is the algebraic set in CP™ ! as the zero locus of the determinants of all (k + 1) x (k + 1)
submatrices of X;7; X; (see [1]).

We can see that V¥ (p) is independent of eigenvalues \;’s if it is computed from the spectral
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decomposition p = XI_; A\;|1;){(1;], since it is computed from the matrix X depending only on
eigenvectors |1;)’s. For example, let T' be a two-qubit mixed state with some of the following
4 Bell states as its eigenvectors.

v1) = 5(111) +122))
lv2) = J5(111) — |22)) @)
lvs) = 5(112) +]21))
lva) = 5(112) —[21))

It is easy to calculate the matrix r; X7 + 72 X5 of the whole 4 Bell states, it is the following

2 x 4 matrix.
T T1 T2 —T
(n ) ®

Therefore V3(T) and V;(T) can be computed from the submatrix consisting of rank(T’)
columns of the above matrix. Thus V3(T') is always empty, V1 (T) is the set of 2 points when
rank(T) = 2 and empty when rank(T) = 3, 4.

From [1], the Schmidt ranks of pure states p( projection operators to unit vectors) are just
the codimensions of the algebraic sets (codimV3(p) = codimV3(p)). Therefore it is natural
to think the above observation can be extended to the equalities of these algebraic sets of
arbitrary bipartite semi-positive Hamiltonians of the same rank if they can be simulated
efficiently. In this paper we give such a necessary condition about the efficient simulation of
semi-positive Hamiltonians.

Theorem 1. Let H and H' be the semi-positive Hamiltonians on the bipartite quantum
system H'p @ H} with the same rank, i.e. dim(range(H)) = dim(range(H')). Suppose
H' <y H, that is , H' can be simulated by H efficiently by using local unitary operations.
Then V¥(H) = VE(H') for k = 0,....,n — 1 and VE(H) = VE(H') for k = 0,...,m — 1, here
the equality of algebraic sets means they are isomorphic via projective linear transformations
of complex projective spaces.

The following observation is the the key point of the proof of Theorem 1. From Lemma 1
in [20] as cited above, the range of p is the linear span of vectors |v1), ..., |vt). We take any
dim(range(p)) linear independent vectors in the set {|v1), ..., |vs)}, say they are |v1), ..., |vs) ,
where s = dim(range(p)). Let X' be the mn X s matrix with columns corresponding to the s
vectors |v1), ..., |Us)’s coordinates in the standard basis of H}' ® H. Then X' is a submatrix
of the above-described matrix X and each column of X is a linear combination of columns in
X'. We consider X' as m x 1 blocked matrix with blocks X1, ..., X (n X s matrices) as above.
It is clear that V¥(p) is just the zero locus of determinants of all (k+ 1) x (k + 1) submatrices
of X;r; X!, since any column in ¥;r;X; is a linear combination of columns in ¥;r; X/ ( thus
rank(X;r;X;) < k is equivalent to rank(X;r; X}) < k).

Proof of Theorem 1. Suppose H' <y H, then there exist positive numbers p1, ..., s
and local unitary operations U; ® V4, ..., U; ® V;, such that, Xt_,p;U; @ V;H(U; @ V;)T = H'. Let
H = ¥¢_,q;|¥:){¢i|, where s = dim(range(H)), ¢1, --., s are eigenvalues of H and [¢1), ..., [¢s)
are eigenvectors of H. Then it is clear that (U; @ V;)H(U; ® Vi)' = £5_,4;|(U; @ Vi) ;) (U @
Vi)¥;| and thus H' = E:ﬁlyjzlpiqﬂ(Ui ® Vi)¥;)((U; @ V;)v;|. This is a representation of
H' as a convex combination of projections. From Lemma 1 range(H') is the linear span of
(U1 @ V1)1), ..., |(U1 @ V1)) since they are dim(range(H')) = s linear independent vectors
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in range(H'). From our above observation V§(H') can be computed from the matrix X’ of
vectors |(Up ® V1)¥1), ..., |(Ur ® V1)s) and thus VY(H') = VE((U; ® V1)H(U; ® V1)) from
the definition. Thus the conclusion follows from Theorem 1 in [1].

Since the algebraic-geometric invariants are independent of eigenvalues, thus our above the-
orem is a necessary condition of simulation of Hamiltonians without referring to eigenvalues.
As described in e.g. [11] and [16], local terms like I ® Kp and K4 ®I are considered irrelevant
to the simulation process up to the second order, this leads to the so-called normal forms of
two-qubit Hamiltonians. We can recall the Theorem in section F of [11], for Hamiltonians H
and H' in their normal forms, i.e. H = ¥;h;0;,®0; and H' = ¥;hlo; @ 0;, where 0;’s are Pauli
matrices, on two-qubit systems, H' <ry H if and only if h' = (h], b, h%) <5 h = (hq, he, hs),
where <, is the s-majorization defined in [11]. Thus we can see that in the case of effi-
cient simulation of Hamiltonians on two-qubit systems, eigenvalues of Hamiltonians play a
crucial role, since h and h' can be determined from the eigenvalues of Hamiltonians H and
H' uniquely. However Theorem 1 implies that in the case of arbitrary bipartite quantum
systems, the algebraic-geometric invariants which are independent of eigenvalues play a more
fundamental role. This is also illustrated in the following example of efficient simulation of
Hamiltonians on H3 ® H3,.

Example 1. Let |v;), |va)|vs) be the following 3 unit vectors in H3 ® H3.

v1) = 5 (e 11) +122) + [33))

|v2) = 5 (e 12) +123) + [31)) (4)

lvs) = J5(e™[13) + [21) +[32))
where 71,72, 73 are 3 real parameters. Let Hy, n, n. = (|v1)(vi|+ |v2)(va| + |vs)(v3|. This is a
continuous family of Hamiltonians H,, ;, ,, of rank 3 parameterized by three real parameters.
It is easy to calculate that V3(Hy, n,4s) is just the elliptic curve (see [21-22]) in CP?

3 3 3 _ el yein24ein3 _ _ e'Mpeinzqeins _
defined by ri +r3+r; — S e S5 rirars = 0. Set g(n1,m2,M3) = S, a7 and k(z) =
23 (234+216)°2

e then k(g(n1,72,m3)) is the moduli function of elliptic curves. From Algebraic
Geometry it is known that if k(g(n1,m2,73)) # 0,27, —216, then V3 (Hy, 106
of 3 lines and when k(g(n1,7m2,73)) = 0 or 27 or —216, V3(H,, 4,.ns) is the union of 3 lines.
Moreover V3 (Hy, n,,95) is isomorphic to VZ(Hys ) by projective linear transformations if
and only if k(g(n1,7m2,73)) = k(g9(n},n5,m5)) ( see section 7.2 , pp.363-396 of [22]). Thus we
immediately know that Hy o, cannot be efficiently simulated by Hy o, using local unitary
operations from Theorem 1. Generally we have the following result.

Corollary 1. Hy; . . cannot be simulated by Hy, . 5, efficiently by using local unitary
transformations,i.e. we cannot have Hy; 11 o <1 Hyy s> if k(g(n1,m2,m3)) # k(9(n1,m2,m5)),
though the 3 nonzero eigenvalues of Hy, y, ny; Hyy ny n: and their partial traces are all 1.

Proof. It is easy to calculate the eigenvalues to check the 2nd conclusion. The first
conclusion is from Theorem 1 and the above-described well-known fact about elliptic curves.

This example strongly suggests that the problem of efficient simulation of Hamiltonians
on arbitrary bipartite quantum systems is quite different to the problem in two-qubit case as
studied in [11].

Let S be the swap operator on the bipartite system H”; ® Hp defined by S|ij) = |ji). For
any Hamiltonian H, S(H) = SHS' corresponds to the Hamiltonian evolution of H with A
and B interchanged. It is very interesting to consider the problem if H can be simulated by

w

) is not the union
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S(H) efficiently . This led to some important consequences in the discussion VII of [11]. For
example it was shown there are examples that H and S(H) cannot be simulated efficiently
with one another in higher dimensions. Thus in higher dimensions nonlocal degrees of freedom
of Hamiltonians cannot be characterized by quantities that are symmetric with respect to A
and B, such as eigenvalues. This conclusion is also obtained from the above Corollary 1. From
Theorem 1 we have the following necessary condition about H <y S(H).

Corollary 2. Let H be a semi-positive Hamiltonian on H @ Hg. Suppose H <puy S(H).
Then V¥(H) = VE(H) fork=0,..,n— 1.

The following is a Hamiltonian H on 3 X 3 system for which H cannot be simulated
efficiently by S(H).

Example 2. H = [¢1)(¢1] + [§2)(d2]| + |§3)(¢s|, where

62) = ek (112) + v]22)) )
63) = 2 (13) + A[23))

Then it is easy to compute that V3(H) is the sum of 3 lines in CP? defined by r; +ry =
0,r1 +vry =0 and r1 + Arg = 0 for v # X and both v, A are not 1, and Vg(H) is the sum of
2 lines in C'P? defined by r2 = 0 and 73 = 0. Thus we cannot have H <.y S(H).

The following example shows that our results can lead to non-trivial constraints without
referring to eigenvalues even in the two-qubit case if local terms are not neglected (as in our
definition). Although local terms may be physically irrelevant in the setting of [11] and [16],
Example 3 below illustrates mathematically how our results work.

Example 3. Let H — Aufn) (Y] + Aoltho) (] and H' — Ny[f) (6] + Aslush) (4] be
two Hamiltonians on H% ® H%, where \’s are any given positive real numbers such that
trH = trH' and

[91) = 5(11) + |22))

[92) = S5(111) — |22)) o
[9) = (1) + |22))

vh) = [12)

Then we know H and H' are two rank 2 Hamiltonians. It is easy to compute that V;(H)
is the algebraic set of two points (1:0) and (0: 1) in CP! and V}(H’) is the algebraic set of
one point (0: 1) in CP!. Hence we cannot have H' <y H from the Theorem 1.

We can now observe the compatibility of our necessary condition Theorem 1 with the suf-
ficient and necessary condition in the two-qubit case in [11]. For two two-qubit Hamiltonians
H and H' in their normal forms, i.e. H = X;h;0;,®0; and H' = X;hlo; ®0;, it is proved in [11]
that H' <py H if and only if h' = (h, hf, h%) <s h = (hy, ha, hs), i.e. h' is ssmajorized by h.
It is clear that the 4 eigenvectors of any two-qubit Hamiltonian in its normal form are exactly
4 Bell states. Thus if H = X;h;0; ® o; is of the form T — %Ll, where T is a semi-positive
two-qubit Hamiltonian, then the algebraic-geometric invariants of T are fixed, i.e. V§(T) is
empty, and V1(T) is the set of 2 points when rank(T') = 2 and empty when rank(T) = 3 or
4. Thus we can see that our necessary condition Theorem 1 is void when applied to two-qubit
Hamiltonians in their normal forms, the necessary condition in this paper is compatible with
the main result in [11].
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Actually the algebraic geometric invariants in [1] can be used to give more necessary
conditions for the efficient simulation of Hamiltonians by using local unitary operations.

Theorem 2. Let H and H' be two semi-positive Hamitonians on HY ® Hp. Suppose
there exists a representation of H as a conver combination H = Xq;|v;)(v;|, with positive
¢i’s and the Schmidt rank of |vi) is min{m,n}. Moreover V3(H') is not empty. Then H'
cannot be simulated by H efficiently by using local unitary operations, i.e. we cannot have
H' <ry H.

Proof. From the condition, there exist positive pi,...,p; and local unitary operations
U1®Vi,...,Us ®V;, such that, Xt p;U; @ V;H(U; @ V;)T = H'. Tt is clear that (U; @ V;) H(U; ®
Vi)l = 53, 051(T @ Vi)og) (Ui @ Ve, and thus B = £5%, | pigy|(Us @ ViJoy (T & Vo).
From Lemma 1 in [20] as cited ( Lemma 1 ), range(H') is the linear span of vectors (U; ®
Vi)u;j for i = 1,...,¢t and j = 1,...,s. From the above description about the computation of
V3(H'), we can compute it by choosing dim(range(H')) linear independent vectors in this
set {(U1 ® V1)v1, ..., (U1 ® V1)vs, ..., (U ® Vi) 1, ..., (U ® V;)us }. Therefore we can choose one
of these dim(range(H')) linear independent vectors to be (U; ® Vi )vy, whose Schmidt rank is
min{m,n}. From [1] and the definition, we know that V.J(H’) has to be the empty set. This
is a contradiction and the conclusion is proved.

Example 4. Let H = |v)(v| and H' = 1 (|u1)(u1| + |uz)(uz|) be two Hamiltonians on
H3 @ H} where

lv) = Z5(111) +[22) +[33))

73
ur) = 5 (111) + [22)) (7)
uz) = J5(111) — [22))

It is clear that VJ(H’) is the set of one point (0: 0 : 1) in CP3, thus nonempty. On the
other hand H satisfies the condition in Theorem 2. Thus we cannot have H' <ry H.

For multipartite Hamiltonians on Hj'! ® --- ® Hy'", the definition H' <ry H can be
naturally extended as follows. We say that multipartite Hamiltonian H' can be simulated by
H efficiently using local unitary operations, written as H' <py H, if there are positive real
numbers pj, ...,p, such that p; + .. + p, = 1 and unitary operations U}, ...,UL,....UR,...,UP
on H{*,...H}'™ respectively, such that, H' = py(U} @ --- @ UP)H{UL @ --- @ UP)T + ... +
ps(Ul® - @UM)H(U} ®---®UP). Then we can use the algebraic-geometric invariants in
[2] to give the following necessary condition.

Theorem 3. Let H and H' be the semi-positive Hamiltonians on the multipartite quantum
system H"' ®---®@ Hy™ with the same rank. Suppose H' <ry H, that is, H' can be simulated
by H efficiently by using local unitary operations. Then Vf’fil. . (H) = V}fil. .4, (H') for
any possible k and any possible A;,, ..., A;;, here the equality of algebraic sets means they are
isomorphic via projective linear transformations of the product of complex projective spaces.

The proof is the same as the proof of Theorem 1.
We can consider the following example in 3-qubit case.

Example 5. Let H and H’' be rank 4 Hamiltonians on H3 ® H3 ® HZ, H = |¢1){(¢1| +
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|62)(P2| + |93) (3] + |¢a)(Pa| and H' = |¢7)(¢1] + |¢2)(d5] + |¢5)(d5] + [¢4) (d4], where

|61) = 5(/010) — |011))
|62) = 5(/100) — [110))
|6s) = 5(/001) — [101))
|64) = 5(/000) — [111)) ®)
|#1) = 5(/000) — [100))
|65) = 5(/001) — [101))
|#5) = 5(/010) — [110))
|64) = J5(/011) — [111))

Then we can compute that V3 p(H) is the sum of CP! x (1 : 0),(0 : 1) x CP! and
(1:0)x (0:1) in CP! x CP!, and V} z(H') is the set of two points (1 : 1) x (0 : 1) and
(1:1) x (0:1) in CP! x CP!. Thus from Theorem 3, we cannot have H' < H.

In conclusion, we have proved necessary conditions for the efficient simulation of both
bipartite and multipartite Hamiltonians using local unitary operations, which are independent
of eigenvalues and based on algebraic-geometric invariants. These conditions indicated that
the in higher dimension bipartite cases or multipartite cases, the relation of efficient simulation
of Hamiltonians depends more on the eigenvectors than eigenvalues. This is quite different to
the two-qubit case studied in [11].

It is natural to ask if the techniques from algebraic geometry used here can be extended
to find not only necessary but also sufficient conditions of simulating semi-positive bipartite
Hamiltonians with the help of local unitary operations. For low rank semi-positive bipartite
Hamiltonians or semi-positive Hamiltonians on low dimensional bipartite systems, it seems
that the eigenvalues of these Hamiltonians, the eigenvalues of their partial traces and the
algebraic-geometric invariants are near a complete set of invariants under local unitary oper-
ations, i.e. we almost can determine exactly in which equivalent class the bipartite Hamilto-
nians are if we know all these invariants. Thus in these cases it seems hopeful to extend the
techniques here to find necessary and sufficient conditions of simulation problem of Hamilto-
nians. However in general case we think it would be difficult to get necessary and sufficient
conditions about this problem based on present-known invariants. We speculate that more
invariants of bipartite Hamiltonians under local unitary operations have to be found for the
purpose to completely describe the ability of bipartite Hamiltonians to simulate one another
with the help of local unitary operations.
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