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An analytical expression for optimal Lewenstein-Sanpera (L-S) decomposition of a
generic two qubit density matrix is given. By evaluating the L-S decomposition of Bell
decomposable states, the optimal decomposition for arbitrary full rank state of two qubit
system is obtained via local quantum operations and classical communications (LQCC).
In Bell decomposable case the separable state optimizing L-S decomposition, minimize
the von Neumann relative entropy as a measure of entanglement. The L-S decomposition
for a generic two-qubit density matrix is only obtained by using Wootters’s basis. It is
shown that the average concurrence of the decomposition is equal to the concurrence of
the state. It is also shown that all the entanglement content of the state is concentrated
in the Wootters’s state |z1) associated with the largest eigenvalue A1 of the Hermitian
matrix 4/./pp,/p - It is shown that a given density matrix p with corresponding set of
positive numbers A; and Wootters’s basis can transforms under SO(4,c) into a generic
2 % 2 matrix with the same set of positive numbers but with new Wootters’s basis, where
the local unitary transformations correspond to SO(4,r) transformations, hence, p can
be represented as coset space SO(4,c)/SO(4,r) together with positive numbers ;.
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1 Introduction

Perhaps, quantum entanglement is the most non-classical features of quantum mechanics [1, 2]
which has recently been attracted much attention although it was discovered many decades ago
by Einstein and Schrédinger [1, 2]. It plays a central role in quantum information theory and
provides potential resource for quantum communication and information processing [3, 4, 5].
Entanglement is usually arise from quantum correlations between separated subsystems which
can not be created by local actions on each subsystems. By definition, a bipartite mixed state
p is said to be separable if it can be expressed as
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230 L-S decomposition for 2 ® 2 density matriz by using Wootters’s basis

where pgl) and p§2) denote density matrices of subsystems 1 and 2, respectively. Otherwise
the state is entangled.

The central tasks of quantum information theory is to characterize and quantify entangled
states. A first attempt in characterization of entangled states has been made by Peres and
Horodecki et al. [6, 7]. Peres showed that a necessary condition for separability of a two
partite system is that its partial transposition be positive. Horodecki et al. have shown that
this condition is sufficient for separability of composite systems only for dimensions 2 ® 2 and
2® 3.

There is also an increasing attention in quantifying entanglement, particularly for mixed
states of a bipartite system, and a number of measures have been proposed [5, 8,9, 10]. Among
them the entanglement of formation has more importance, since it intends to quantify the
resources needed to create a given entangled state.

An interesting description of entanglement is Lewenstein-Sanpera decomposition which
intends to construct best separable approximation (BSA) of an entangled density matrix
[11]. Lewenstein and Sanpera in [11] have shown that any two partite density matrix can be
represented optimally as a sum of a separable state and an entangled state. They have also
shown that for two qubit systems the decomposition reduces to a mixture of a mixed separable
state and an entangled pure state, thus all entanglement content of the state is concentrated
in the pure entangled state. This leads to an unambiguous measure of entanglement for any
two qubit state as entanglement of pure state multiplied by the weight of pure part in the
decomposition.

The numerical method for finding the BSA has been reported in Ref. [11]. Also in two
qubit systems some analytical results for special states were found in [12]. An attempt to
generalize the results of Ref. [11] is made in [13]. In [14] an algebraic approach to find BSA
of a two qubit state is attempted. They have also shown that the weight of the entangled
part in the decomposition is equal to the concurrence of the state.

In this paper we give an analytical expression for optimal Lewenstein-Sanpera (L-S) de-
composition of a generic two qubit density matrix. We first obtain L-S decomposition for a
generic Bell decomposable (BD) state. We provide two product ensemble for BSA to prove
that the obtained decomposition is optimal, the one which has a geometric interpretation
and the other in terms of Wootters’s product states. It is shown that both product ensemble
verify the optimality of the decomposition, that is, although the BSA is unique , the product
ensemble , in general, is not unique. As a byproduct we show that separable state optimizing
L-S decomposition, minimizes the von Neumann relative entropy introduced in [8, 9] as a
measure of entanglement. We also obtain optimal decomposition for arbitrary full rank two
qubit density matrix via local quantum operation and classical communications (LQCC). It
is shown that although Wootters’s product states can be used to prove optimality of the de-
composition in the case of BD states, their LQCC transformed states are not enable to prove
the optimality of the decomposition for a generic state obtained from BD states via LQCC
operation. This shows that even though the separable part of density matrix can be written
in different form of products, the products in Wootters’s basis are the best one to work.

Considering the above motivation, by using Wootters’s basis, an analytical expression
for optimal Lewenstein-Sanpera decomposition for a generic two qubit density matrix has
been obtained. Wootters in [10] has shown that for any two qubit density matrix p there
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always exist a decomposition p = Y. |z;) (x;| such that (z;|Z;) = A;0;;, where A; are square
roots of eigenvalues, in decreasing order, of the non-Hermitian matrix pg. Based on this the
concurrence of the mixed state p is defined by max(0, \; — A2 — A3 — A4) [10]. We show that all
entanglement content of the state is concentrated in the Wootters’s state |z;) associated with
the largest eigenvalue A;. It is also shown that the average concurrence of the decomposition
is equal to the concurrence of the state.

Finally we show that a given density matrix p with corresponding set of positive numbers
A; and Wootters’s basis can transforms under SO(4, ¢) into a generic two qubit density ma-
trix with the same set of positive numbers but with new Wootters’s basis, where the local
unitary transformations correspond to SO(4, r) transformations, hence, p can be represented
as coset space SO(4,c)/SO(4,r) together with positive numbers \;. By giving an explicit
parameterization we characterize a generic orbit of group of local unitary transformations.

The paper is organized as follows. In section 2 we review concurrence and Wootters’s
basis as presented in [10]. In section 3 Lewenstein-Sanpera decomposition for two qubit
density matrix is reviewed. Some theorems of Ref. [11] where we are going to use in whole
paper to prove the optimality of the presented decomposition is also reviewed in section
3. In section 4 we first introduce Bell decomposable states and evaluate their concurrence
via the method presented by Wootters. We obtain L-S decomposition of these states and
prove the optimality of the decomposition by introducing two distinct product ensemble for
separable part. Relation between L-S decomposition and relative entropy is also discussed
in section 4. In section 5 optimal decomposition of arbitrary full rank two qubit density
matrix is obtained via LQCC operation. In section 6 we give an analytical expression for L-S
decomposition of a generic two qubit density matrix. Characterization of the density matrix
in terms of orthogonal group is presented in Appendix B. This Appendix is devoted to explicit
parameterization of a generic density matrix up to a local unitary transformation. The paper
is ended with a brief conclusion in section 7.

2 Concurrence and Wootters’s Basis

In this section we review concurrence and Wootters’s basis of two qubit mixed states as
introduced in [10]. From the various measures proposed to quantify entanglement, the entan-
glement of formation has a special position which in fact intends to quantify the resources
needed to create a given entangled state [5]. In the case of pure state if the density matrix
obtained from partial trace over other subsystems is not pure the state is entangled. For the
pure state |¢p) of a bipartite system, entropy of the density matrix associated with either of
the two subsystems is a good measure of entanglement

E(¢) = —Tr(palogs pa) = —Tr(pslog, pp),

where pg = Trp(|¢) (¢]) and pp is defined similarly. Due to classical correlations where exist
in the mixed state each subsystem can have non-zero entropy even if there is no entanglement,
therefore von Neumann entropy of a subsystem is no longer a good measure of entanglement.
For a mixed state entanglement of formation is defined as the minimum of average entropy
of the state over all pure state decompositions of the state [5]

Ef(p) = minZPiE(l/fi)- (1)
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Wootters in [10] has shown that for a two qubit system entanglement of formation of a mixed
state p can be defined as

1 1
Brlo) = H (5 +5VI-C?). @)
where H(z) = —zlnz — (1 — 2)In(1 — 2) is binary entropy and concurrence C(p) is defined
by
C(p) = max{O, )\1 - )\2 - )\3 - )\4}, (3)

where the )\; are the non-negative eigenvalues, in decreasing order, of the Hermitian matrix
R=/Jppvp and

p=(oy ®0oy)p*(oy ® 0y), (4)

where p* is the complex conjugate of p when it is expressed in a standard basis such as

{1,110 {41, 44} and o, represent Pauli matrix in local basis {|1), )} .

Consider a generic two qubit density matrix p with its subnormalized orthogonal eigen-
vectors [v;), i.e. p =", |v;) (vs|. There always exist a decomposition [10]

p= |z (xil (5)
where Wootters’s basis |z;) are defined by
4
i) =Y Uglvi),  for i=1,2,3,4, (6)
J

such that
(zi | &) = UTUT)ij = Xidij, (7)

where 7;; = (v; | ¥;) is a symmetric but not necessarily Hermitian matrix. To construct |z;)
we use the fact that for any symmetric matrix 7 one can always find a unitary matrix U in
such a way that \; are real and non-negative, that is, they are the square roots of eigenvalues
of 77* which are the same as eigenvalues of R. Moreover one can always find U such that \;
appear in decreasing order.

Wootters in [10] has also shown that in the case that p is separable ,i.e., \;—Aa—Az3—A4 < 0,
the density matrix with decomposition given in Eq. (5) can be expanded as

p= ZIZi> (2l (8)

where product states |z;) are defined as

o) = 5 (€% foa) + €% [o) + €% [os) + €% [z)) (9)
Je2) = 5 (€% foa) + €% [o) — € [o5) — € [z)) (10)
Jes) = 5 (€ [ax) — € [z3) + €% [as) — €% [au) (1)
|24) = % (€7 21) — €2 |23) — €% |as) + €' |24)) (12)

where zero concurrence is guaranteed with ijl 20 A; = 0. In the next sections we are
going to use the above product state as product ensemble of BSA.
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3 Lewenstein-Sanpera Decomposition

According to Lewenstein-Sanpera decomposition [11], any two qubit density matrix p can be
written as

p=Aosep + (L=AN) ) (¥,  Ael0,1], (13)

where psep, is a separable density matrix and |¢) is a pure entangled state. The Lewenstein-
Sanpera (L-S) decomposition of a given density matrix p is not unique and, in general, there is
a continuum set of L-S decomposition to choose from. The optimal decomposition is, however,
unique for which )\ is maximal and

p= AP+ (1= ALP)ylerd ) (gl Al € o, 1]. (14)

Lewenstein and Sanpera in [11] have shown that any other decomposition of the form p =
Apsep + (1 — N[ ) (| with j # p(°P!) necessarily implies that X < A(°P") [11]. They have also
shown that a given decomposition is optimal if the separable part of the decomposition can
be expanded in terms of product states |eq, fa), i-€.

)\psep:ZAa|eaafa> <ea7fa‘7 (15)

such that the following conditions are satisfied [11]:

i) All A, are maximal with respect to pq = Aq |€a), fa) (€a) fa| + (1 — A) |¥) (¥| and projector
Py = |eon fa> <eav fa|'

ii) All pairs (Ay, Ag) are maximal with respect to pog = Aq |€as fa) (€as fa|+Ag |es, f3) {(es, fo]+
(1= X) |[¥) (¥| and the pairs of projector (Py, Pg).

Lewenstein and Sanpera in [11] have shown that A, is maximal with respect to p, and
P, = |ea, fo) {(€as fo| I @) if |eq, fo) & R(pa) then A, =0, and b) if |e,, fo) € R(pa) then
Ao = (eas fal p;1 ‘eavfa>_1 > 0.

They have also shown that a pair (A;, As) is maximal with respect to p1» and a pair of
projectors (Py, Py) iff: a) if |ey, f1), |e2, f2) do not belong to R(p12) then Ay = Ay = 0; b) if
le1, f1) does not belong, while |es, f2) € R(p12) then A} = 0, Az = (ea, f2| p1o |€2,f2>71; c) if
le1, f1), |e2, f2) € R(p12) and (e1, fi p;21 le2, f2) = 0 then A; = <€i,fi|PI21 |€i,fi>71, i =1,2
d) finally, if [e1, f1), |e2, f2) € R(p12) and (e1, f1| p15 |e2, f2) # O then

Ay = ((e2, f2| pro lea, f2) — | {ex, fi| p1a le2s f2) )/ D,
Ay = ({1, fil piz lex, f1) — | {ex, f1] p13- le2, f2) 1)/ D,

(16)

where D = (ey, fi| p15 |e1, f1) (e2, fa| p1o |ea, f2) — | {e1, f1]| P15 |€2, f2) |?. In the next sections
we are going to use the above algorithm to prove the optimality of the L-S decomposition.
4 Lewenstein-Sanpera Decomposition for Bell Decomposable States

Here in this section we obtain L-S decomposition for Bell decomposable (BD) states. A two
qubit BD state is defined by

4 4
=1

i=1
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where |1;) are Bell states given by
1

) = (1 + 1), (18)
1

) = (1) = ), (19)
1

) = (1t + 141, (20)

) = —(111) — |41)). (21)

V2

BD states form a four simplex (tetrahedral) with its vertices defined by p; = 1, p2 = 1,
p3 =1 and pg = 1 [15]. A necessary condition for separability of composite quantum systems
is presented by Peres [6]. He showed that if a state is separable then the matrix obtained from
partial transposition must be positive. Horodecki et al. in [7] have shown that Peres criterion
provides sufficient condition only for separability of mixed quantum states of dimensions 2® 2
and 2®3. This implies that the state given in Eq. (17) is separable if and only if the following
inequalities are satisfying

%7

In the rest of the paper we consider entangled states for which p; > %

pi < for i=1,2,3,4. (22)

Before going to evaluate L-S decomposition for BD states let us evaluate concurrence
and Wootters’s basis of these states which are to be used latter. Starting from the spectral
decomposition for BD states, given in (17), we define subnormalized orthogonal eigenvectors
|v;) as

lvi) = v/pi [¥i) (vi | vj) = pibij. (23)
Following the method given in section 2 we get for the state of p given in Eq. (17)

T = diag(fpl,pz,pg,, 7p4)7 U= dlag(la 17 1’ Z) (24)
Now it is easy to evaluate A\; which yields
A1 =p1, A2=p2, A3=p3, A4 =pa (25)

where we use the fact p; > 1/2 and we assume without loss of generality that ps > p3 > p4.
One can now easily evaluate the concurrence and Wootters’s basis of BD states as

C=p1—p2—p3—ps=2p1 — 1, (26)

and
|z1) = —iy/Pr[¥1), |z2) = v/P2 |¢2) , 27)
|z3) = \/P3 |¥3) |za) = —iy/Pa |ta)
respectively, where |1);) are Bell states given in Eq. (18) to (21).
Now we are in position to evaluate L-S decomposition for BD states. To this aim we write
p as a convex sum of pure state |1);) and separable state ps as

p=2Aps+ (L= A) 1) (¥u], (28)
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where p, is a boundary separable BD state for which p; = % Expanding p; as ps =
2?21 D} |¥:) (¥;] and using Eq. (17) for p we arrive at the following results

/_l / Db

= ———— for i=2,3,4, 29

and
A=2(1—py). (30)

It is worth to note that average concurrence of the decomposition is equal to the concurrence
of the state, i.e.

(1 =XC(|¢$)) = 2p1 — 1. (31)

In the rest of this section we show that thus obtained decomposition is optimal. To do so
we provide two product ensemble for p; and show that ps can be expanded in terms of each
ensemble such that corresponding coefficients are maximal.

4.1 Canonical product states
In this subsection we show that the decomposition given in Eq. (28) is optimal. We begin
by using the fact that ps given in Eq. (29) can be written as the following convex sum of
product states [15]

ps = 2(p301 + pyoa + phas), (32)

where p) are given in Eq. (29) and o; are defined by

= 3(191) (] + [¥3) (s])
o2 = g(W’D (1] + |va) (al)
= 3 ([1) (Wl + [92) (W)

%(\m# (4| ®@lzs) (@i + ]z ) (2| @z ) (z_|),
?(\y+> el @y ) - +1ly) - ®lye) (W),  (33)
2(124) (4] ® 24) (24| +|2-) (z-| ® |2-) (2-]),

and |z4), |y+) and |z4) are eigenstates corresponding to eigenvalues +1 of o, oy and o,
respectively. Using the above results we rewrite p given in Eq. (28) in terms of product states
and pure entangled state

p:ZAa leas fa) (€as fa| + (1 = A) [¥h1) (Y1), (34)

a=1

where |en, fa), @ =1,2,...,6 are product states defined by

lew, fi) =lz) ®lz4) ,  le2, fo) =|z-) ®[z_),
les, f3) = |y+) ® ly—) lea, fa) = |y-) ® |y4), (35)
les, fs) = |z4) ® [24) les, fo) = |z—) ® [2-),
and A,, a =1,2,...6 are given by
Ay = Ay = ph, Az = Ay = pl, As = Ag = py. (36)

Now, in order to show that decomposition (28) with A given in (30) is optimal we have to
show that all coefficients A, in Eq. (34) are maximal. To do so we first need to show that
A,s are maximal with respect to p, and P,.



236 L-S decomposition for 2 ® 2 density matriz by using Wootters’s basis

Matrices po = p— Yor s Ao Par = MaPa + (1= X) [¢h1) (1] With Py = |ea, fa) (€a, fal
for (¢ = 1,2,...,6) have two zero eigenvalues and two non zero eigenvalues. In Bell basis its
kernel and range are separated. After restriction to its range, it is straightforward to evaluate
pa! and we find that (eq, fal P2 |€as fa) = 1/Aq-

In order to prove that the pair (A, Ag) are maximal with respect to p,g and the pair of
projectors (P, Pg), we proceed as follows:

a) Matrices p; ;41 = AP + Aip1Piva + (1 — A) [¢1) (¢1] for (¢ = 1,3,5) have a two di-
mensional range . In Bell basis its range and kernel are separated and one can obtain
(eis fil it leis fi) = (Miga + (1= X)) /Tay (eirs firr] i leirt, firn) = (Ai + (1= X))/T;
and (e;, fi pi_,il+1 leit1, fit1) = (L—A))/(2T;), where T'; = A;A;11 4+ 1(1—)). Using the above
results together with Egs. (16) we obtain the maximality of pair (A;, A;y1) with respect to
pi,i+1 and the pair of projectors (P;, Pi11) for i = 1,3 and 5.

b) For other possibility of o and (3, matrices pog = AaPa + AgPg + (1 — X) |t1) (31| have
rank 3 . Using the Bell basis we can evaluate p;é and we find that (eq, faol p;,; leg, fz) =0
for a # B, {eq, fal p;é leas fa) = 1/A4. This completes the proof that all coefficients A, are
maximal and decomposition (28) is optimal.

4.2 Wootters’s product states

We now provide another product ensemble to show that the decomposition given in Eq. (28)
is optimal. To this aim by using the fact that for marginal states ps (located at the boundary
of separable region) the eigenvalues \; satisfy constraint A\; — Ay — A3 — Ay = 0, we can choose
the phase factors 6; in Egs. (9) to (12) as §2 = 03 = 04 = 61 — . Choosing 6; = 0 we arrive
at the following product ensemble for p;

|21) = 3(—in/PL [¥1) — in/Ph [W2) — in/P [¥3) — /Pl 1ha)),
|22) = L(—iy/PL 1¥1) — in/Dh 1) +in/Ph [¥s) + /DY [¢a)), (37)
|23) = S(—i/Pl [¥1) +iv/Dh [2) — i/ [s) + /Pl [1a)),

|2a) = $(—i/Ph |W1) +i8/Ph [$2) +in/Dh [1h3) — /D) [9a)),

where p! are defined in Eq. (29). Let us consider the set of four product vectors {|z4)}
and one entangled state |¢1). In Ref. [10] it is shown that the ensemble {|z,)} are linearly
independent. Evaluating Wronskian determinant of vectors 1) and |zq) we get W, = .
This implies that vector |1;) is linearly independent with respect to all vectors |z,). Also
evaluating the Wronskian W, for three vectors |1)1), |2,) and |z3) we get

1 1 1
Wi = Wy = gp'z(l—2p'2), Wi =Wy = §p§(1—2p§,)a Wis = Was = gpﬁ;(l—2pf1)- (38)

Equations (38) shows that in the cases that p has full rank three vectors |z.) , |23) and |¢1)
are linearly independent. Now consider matrices p, = Ay |24) (2a| + (1 — A) |91) (¢1]. Due
to independence of |z,) and |¢1) we can deduce that the range of p, is two dimensional.
Thus after restriction to its range and defining their dual basis |Z,) and ‘1/;1>, we can expand
restricted inverse p ' as p;' = ALY 20 )(Za| + (1 — A)"Y|tb1 ) (41| (see Appendix A). Using
Eq. (76) it is easy to see that (z4|ps'|za) = Ag'. This shows that A, are maximal with
respect to p, and the projector P,.

Similarly by considering matrices pag = Aa |2a) (2a| + Ag |28) (23] + (1 — A) [¢1) (¥1] and
taking into account the independency of three vectors |z, ), |23) and |1) we see that rang
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of pap is three dimensional, where after restricting to its range and defining dual basis |2,),
|25) and ‘1&1> we can write restricted inverse p;é as p;ﬁl = A 20 ) Zal + AEI 128 )( 25|+ (1—
A)~1[4h1 )(4p1|. Then it is straightforward to get (zq| p;ﬁl zo) = AL, (28] p;é |zg) = AEI and

a )
(2a] p;ﬁl, |zg) = 0. This implies that the pairs (A,, Ag) are maximal with respect to pog and
the pairs of projectors (P,, Pg), thus complete the proof that the decomposition given in Eq.
(28) is optimal.

We now consider cases that p has not full rank. Let p, = 0 for @ # 1. In this case
Eq. (38) shows that the pairs {|z1),|24)} and also {|z3),|2,)} for 8,7 # 1, are no longer
independent with respect to |11). In former case we express |¢;) in terms of |21), |z,) then
matrix p;, can be written in terms of two basis |z1), |z,) and after some calculations we
get (z1]pialz1) = A"‘%(i_’\), (2alpialza) = Al%(i_k) and (21]pialza) = % where
Tio = A1Aq +2(1 — X)(A; + Ay). By using the above results together with Egs. (16) we
obtain the maximality of pair (A;, A,) with respect to p;, and the pair of projectors (Py, P,).

Similarly in latter case we express |t/1) in terms of |zg), |2,) then matrix pg, can be written

in terms of two basis |z3), |2,) and we get <zlg\p5$|z5> = %(1—)0, <z7|pg,$\z7> = Aﬁ%(l*/\)
v vy
and <zﬂ|pE$|zy> = % where I'g, = AgA, +2(1 — A)(Ag + A,). Again using the above

results together with Eqgs. (16) we obtain the maximality of pairs (Ag, A,) with respect to
psy and the pairs of projectors (Pg, P,).

Finally let us consider the cases that rank p is 2. Let p, = pg = 0 for o, 3 # 1. In these
cases we have |zo) = |23) and |z1) = |2,) for v # 1,0, 8. It is now sufficient to take |z1) and
|2) as product ensemble. But Eq. (38) shows that these vectors are not independent with
respect to |11). We express |91) in terms of |z1) and |z,) then matrix p;, can be:vrit%enki)n

at2(1—

terms of two vectors |z1) and |z,) and after some calculations we get (z1[p7,|21) = S S

(2alpral2a)y = 220N and (2p) t2a) = 22 where Tia = AyAa +2(1— A) (A1 + A).
Using the above results together with Egs. (16) we obtain the maximality of pairs (A1, A,)
with respect to p1, and the pairs of projectors (Py, P,,).

Also it is worth to note that the decomposition (28) satisfies conditions for BSA of Ref.
[14]. According to theorem 1 of Ref. [14], decomposition given in (28) is the optimal decom-

position if and only if: rank(pI?) = 3, i.e. Jj4) pI? |¢) = 0, and either

(1) Jaso(16) (O ) = —a [¥), o o
() rank(p,) =3, .35 puld) =0, and 3 umo (vIB) @]+ (6) (6D ) 1) = —a ).
(39)
It is now straightforward to see that p72 has three non vanishing eigenvalues, that is, its rank
is 3. Its one dimensional kernel is along the Bell state |t4) given in Eq. (21). Actually the
density matrices corresponding to the interior of tetrahedral satisfy condition (i) while those
at its boundary satisfy condition (ii), respectively.

4.3 Relative entropy of entanglement and L-S decomposition

Vedral et al. in [8, 9] introduced a class of distance measures suitable for entanglement
measures. According to their methods, entanglement measure for a given state p is defined

as

E(p) =minD(p || 0), (40)
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where D is any measure of distance (not necessarily a metric) between two density matrix
p and o, and D is the set of all separable states. They have also shown that von Neumann
relative entropy defined by

S(p |l o) = Tr{pln 2}, (41)

satisfies three conditions that a good measure of entanglement must satisfy [8]. Here, we
would like to emphasis that ps given in Eq. (29) minimizes von Neumann relative entropy
given in (41). Authors in [8] have shown that for BD states given in Eq. (17), separable state
o that minimize relative entropy is

1 bi

/ ’
pL== and p, = ——
1 1 2(1 _pl)

=3 for i=23,4. (42)

It is worth to note that the above equation is the same as Eq. (29), that is, separable state
optimizing L-S decomposition minimizes von Neumann relative entropy, too.

5 L-S Decomposition under LQCC

In this section we study the behavior of L-S decomposition under local quantum operations
and classical communications (LQCC). A general LQCC is defined by [16, 17]

,_ (A®B)p(A® B)!

= , 43
Tr((A® B)p(A® B)Y) (43)

where operators A and B can be written as
A R B = UA fﬂ,a,m ® UB fu,b,n, (44)

where U, and Up are unitary operators acting on subsystems A and B, respectively and the
filtration f defined by
from = (I, + am.o),
frbm = y(I +bno).

As it is shown in Refs. [16, 17], the concurrence of the state p transforms under LQCC of the
form given in Eq. (43) as

(45)

p (1 —a?)(1 - b%)
Tr((A® B)p(A® B)T)

C(p') = C(p). (46)

Performing LQCC on L-S decomposition of BD states we get

r__ (A(X)E;))O(A(X)E;)1L VN l i /
p_TT'((A(X)B),D(A@B)T)_)\p8+(17>\)|¢1><¢1|’ (47)

with p!, and |¢]) defined as

., (A®B)p,(A® B)!
Ps = Tr((A@ B)p.(A@ B)T)’

(A® B) |¢)
V(1] (ATA® BTB) [¢p1)’

[¥1) =
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respectively, and \' is
v _ Tr((A® B)p.(A @ B)Y)
Tr((A® B)p(A® B)Y)

A (50)
Using Eq. (50), we get for the weight of entangled part in the decomposition (47)

(1| (ATA® B'B) [¢)
Tr((A® B)p(A® B)f)

1-N\)= (1-\). (51)

Now we can easily evaluate the average concurrence of p’ in the L-S decomposition given in
(47)

§2 V31— a?)(1 - b?)
Tr((A® B)p(A® B)Y)
where, by comparing the above equation with Eq. (46) we see that (1—A)C(|¢)) (the average
concurrence in the L-S decomposition) transforms like concurrence under LQCC. Now we

(1 =XN)C(l¥1)) =

(1 =XC(l¢1), (52)

would like to show that the decomposition given in Eq. (47) is optimal. To this aim, we
perform LQCC action on matrices p, = Ay |2a) (za| + (1 — X) |91) (1] and get

) (A® B)pa(A® B)t

= o0 B ) e+ (1) ) (53)
where (A®B)| >
) = o @ Ae B o) 59
and
;o <za|ATA®BTB)\za> A (55)

* Tr((A® B)pa(A® B)T)
Using the fact that LQCC transformations are invertible [17, 18, 19], we can evaluate p/, as
P =Tr((A® B)pa(A® B)') (A" @ BY) ' p (A0 B) ™. (56)
Using the above equation and Eq. (54) we get

—1

_Tr((A8B)pa(A®B)) | oy g (57)

ppoTY
<za‘pa |za> - <Za| (ATA®BTB) |Za>

Equation (57) shows that A], are maximal with respect to p,, and the projector P,.
Matrices pag = Aq |2a) (za| + Ag|28) (28] + (1 — A) [¢1) (1] transform under LQCC as

;o (A®B)pa7g(A®B)T YA ! R I li I I
Pap = TT((A@B)pag(A@)B)T) _Aa|za> <Za|+AB‘zﬂ> <Zﬁ|+(17)‘)|¢1> <1/}1| (58)
h
where |Z’ > _ (A® B) |Za,5> (59)
M \ap| (ATA® BTB) zass)
and

A'A® B'B) |24.8)
AI — <Za”3| ( a,B Aa . 60
8~ Tr((A® B)pas(A® B)T) "7 (60)
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We now consider cases that p is full rank. For these cases we could show in subsection (4-2)
that all vectors |zo) , |23) and |¢1) are linearly independent. Using the above results and
invertibility of LQCC actions we arrive at the following results

-1 Tr((A® B)pas(A® B)') .

(%
5) - Tr((A® B)pap(A® B)')
1 /(zal (ATA® BTB)|za) (23] (ATA ® BTB) | 25)

| ) = TrAe Blnuo(d e b))

—1 AT
- <ZB| (ATA® BTB) |Zlg> <Zﬂ| paﬂ ‘Z,@> - Aﬂv (61)

1 _
Pas (2al P l26) = 0.

(s
Equations. (61) show that the pair (Af,, Aj;) are maximal with respect to p, 5 and the pair

of projectors (P, Pg). For other cases that p is not full rank we saw that there is some
dependency between three vectors |z,) , |23) and |¢1) such that <za|p;é) |zg) # 0. This

pgg z’5> # 0. In the next section we are going to evaluate,
directly, L-S decomposition for arbitrary two qubit density matrix and by using associated

implies that in general <z(’x

Wootters’s product states we will prove the optimality in general.

As Verstraete et al. have been shown in Refs. [18, 19] the LQCC operation correspond to
left and right multiplication of the density matrix by Lorentz transformations. In Appendix
B we will show that a given density matrix with corresponding set of positive numbers \;
and Wootters’s basis can transforms under SO(4, ¢) into a generic two qubit density matrix,
with the same set of positive numbers but with new Wootters’s basis. We will also show
that the local unitary transformations correspond to SO(4,r) transformations, hence, p can
be represented as coset space SO(4,c)/SO(4,r) together with positive numbers A;. Since
Lorentz group is isomorphic to SI(2,c) and considering the fact that sl(2,c) and so(4, ¢) are
the complexification of su(2,c) and so(3, 1, r),respectively, so both approach are identical.

6 Lewenstein-Sanpera Decomposition for a Generic Two Qubit State

Here in this section we obtain L-S decomposition for a generic two qubit density matrix by
using Wootters’s basis. First we define states |z}) in terms of Wootters’s basis as

|z}) = , fori =1,2,3,4. (62)

Thus the decomposition given in Eq. (5) becomes
p= Nilep) (ail, (63)

which can be rewritten in the following form
4
p= Ailel) (xi]
i=1 4
= (A1 = A2 = Az — Ag) [2h) (@h] + (A2 + As + Aa) |20) (4] + D N [2f) ()

Jj=2

= (1 - )‘) ‘¢> <¢| + Apsepa (64)
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where separable density matrix pse, and entangled pure state |1) are given by

4
A2+ A3+ Ay 1
Psep = (T) ) (z1] + B\ Z ) (5l (65)
=2
and
gy = — 12 (66)
(z1]@1)

respectively, and parameter A is equal to

A=1- (Al_&_“”‘*)(zﬂm. (67)

A1

Equation (66) shows that all entanglement content of the state is concentrated in the Woot-
ters’s state |z;) associated with the largest eigenvalue A;. It is also worth to note that average
concurrence of the decomposition is

(1-2) <7/’|7/~’> = (A1 = A2 = A3 — M), (68)

that is, it is equal to the concurrence of the state.
In order to show that the decomposition given in (64) is optimal we first note that psep
can be written as

Psep = Z ‘:L‘” ”| ’ (69)

where |z}) are defined by

A2+ Az + Ay 1 )
2!y = ’/)\—)‘1 |z1), |}) = 7 |z;), forj=2,3,4. (70)

Obviously, the basis ‘w;' > (1 =1,2,3,4) satisfy the following relations
<$§'|$~9'> = X/ 5,
W

where a:> are corresponding dual basis. Now using the fact that the eigenvalues A, of

i
boundary separable state ps.p satisfy the constraint AY — Ay — A§ — A} = 0, and by choosing

phase factors 0; of Eqs. (9) to (12) as 02 = 03 = 0, = —7 and 6; = 0 we arrive at the
following product ensemble for p,ep

_ 1 Azt As+ A —i|xe) —i|x3) —i|x
|z1) = Wi (\/ N |z1) —@|z2) —i|z3) — i 4>> ; (71)
1 A2 + A3+ A4 . . .
|22) = Wi (\/ N |z1) — @|@2) +i|z3) +l|904>> ; (72)
1 A2+ A3+ A4 . . .
|23) = Wi (\/ N |z1) +1i|z2) —i|z3) +l|$4>> ; (73)

>

>
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1 A2+ As + g . . .
0= g (R ) it it ). (74

It can be easily seen that all |z;) have zero concurrence and also psep can be expanded as

Psep = Z |2i) (2l - (75)

Now we have to show that the decomposition given in (64) is optimal. We first consider
the cases that p has full rank. Let us consider the set of four product vectors {|z;)} and one
entangled state |z1). In Ref. [10] it is shown that the ensemble {|z;)} are linearly independent,
also it is straightforward to see that three vectors |24) , |23) and |z1) are linearly independent.
Now let us consider matrices po = Aq |2a) (2a] + (1 — A) |z1) (z1]. Due to independency of
|24) and |z1) we can deduce that the range of p, is two dimensional, thus after restriction
to its range and defining dual basis |2,) and |2,) we can expand restricted inverse p;! as
pal = AJY 2. ) (24l + (1 — N)7Y21) (21| (see Appendix A). Using Eq. (76) it is easy to
see that <za|p;1|za> = A;'. This shows that A, are maximal with respect to p, and the
projector Py = |z4) {24/

Similarly considering matrices pog = Aq |2a) (2a|+Ag |28) (23]+(1—A) |21) (21| and taking
into account the independency of vectors |z,), |23) and |z1) we see that the rang of p,g is three
dimensional where after restriction to its range and defining their dual basis |2,), |23) and |£1)
we can write restricted inverse p;é as p;ﬁl =AY 24 ) (24 +A51|25 Y 2a]+ (L=X)"Y21 ) (&1
Then it is straightforward to get (z4| p;é |zo) = AJY, (28] p;ﬁl |zg) = AEI and (z,| p;ﬁl \zg) =
0. This implies that the pair (Ay,Ag) are maximal with respect to p,g and the pair of
projectors (P,, Pg), thus complete the proof that the decomposition given in Eq. (64) is
optimal.

We now consider the cases that p has rank three, that is Ay = 0. In this case the
pairs {|z1),]z4)} and also {|z2),|23)} are no longer independent with respect to |z1). In
former case we can evaluate |z1) in terms of |z;) and |z4) then matrix p14 can be writ-
ten in terms of two basis |21) and |z4) which yields after some calculations, (z1|p7,|21) =

= (h 1) (). o) — g (31 03 (520)) (o) —

F_—lt ((1 -}) (Az/\+l>\s)) where I'jy = <A1A4 + (A1 + A - N) (Az):AS))‘ Using the above
results together with Egs. (16) we obtain the maximality of pair (A, A4) with respect to
p14 and the pair of projectors (Py, Py). Similarly in the second case one can express |z;) in

terms of |22) and |z3) and evaluate py;', which get (22]p53 [22) = %23 (Ag +(1-X) ( Ay )),

A2+A
(zelozlzs) =t (A2 + (1= 3 (5257)) and (zaloz'lzs) = 72 ((1-N) (A;aa;) with

[ys = (A2A3 + (A2 + As)(1—X) (Azﬁrl%)) , together with Egs. (16) we obtain the maximal-

ity of pair (As,A3) with respect to pa3 and the pair of projectors (P», P3). For other choices
of a and @ three vectors |z4) ,|23) and |z1) remain linearly independent thus we can prove

maximality of pairs (A, Ag) in the same way it is proved in full rank case.

Finally let us consider cases that p has rank two, that is A3 = Ay = 0. In this case
we have |z1) = |z2) and |z3) = |z4). It is now sufficient to take |z;) and |z3) as product
ensemble. But in this case vectors |z1) and |z3) are not independent with respect to |z1). We
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express |z1) in terms of |z1) and |z3) then matrix p;3 can be written in terms of two vectors
|21) and |z3) and after some calculations we get (21]py3|21) = F—is (A3 +(1-2x) (i—;)),

(23]pia|2s) = 1“—13 (Al +(1-2X) (i—;)) and (z1|pi3 23) = 1:—113 ((1 - ) (i—;)) where I';3 =
(A1A3 + (A1 +A3)(1=X) (i—;)) Using the above results together with Egs. (16) we obtain
the maximality of pairs (A;, A3) with respect to p13 and the pairs of projectors (P, Ps).

7 Conclusion

We have obtained the Lewenstein-Sanpera decomposition for BD states and full rank two
qubit density matrices obtained from them via some LQCC action. We have also obtained
Lewenstein-Sanpera decomposition for a generic two qubit density matrix by using Wootters’s
basis. It is shown that the average concurrence of the decomposition is equal to the concur-
rence of the state. It is also shown that all entanglement content of the state is concentrated
in the Wootters’s state |z1) associated with the largest eigenvalue A;. In summary, the im-
portance of Wootters’s basis in construction of product set of 2 ® 2 system has been shown
and further progress in L-S decomposition of bipartite systems may depends on the existence
of the Wootters’s like basis for these systems.

On the other hand, for BD states it is also shown that separable state optimizing L-S
decomposition, minimizes the von Neumann relative entropy as a measure of entanglement.
So it would be important to find a type of relative entropy such that corresponding separable
state giving separable part of the L-S decomposition minimizes the distance between density
matrix and the set of separable states, too.
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Appendix A

Let us consider the set of linearly independent vectors {|¢;)}, then one can define their dual
q31>} such that the following relations

vectors {
<¢z \ ¢j> = i (76)

hold. It is straightforward to show that the {|¢;)} and their dual {

completeness relation

¢A>z>} posses the following

DoIoi)(gil =1, D Igi)dil =L (77)

K3

Consider an invertible operator M which is expanded in terms of states |¢;) as
M =3 ai;l6) (4] (78)
Then the inverse of M denoted by M ~! can be expanded in terms of dual bases as
M7t =3 byl (4 (79)
where b;; = (A71);; and (A)i; = aij.

Appendix B: Coset structure for a generic 2R®2 density matrix in Wootters’s basis

In this Appendix we obtain an explicit parameterization for a generic two qubit density matrix
in Wootters’s basis. To this aim for any density matrix p with decomposition given in Eq.
(63) we define matrix X as

X = (1), [x5) , |25) , [24)) - (80)
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Analogously by defining matrix

o

")
1:1>7

)
CL’2>,

1)), (81)
Eq. (7) takes the following form
XX =xTo,®0,X =1. (82)
Since matrix o, ® o, is symmetric it can be diagonalized as
oy ® o, = 0100, (83)

where O is an orthogonal matrix defined by

10 0 1
1 01 1 0
0= V2l 01 -1 0 |’ (84)
10 0 -1
and 7 is the diagonal matrix
1 0 0 O
0 1 00
=100 i 0 (85)
0 0 01
Using Eq. (83) we can rewrite Eq. (82) as
YTy =1, (86)
where
Y = nOX. (87)

Equation (86) shows that Y is a complex 4-dimensional orthogonal matrix. This means
that a given density matrix p with corresponding set of positive numbers \; and Wootters’s
basis can transforms under SO(4,c) into a generic 2 x 2 density matrix with the same set of
positive numbers but with new Wootters’s basis. This implies that the space of two qubit
density matrices can be characterize with 12-dimensional (as real manifold) space of complex
orthogonal group SO(4, ¢) together with four positive numbers ;. Of course the normalization
condition reduces number of parameters to 15.

As far as entanglement is concerned the states p and p’ are equivalent if they are on the
same orbit of the group of local transformation, that is, if there exist local unitary transforma-
tion U ®U, such that p' = (U, ®@Us)p(U1®U,)t, where U; and U, are unitary transformations
acting on Hilbert spaces of particles A and B, respectively.

It can be easily seen that under above mentioned local unitary transformations of density
matrix p, the matrix X transforms as

X = X' = (U, ® Uy)X. (88)

It is worth to mention that X' also satisfy Eq. (82). To show that this is indeed the case, we
need to note that X’Tay ® oy X' = XT(ULoyUr) @ (UFo,Uz)X. By using (0y)i; = —ie;j we
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get (UTo,U);j = —ierUxiU; = —idet(U)e;; = (0y)ij, where we have used the fact that U;
has unit determinant, since it belongs to SU(2) group. This implies that

X0, @0,X =1. (89)

By defining Y’ as
Y' =n0X', (90)

one can easily show that Y’ satisfies the orthogonality condition
Y'Yy =1, (91)
too. Now by using Eq. (90) and inverting Eq. (88), we can express Y’ in terms of ¥’
Y' = (n0)(Ur @ Us)(n0) Y. (92)

Now by using the fact that (n O) exp(U1 ®Uz)(nO) ™! = exp((n O) (U1 ®U2)(n O)~ ') and using
the explicit form for generators (U; ® Uz) of local group, one can (after some algebraic calcu-
lations) see that (7 O)(U; ® Uz)(nO) ! is real antisymmetric matrix. This means that under
local unitary transformations matrix Y transforms with SO(4,7) group. So we can parame-
terize the space of two qubit density matrices as 6-dimensional coset space SO(4,¢)/SO(4,r)
together with 4 positive numbers )\;, which again normailzation condition reduces the number
of parameters to 9.

In the following we will obtain an explicit parameterization for a generic two qubit density
matrix. First note that we can decompose coset SO(4,¢)/SO(4,r) as [20]

S0(4,¢) SO(4,0)/50(4,1) R (50(2,0) SO( ’C)) . (93)

2
SO(4,r) _ SO(2,0)/S0(2,1) @ SO(2,¢)/50(2,1) &\ 50(2,7) © 50(2,7)

that is, coset representative Y can be decomposed as Y = Y;Y5. One can easily show that
coset representative of SO(2,¢)/SO(2,r) has the following form

0 i\ _ cosh¢ isinh¢
exp< —i¢p 0 ) - < —isinh¢ cosh¢ /- (94)
Thus Y> can be written as

cosh¢;  isinh ¢,
—isinh ¢y cosh ¢

0

Y, = cosh o  isinh ¢
—isinh ¢2  cosh ¢

On the other hand Y7 can be evaluated as

0 |iB
SP\TBT 0

( cosh vBBT \iBL VBTB)

Y;

_(VI+CCT| ic

vBTB —
( —iCT | VI+CTC ) . (96)

—i—Sinhgf;BBT ’ coshvBTB
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: : : _ sinh vVBTB :
where B is a 2 X 2 matrix and in the last step we used C = B VBTE Now using the

singular value decomposition C = O; DOY | Eq. (96) becomes

20T : T
¥, = ( OV +D?0T | i0,DO} ) (o7)

—i0;DOT | 02VT + D?0F

where D is a non-negative diagonal matrix. It can be easily seen that Eq. (97) can be
decomposed as

Y1:<01|0>(«/I+7Dz| iD )(OHO)‘ (98)

0 [0 —iD | VI+D? 0 |OF

By combining Egs. (95) and (98) we get

(o) () () )

Finally using parameterization given in Eq. (95) we get

cosh 0; 7 sinh 01
—isinh#; cosh6;

Yy = 0 cosh 05 7sinh 05
—isinh 6 cosh6,
cosh &; 0 isinh &; 0
y 0 cosh & 0 i sinh &2
—isinh & 0 cosh &; 0
0 —isinés 0 cosh &,
cosh¢;  isinh ¢, 0
—isinh ¢y cosh ¢
% 0 ’ cosh¢y  isinh¢s ’ (100)

—isinh ¢o  cosh ¢2

where sinh ¢; (for ¢ = 1,2) are diagonal elements of D with the conditions £; > 0. Using above
results and Eq. (80) and (87) we can evaluate the states |z;) as

a1 + b1y ao1 + ibay
At | a1z + ibio A2 | age +ibg
_ M , _ )22 ; 101
1) 2 a13 +ibiz |’ [2) 2 a3 +tbas |’ (101)
a14 + tb1g a24 + tbay
as1 + ib31 aa1 + thay
A ass + b A a42 + b
es) =/ 2| BT jay =S| ST, (102)

2 a3z + ibss 2 a43 + tby3
a34 + tbas Q44 + by
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where
a1 = —(sinh &; sinh 0 cosh ¢ + sinh &5 cosh 65 sinh ¢ ),
a1z = —(sinh &; cosh 02 cosh ¢y + sinh & sinh 65 sinh ¢1),
a3 = (sinh &; cosh 63 cosh ¢1 + sinh &; sinh 6, sinh ¢4),
a14 = (sinh & sinh 05 cosh ¢4 + sinh &5 cosh 6 sinh ¢1),
a1 = (cosh ¢y cosh 6 sinh ¢; + cosh &; sinh 6; cosh ¢1),
ag2 = (cosh ¢ sinh 6, sinh ¢y + cosh &; cosh 8y cosh ¢4),
ag3 = (cosh ¢y sinh 6, sinh ¢; + cosh &; cosh 8y cosh ¢4),
az4 = (cosh ¢y cosh 6 sinh ¢; + cosh &; sinh 67 cosh ¢1), (103)
az1 = (sinh & cosh 0 cosh ¢y + sinh &; sinh 6 sinh ¢5),
ago = (sinh &; sinh 6 cosh ¢ + sinh &5 cosh 6 sinh ¢2),
ags = (sinh &; sinh 6 cosh ¢ + sinh £, cosh 6 sinh ¢2),
agq = (sinh &; cosh 6 cosh ¢2 + sinh &; sinh 6 sinh ¢2),
a4q1 = (cosh ¢y sinh 6 sinh ¢2 + cosh &3 cosh 05 cosh ¢),
ag2 = (cosh & cosh 05 sinh ¢ + cosh &5 sinh 65 cosh ¢2),
as3 = —(cosh & cosh 0 sinh ¢y + cosh €5 sinh 65 cosh ¢2),
aqq = —(cosh ¢; sinh 05 sinh ¢ + cosh &5 cosh 65 cosh ¢5),
and

b1 = —(cosh &; cosh 0y cosh ¢1 + cosh &5 sinh 6, sinh ¢),
b1z = —(cosh &; sinh 0y cosh ¢ + cosh &3 cosh 6, sinh ¢),
b1 = —(cosh &; sinh 07 cosh ¢ + cosh &2 cosh 6; sinh ¢1),
b14 = —(cosh &; cosh 0y cosh ¢y + cosh &5 sinh 6 sinh ¢1),
by; = —(sinh &; sinh 05 sinh ¢ + sinh €5 cosh 6 cosh @),
bay = —(sinh &; cosh 05 sinh ¢; + sinh &5 sinh 65 cosh ¢ ),
bas = (sinh £; cosh 05 sinh ¢y + sinh £ sinh 6 cosh ¢y ),
ba4 = (sinh &; sinh 05 sinh @1 + sinh &3 cosh 6 cosh ¢1), (104)
bs1 = —(cosh &; sinh 5 cosh ¢po + cosh &5 cosh 65 sinh ¢5),
b3z = —(cosh &; cosh 05 cosh ¢ + cosh &5 sinh 65 sinh ¢5),
b33 = (cosh &; cosh 03 cosh ¢g + cosh &, sinh 6, sinh ¢5),
bss = (cosh &g sinh 03 cosh ¢o + cosh &5 cosh 6, sinh ¢2),
bs1 = (sinh &; cosh 0y sinh ¢ + sinh &3 sinh 64 cosh ¢2),
bsz = (sinh &; sinh 0; sinh ¢ + sinh &3 cosh 61 cosh ¢2),
bys = (sinh £; sinh 6, sinh ¢2 + sinh &5 cosh 6 cosh ¢5),
bys = (sinh £; cosh 0y sinh ¢ + sinh &5 sinh 67 cosh ¢2).

Equations (101) and (102) together with the normalization condition Y5, (z;|z;) = 1 give
a parameterization for a generic orbit of two qubit density matrix up to local unitary group.

As an example let us consider Bell decomposable states given in Eq. (17). These states can
be obtained by choosing 67 = 02 = & = & = ¢1 = ¢2 = 0, where we get \; = p; and the
states |z;) reduce to BD states given in Egs. (27).



