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We revisit the oft-neglected ‘recursive Fourier sampling’ (RF'S) problem, introduced by
Bernstein and Vazirani to prove an oracle separation between BPP and BQP. We show
that the known quantum algorithm for RF'S is essentially optimal, despite its seemingly
wasteful need to uncompute information. This implies that, to place BQP outside of
PH [log] relative to an oracle, one would need to go outside the RF'S framework. Our
proof argues that, given any variant of RF'S, either the adversary method of Ambainis
yields a good quantum lower bound, or else there is an efficient classical algorithm. This
technique may be of independent interest.
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1 Introduction

Quantum computing first gained notoriety with Shor’s factoring algorithm [1], which built
on earlier work of Simon [2]. It is sometimes claimed that, before Simon and Shor’s break-
throughs, there was no credible evidence that quantum computers can yield a superpolynomial
speedup over classical ones. For, although the Deutsch-Jozsa algorithm [3] was discovered
earlier than Simon’s algorithm, the former gives a speedup only in the exact case, not the
bounded-error case.

However, there is an oft-neglected algorithm that appeared after Deutsch and Jozsa’s and
before Simon’s. This is the recursive Fourier sampling (henceforth RF'S) algorithm, which
was used by Bernstein and Vazirani [4] to obtain the first oracle separation between BPP
and BQP.® There are two likely reasons for this neglect. First, the RF'S problem seems
artificial. It was introduced for the sole purpose of proving an oracle result, and is unlike all
other problems for which a quantum speedup is known. (We will define RF'S in Section 2;
but for now, it involves a tree of depth logn, where each vertex is labeled with a function to
be evaluated via a Fourier transform.) Second, the speedup for RF'S is only quasipolynomial
(i.e. n versus n'°8™), rather than exponential as for the period-finding and hidden subgroup
problems.

Nevertheless, we believe RF'S is due for a comeback. Despite (or perhaps because of)
its artificiality, the problem serves as an important link between quantum computing and the
techniques of classical complexity theory. One reason is that, although other problems in

%Email: aaronson@cs.berkeley.edu. Supported by an NSF Graduate Fellowship and by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-01-2-0524.

bFor the definitions of complexity classes used in this paper, see [5]. For background on quantum computing
and on the quantum oracle model, see [4, 6].
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166 Quantum lower bound for recursive Fourier sampling

BQP—such as the factoring, discrete logarithm, and ‘shifted Legendre symbol’ problems [7]—
are thought to be classically intractable, these problems are quite low-level by complexity-
theoretic standards. They, or their associated decision problems, are in NP N coNP.© By
contrast, Bernstein and Vazirani [4] showed that, as an oracle problem, RF'S lies outside NP
and even MA (the latter result is unpublished, though not difficult). Subsequently Watrous

[9] gave an oracle A, based on an unrelated problem, for which BQPASZ MA“ 4 Also, Green

B
and Pruim [10] gave an oracle B for which BQPBQ pNPT, However, Watrous’ problem was
shown by Babai [11] to be in AM, while Green and Pruim’s problem is in BPP. Thus, neither
problem can be used to place BQP outside higher levels of the polynomial hierarchy.
On the other hand, Vazirani [12] and others have conjectured that RF'S is not in PH, from

which it would follow that there exists an oracle A relative to which BQPASZ PHA. Proving
this is, in our view, one of the central open problems of quantum complexity theory. Its
solution is likely to require radically new techniques for circuit lower bounds.®

Here we address a different question. If BQP is indeed outside of PH relative to an oracle,
how many alternations are needed to simulate it classically? The RF'S problem is trivially
in PH [log| (that is, PH with logarithmic alternations). Yet several researchers independently
expressed to us the hope that, if RF'S were modified a bit, a quantum algorithm might be able
to handle more than logn levels of recursion. One might thereby obtain an oracle problem
that is in BQP, yet outside PH [log] or even PH [polylog]. We were thus led to investigate
whether this hope could be realized.

Our conclusion is negative. In this paper we examine a broad class of variations on
RFS, and show that each of them has either (1) a good quantum lower bound or (2) an
efficient classical algorithm—there are no ‘in-between’ cases. It follows that, to place BQP
outside of PH [log] relative to an oracle, one would need to go outside the RF'S framework
as formulated in this paper. That rather arcane-sounding assertion has a broader context.
Like a classical algorithm, a quantum algorithm can solve problems recursively by calling
itself as a subroutine. When this is done, though, the algorithm typically needs to call itself
twice for each subproblem to be solved. The second call’s purpose is to uncompute garbage
left over by the first call, and thereby enable interference between different branches of the
computation. The need to uncompute is what causes the standard RF'S algorithm to have
query complexity 27, where h is the height of a tree to be evaluated. One might wonder,
though, whether the uncomputing step is really necessary, or whether a cleverly designed
algorithm might avoid it. Our result gives, to our knowledge, the first nontrivial example for
which recursive uncomputation s provably necessary. We conjecture that uncomputation is
needed as well for other recursive problems, such as game-tree evaluation.’

The plan is as follows. In Section 2 we define the RF'S problem and show that it lies in
BQP. In Section 3, we use the adversary method of Ambainis [18] to prove a lower bound
on the quantum query complexity of any RF'S variant. This bound, however, requires a
parameter called the nonparity coefficient to be large. The crux of our argument, proven
in Section 3, is that the nonparity coefficient is always above a certain threshold, unless the
RF'S variant is trivial (i.e. admits an efficient classical algorithm). In Section 4 we sketch a

¢For the shifted Legendre symbol problem, this is true assuming a number-theoretic conjecture of Boneh and
Lipton [8].

dActually, to place BQP outside MA relative to an oracle, it suffices to consider the complement of Simon’s
problem (“Does f (z) = f (z @ s) only when s = 07”).

¢For the RF'S function can be represented by a low-degree real polynomial—this follows from the existence of
a polynomial-time quantum algorithm for RF'S, together with the result of Beals et al. [6] relating quantum
algorithms to low-degree polynomials. As a result, the circuit lower bound technique of Razborov [13] and
Smolensky [14], which is based on the nonexistence of low-degree polynomials, seems unlikely to work. Even
the random restriction method of Furst et al. [15] can be related to low-degree polynomials, as shown by
Linial et al. [16].

fFormally, we conjecture that the quantum query complexity of evaluating a game tree increases with depth
as the number of leaves is held constant, even if there is at most one winning move per vertex (and hence no
need to bound error probability). This would match an upper bound for quantum game-tree search due to
Hgyer and de Wolf [17].
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generalization of this argument to RF'S variants involving partial functions. We conclude in
Section 5.

2 Preliminaries

In ordinary Fourier sampling, we are given oracle access to a Boolean function A4 : {0,1}" —
{0,1}, and are promised that there exists a secret string s € {0,1}" such that A (z) =
s-z(mod2) for all z. We are asked to return g(s), where g : {0,1}" — {0,1} is a known
Boolean function. We may assume that either g is efficiently computable, or else we are given
access to an oracle for g.

Then, to obtain a height-2 recursive Fourier sampling tree, we simply compose this prob-
lem. That is, we are no longer given direct access to A (z), but instead are promised that
A(z) = g (sz), where s, € {0,1}" is the secret string for another Fourier sampling problem.
A query then takes the form (z,y), and produces as output A, (y) = s, -y (mod2). As before,
we are promised that there exists an s such that A (z) = s -z (mod 2) for all z, meaning that
the s, strings must be chosen consistent with this promise. Again we must return g (s).

Continuing, we can define height-h recursive Fourier sampling, or RF'S}, recursively as
follows. We are given oracle access to a function A (z1,...,zy) for all z1,...,z, € {0,1}",
and are promised that

(1) for each fixed =%, A (z},z2,...,x) is an instance of RFSy_1 on za,...,z,, having
answer bit b (z}) € {0,1}; and

(2) there exists a secret string s € {0,1}" such that b(z}) = s - ] (mod 2) for each z}.

Again the answer bit to be returned is g (s). Note that we take g to be the same everywhere
in the tree. Allowing different g’s at different vertices would, we believe, complicate the results
without adding anything conceptually new. As an example that will be used later, we could
take g (8) = gmoas (8), where gmoas (s) = 0 if |s| = 0(mod 3) and gmoas (s) = 1 otherwise,
and |s| denotes the Hamming weight of s. We do not want to take g to be the parity of s,
for if we did then g (s) could be evaluated using a single query. To see this, observe that if
z is the all-1’s string, then s - z (mod 2) is the parity of s.

By an ‘input,” we will mean a complete assignment for the RF'S oracle (that is, a bit

A(zy,...,zp) for all z1,...,25). We will sometimes speak also of an ‘RF'S tree,” where
each vertex at distance [ from the root has a label zy,...,2;. If [ = h then the vertex is
a leaf; otherwise it has 2" children, each with a label z1,... ,z;,2;11 for some z;;. The

subtrees of the tree just correspond to the sub-instances of RF'S.
Bernstein and Vazirani [4] showed that RF Siogr, or RF'S with height log n (all logarithms

are base 2), is solvable on a quantum computer in time polynomial in n. We include a proof
for completeness. Let A = (A,),~, be an oracle that, for each n, encodes an instance of

RF Siog» whose answer is ¥,,. Then let L4 be the unary language {0" : ¥,, = 1}.

Lemma 1 For any choice of A, L4 € EQP4 C BQP4.
Proof: RF'S; (n) can be solved exactly in four queries, with no garbage bits left over. The
algorithm is as follows: first prepare the state

272 N o) |A(2)),
z€{0,1}"™

using one query to A. Then apply a phase flip conditioned on A (z) = 1, and uncompute
A (z) using a second query, obtaining

—n Az
272 N (-1 ).
ze{0,1}"™

Then apply a Hadamard gate to each bit of the |z) register. It can be checked that the
resulting state is simply |s). One can then compute |s)|g(s)) and uncompute |s) using
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two more queries to A, to obtain |g (s)). To solve RF Siogr (1), we simply apply the above

algorithm recursively at each level of the tree. The total number of queries used is 41°8™ = n2,

One can further reduce the number of queries to 2!°8™ = n by using the “one-call kickback
trick,” described by Cleve et al. [19]. Here one prepares the state

2—n/2 Z ‘CL'> ® ‘1> — |0>
ze{0,1}" \/5

and then exclusive-OR’s A (z) into the second register. This induces the desired phase

(—1)A(w) without the need to uncompute A (z). (However, one still needs to uncompute |s)
after computing |g (s)).) O

A remark on notation: to avoid confusion with subscripts, we denote the it* bit of string
z by z [i].

3 Quantum Lower Bound

In this section we prove a lower bound on the quantum query complexity of RF'S. Crucially,
the bound should hold for any nontrivial one-bit function of the secret strings, not just (say)
the function gmoas (s) defined in Section 2. Let g : {0,1}" — {0,1} be a function of the
secret strings, and let RF'S] be height-h RF'S in which the problem at each vertex is to return
g (s). The following notion turns out to be essential.

Definition 1 The nonparity coefficient p (g) of g is the mazimum p* for which the following
holds. There exist distributions Dy, Dy over g~ (0) and g=! (1) respectively such that for all
z€{0,1}"\ {0"}, 5o € g7 (0) and 51 € g7* (1),

Prs,ep, [S0 -2 =51 - 2 (mod2)] > p* and

Prs,ep, [s12 =50 - 2 (mod 2)] > u*.

One can verify that u(g) € [0,1/2] for all g. Intuitively, the nonparity coefficient is high
if the parity of some subset of bits of s is never strongly correlated with g (s). For example,
we show in Proposition 3 that 4 (gmods (s)) =1/2—0 (1/n). At the other extreme, p(g) =0
if and only if g is a parity function or a restriction thereof; note that RF'Sy is solvable in a
single classical query if p(g) = 0. In Theorem 2 we show that for all g,

o ().

where Q2 is bounded-error quantum query complexity as defined by Beals et al. [6]. In
other words, any RF'S problem with p bounded away from 0 requires a number of queries
([ex;jonential in the tree height h. To show this we use the adversary method of Ambainis
18].

However, there is an essential further part of the argument, which restricts the values of
u (g) itself. Suppose there existed a family {g, } of ‘pseudoparity’ functions: that is, u (gn) > 0
for all n, yet (gn) = O(1/logn). Then the best lower bound we could obtain from Theorem

2 would be Q ((1 +1/log n)h), suggesting that RFSIE:)g2 ,, might still be solvable in quantum

polynomial time. On the other hand, it would be unclear a priori how to solve RF.S’lg0 en
classically with a logarithmic number of alternations. In Theorem 4 we rule out this scenario
by showing that pseudoparity functions do not exist: if x(g) < 0.0732 then g is a parity
function, and hence u (g) = 0.

The theorem of Ambainis [18] that we need is the following.

Theorem 1 (Ambainis) Let f : {0,1}" — {0,1} be a Boolean function and X,Y two
sets of inputs such that f (z) # f(y) f e € X andy €Y. Let RC X XY be such that
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(1) For every z € X, there are at least m different y € Y such that (z,y) € R.
(2) For everyy €Y, there are at least m’ different © € X such that (z,y) € R.

(8) For every ¢ € X and i € {1,... ,N}, there are at most | different y € Y such that
(z,y) € R and z[1] # yi].

(4) For everyy € Y and i € {1,...,N}, there are at most I' different x € X such that
(z,y) € R and x[i] # y[i].

Then Qs (f) = Q ( e /ll’).
We will actually use a weighted variant of Theorem 1:

Corollary 1 Let f, X, Y, and R be as described in Theorem 1, and let X and Y be probability
distributions over X and Y respectively. Let

_ p : n
O max ey Tk [z [i] # y [i]]

= P 3 . .
B pev, A ex i e [ 2] # vy [i]]

Then Q2 (f) = Q (1/+/p).

To see that Corollary 1 follows from Theorem 1, note that we could simulate probabilities
by, for example, letting X and Y contain multiple copies of each input. We can then obtain
the lower bound for RF'S.

Theorem 2 For all total g, Q2 (RFS}) = ((1 — i (g))7h>.

Proof: Let X be the set of all inputs to RF'S;, with output 0, and Y the set of all inputs
with output 1. Say that x € X and y € Y differ minimally if, at every vertex v of the RF'S
tree, if the answer bit g (s) at v is the same for z and y, then the subtrees rooted at v are
identical in # and y. We will take (z,y) € R if and only if  and y differ minimally.

We weight the inputs using the distributions Dy, D; from the definition of the nonparity
coefficient. In particular, the probability of input « being drawn from X is the product, over
all vertices v in the tree, of the probability of the secret string s at v, if s is drawn from D,

(where we condition on v’s output bit, g (s)). Fixi € {1,...,n} and a pair (Z,y) € R. Then

PrweX :(z,Y)ER [w [Z] 7é ’Z/\[ZH S (1 - ,u)h 3
il £yl <@ -p".

This says the following. Suppose we choose z from X, conditioned on it differing minimally
from . Then the probability that z differs from ¥ at any particular bit 7 decreases exponen-
tially in h. To see this, observe that z [i] = y[i] if 5, - 2 = s5- 2 (mod 2) at any vertex v along
the path from the root to ¢, where s, and sy are the secret strings of « and ¥ respectively at
v. Similar reasoning applies to the probability that y differs from z.

This implies that, in Corollary 1, a < (1 — ,u)h and 8 < (1-— ,u)h. Therefore

Q: (RFSY) =9 (Vi/ag) = ((1- ™).

)

Pryey. @yer |

O

We now show that there is a natural choice of g—the function gmod 3 (s) defined in Section
2—for which the nonparity coefficient is almost 1/2. Thus, for g = gmoas, the algorithm of
Lemma 1 is essentially optimal.
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Proposition 3 u(gmoedas) =1/2— 0 (1/n).

Proof: Let n > 6. Let Dy be the uniform distribution over all s with |s| = 3 |n/6] (so
gmods (8) = 0); likewise let D; be the uniform distribution over s with |s| = 3 |n/6] + 2
gmods (s) = 1). We consider only the case of s drawn from Dy; the D, case is analogous.
We will show that for any z # 0,

|Prscp, [s-2=0] —1/2|=0(1/n)

(all congruences are mod 2), from which the proposition follows.
Assume without loss of generality that 1 < |z| < n/2 (if |z| > n/2, then replace z by its
complement). We apply induction on |z|. If |z| =1, then clearly

Pris-2=0]=3|n/6] /n=1/2+0(1/n).

For |z| > 2, let z = 21 @ z2, where 2o contains only the rightmost 1 of z and z; contains all
the other 1s. Suppose the proposition holds for |z| — 1. Then

Pr[s-2=0]=Pr[s-21 =0|Pris-22 =0|s-2z; = 0] +
Pris-2z; =1]Pr[s- 20 = 1|s-2; = 1],

where
Pris-z1=0]=1/2+a, Pris-z1=1]=1/2—-«

for some |a| = O (1/n). Furthermore, even conditioned on s - z1, the expected number of 1’s
in s outside of z; is (n —|21]) /2+ O (1) and they are uniformly distributed. Therefore

Pris-z2=bls-21=b=1/24 0
for some |Bo|, |B1] = O (1/n).

Pris-2=01=1/2+4+6o/2+ afo — $1/2 — af
=1/2+0(1/n).

O

Finally we need to show that pseudoparity functions do not exist. That is, if g is too
close to a parity function for the bound of Theorem 2 to apply, then g actually is a parity
function, from which it follows that RF'S; admits an efficient classical algorithm. We need
the followmg lemma about finite groups.
Lemma 2 Partition a finite group G into (A,B). Then either for all a € A, there exist
b1,by € B such that a = by -ba, or for all b € B, there exist ay,az € A such that b = a;y - as.
Proof: Suppose without loss of generality that 1 € A. Then either |[A] — 1 < |B] or
|A| =1 > |B|. Suppose the former case, and choose an a € A. Let the elements s of G be
vertices of a directed graph, with an edge from g; to g if and only if go = g7 la. Then, since
each vertex has indegree and outdegree 1, the graph is a union of disjoint cycles. Furthermore,
after we remove the cycle (1,a), there are more vertices in B than in A. Hence there exists
an edge from some b; € B to by € B, and by1bs = a. Similarly, if |A| — 1 > |B|, then for each
b € B, after we remove the cycle (1,b) there are more vertices in A than in B. [J

We can now prove the main result.

Theorem 4 Suppose g is total and p(g) < 0.0732. Then p(g) =0 (or equivalently, g is
a parity function).
Proof: By linear programming duality, there exists a distribution D over 2,5 € {0,1}",
z # 0™ such that for all s € {0,1}",

Pr(. 5)eD:g(s)29(5) [8 - 2 =5 - 2 (mod 2)] <
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It follows that there exist distributions Dy and Dy over z € {0,1}", as well as functions
bo (2),b1 (2) € {0,1} (which we can take to be deterministic without loss of generality), such

that for all sp € g=! (0) and s; € g1 (1),

Pr__5 [s0-2=bg(2)(mod2)] >1—p,
Pr _p [s1-2=0b1(2)(mod2)] >1—p.

Observe that if s is drawn uniformly at random from {0,1}", then for any b; (2),

1 1
Pry |Pr_ 5 [s-2 = b;(2) (mod 2)] > 3 < 3
by symmetry. Hence |g~! (i)| < 27! for i € {0,1}, and therefore |g=* (0)| = [g7! (1)| =
2n-1,
Now identify {0,1}" with the group Z7. By Lemma 2, either for all s9 € g~! (0) there exist
Say g € 971 (1) such that sy = s, D sg, or for all s; € g~* (1) there exist s4,55 € g~* (0) such
that s; = s, @ sg. Suppose the former without loss of generality; then for all so € g=* (0),

S0-2=(8q-2)® (sp-2) (mod?2).

Here we have the parity of two binary random variables, s, - z and sg - z, which are not
necessarily independent, but both of which take the value by (z) with probability greater than
1 — u. Hence, by the union bound,

Pr_.p, [s0-2z =1(mod2)] < 2.
for all sg € g1 (0).
Furthermore, if s is drawn uniformly from {0,1}" then the expectation of s-z is 1/2 under

any distribution over z # 0. Thus, if s; is drawn uniformly from g=* (1) then

P [s1-2=1(mod2)] >1-2u.

rzeﬁh S1
It follows by the union bound that

Pr_p, [b1(z) =1(mod2)] > 1 - 3.

and hence, for all s; € g1 (1),

Pr, p, [s1-2=1(mod2)] > 1 - 4pu.
We have established that g is a bounded-error threshold function of parity functions: there
exist p, summing to 1 such that for all s,

. o >1—4p ifg(s)=1
¥ (s) = Z p:(s-2) is { <2u if g(s) =0.
z€{0,1}"\{o"}

We will draw s uniformly at random from {0,1}" and consider var (¥), the variance of ¥ (s)
under this distribution. First, if p, > 1/2 for any z, then g(s) = s-z® b, and p(g9) = 0.
Second, suppose p, < 1/2 for all z. Then since s is uniform, for each z; # z» we know
that s-2; @ b,, and s 22 @ b,, are pairwise independent 0-1 random variables, both with
expectation 1/2. So

var (¥) = (1/4) 92 < 1/8.



172  Quantum lower bound for recursive Fourier sampling

Also, we derived previously that if s is drawn uniformly from g=! (1), then the expectation
of ¥ (s) is at least 1 — 2u. It follows that

var (¥) > (1/2 — 2u)>.

Combining,
> (2-+v2) /8 > 0.0m32.

O

4 Generalization to Partial Functions

What if the function g is partial—that is, in addition to the RF'S promise, there is the
additional promise that each secret string s in the tree satisfies s € 2, for some 2, C {0,1}"?
Here we sketch a generalization of our results to this case. We ﬁrst deﬁne a two-sided
variant of p(g): that is, one in which strings are drawn from the distributions Dy and Dy
simultaneously.

Definition 2 The two-sided nonparity coefficient ps (g) of g is the mazimum pj for which
the following holds. There exist distributions Do, D1 over g=!(0),g~! (1) respectively such
that for all z € {0,1}" \ {0"}, 50 € g1 (0) and 51 € g1 (1),

Pry,epy,sep, [S0-2 =581-2(mod2) V s1-2=75)-2(mod2)] > 5.

One can verify that us € [0,3/4] for all g, and (the analogue of Proposition 3) that
12 (gmods) = 3/4 — O(1/n). We also have us(g9) > p(g), since if two events both occur
with probability at least p then their disjunction does as well. On the other hand, us (g)
can be much greater than u(g), and indeed if g is partial then ps (g) = 0 implies that g is
a parity function, whereas p(g) = 0 does not. To illustrate, for even n let grr (s) = 0 if
s[1],...,s[n/2] are all 0, and grg (s) = 1if s[n/2+1],...,s[n] are all 0, under the promise
that exactly one of these is the case. Then:

Proposition 5 3 (92r) = 1/2+ © (27"/2), whereas p (g9rr) = 0.

Proof: Let Dy and D; be the uniform distributions over 0 and 1 inputs respectively. Choose
any z # 0™ for which (say) z[n/2+1],...,z[n] are all 0. Then sy - z = 0 (mod 2) for every
s0 € g~ (0), but

1
PrS1ED1 [S]_ -z=1 (mod 2)] = m
since s[1],... , s [n/2] are chosen uniformly at random conditioned on not being all 0. Hence

w2 (gLr) =1/24+0 (2_"/2). This is the best bound achievable, since if z has 1 bits on both
the left and right halves then s - z is close to uniformly random for both s € Dy and s € D;.

In the one-sided case, for any s we can choose a z # 0" such that [2| = 1(mod2) and
s[i] = 1 whenever z[i] = 1. Then s -z disagrees with 5+ z for every § such that grg (5) #
gz (5), and hence 1 (gzz) = 0. D

In the partial setting, the theorem of Ambainis [18] that we need is his ‘most general’ lower
bound, which he uses to show that the quantum query complexity of inverting a permutation
is @ (y/n). Using it we can obtain the following variant of Theorem 2; note that the exponent
is weakened from —h to —h/2.

Theorem 6 For all g, Q2 (RFS]) =Q ((1 — po (g))fh/z)_

On the other hand, we obtain a variant of Theorem 4 with the threshold twice as large:
Theorem 7 Suppose us (g9) < 0.146. Then g is a parity function (equivalently, ps (g) =
0).

The proofs of Theorems 6 and 7 are omitted for brevity.
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5 Concluding Remarks

An intriguing open problem is whether Theorem 2 can be proved using the polynomial method
of Beals et al. [6], rather than the adversary method of Ambainis [18]. It is known that one can
lower-bound polynomial degree in terms of block sensitivity, which is (roughly) the maximum
number of disjoint changes to an input that change the output value. The trouble is that the
RF'S function has block sensitivity 1—the ‘sensitive blocks’ of each input tend to have small
intersection, but are not disjoint. See [20] for more about the quantum query complexity of
such functions.

We believe the constants of Theorems 4 and 7 can be improved. The smallest nonzero
w1 (g) and p2 (g) values we know of are both attained by g = OR (s [1],s[2]):

Proposition 8 ;(OR) = pz (OR) =1/3.

Proof: First, u(OR) > 1/3, since D; can choose s[1]s[2] to be 01, 10, or 11 each with
probability 1/3; then for any z # 0 and 3y € g~ 1 (0), s - 2 # 5 - z with probability at most
2/3.  Second, ps (OR) < 1/3, since applying linear programming duality, we can let the
first two bits of z and 1, (2[1] z[2], 51 [1] 81 [2]), be (01,01), (10,10), or (11,10) each with
probability 1/3, while z[3],...,z[n]| are all 0. Then sq -z # §; - z always, and for any
s1 € g 1(1), sy -z # 5y - 2 with probability 2/3. [

A final note. Define affine recursive Fourier sampling, or ARF S}, similarly to RF'Sy,
except that at each level, we are guaranteed there exists a secret string s and additive constant
c € {0,1} such that 4, (z) = (s-x + ¢) (mod?2) for all z € {0,1}". As before, the goal at
each level is to compute g (s); we do not care about ¢. Clearly the algorithm of Lemma 1
works also for ARF'S}y, since c is simply encoded into the phase when we apply the Hadamard
gates. On the other hand, we can show a quantum lower bound for ARF'S} (for any g) much
more easily than for RF'S]. For observe that we can encode the parity of 2" bits into ARF S9s

thus, by a result of Beals et al. [6], a quantum algorithm for ARF'S{ requires (2h) queries.

Acknowledgements

I thank Lisa Hales, Umesh Vazirani, Ronald de Wolf, and the anonymous reviewers for helpful
comments.

References

1. P. Shor (1997), Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer, SIAM Journal on Computing 26(5), pp. 1484-1509. quant-ph/9508027
(Available at www.arxiv.org).

2. D. Simon (1994), On the power of quantum computation, Proceedings of IEEE FOCS’94, pp.
116-123.

3. D. Deutsch and R. Jozsa (1992), Rapid solution of problems by quantum computation, Proceedings
of the Royal Society of London A439, pp. 553-558.

4. E. Bernstein and U. Vazirani (1997), Quantum complezity theory, SIAM Journal on Computing
26(5), pp. 1411-1473.

5. S. Aaronson, The Complezity Zoo.
http://www.cs.berkeley.edu/~aaronson/zoo.html.

6. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf (1998), Quantum lower bounds by
polynomials, Proceedings of IEEE FOCS’98, pp. 352-361. quant-ph/9802049.

7. W. van Dam, S. Hallgren, and L. Ip (2003), Algorithms for hidden coset problems, Proceedings of
SODA’2003. quant-ph/0211140.

8. D. Boneh and R. Lipton (1996), Algorithms for black boz fields and their application to cryptogra-
phy, Proceedings of CRYPTO’96, Lecture Notes in Computer Science Vol. 1109, Springer-Verlag,
pp- 283-297.

9. J. Watrous (2000), Succinct quantum proofs for properties of finite groups, Proceedings of IEEE
FOCS’2000, pp. 537-546. ¢s.CC/0009002.

10. F. Green and R. Pruim (2001), Relativized separation of EQP from PNT Information Processing
Letters 80(5), pp. 257-260.



174 Quantum lower bound for recursive Fourier sampling

11

12.

13.

14.

15.

16.

17.

18.

19.

20

. L. Babai (1992), Bounded round interactive proofs in finite groups, SIAM Journal on Discrete
Math 5(1), pp. 88-111.

U. Vazirani (2001), personal communication.

A. A. Razborov (1987), Lower bounds for the size of circuits of bounded depth with basis {&, ®},
Mathematicheskie Zametki 41(4), pp. 598—-607. English translation in Math. Notes. Acad. Sci.
USSR 41(4), pp. 333-338, 1987.

R. Smolensky (1987), Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity, Proceedings of ACM STOC’87, pp. 77-82.

M. Furst, J. Saxe, and M. Sipser (1981), Parity, circuits, and the polynomial time hierarchy,
Proceedings of IEEE FOCS’81, pp. 260-270.

N. Linial, Y. Mansour, and N. Nisan (1993), Constant depth circuits, Fourier transform, and
learnability, Journal of the ACM 40(3), pp. 607-620.

P. Hgyer and R. de Wolf (2002), manuscript.

A. Ambainis (2000), Quantum lower bounds by quantum arguments, Proceedings of ACM
STOC’2000, pp. 636—643. Journal version in Journal of Computer and System Sciences 64, pp.
750-767, 2002. quant-ph/0002066.

R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca (1998), Quantum algorithms revisited, Pro-
ceedings of the Royal Society of London A454, pp. 339-354. quant-ph/9708016.

. S. Aaronson (2002), Quantum certificate complezity, submitted. quant-ph/0210020.



