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The generation of entangled states and their degree of entanglement are studied in a
relativistic formulation for the case of two interacting spin-1/2 charged particles. In the
realm of quantum electrodynamics, we revisit the interaction that produces entanglement
between the spin components of covariant Dirac spinors describing the two particles. In
this way, we derive the relativistic version of the spin-spin interaction, widely used in
the nonrelativistic regime. Following this consistent approach, the relativistic invariance
of the generated entanglement is discussed.

Keywords: Entanglement, Special Relativity
Communicated by: R Jozsa & G Milburn

The generation of entangled states and the measurement of their degree of entanglement
are at the heart of diverse fundamental tests of quantum mechanics. On the other hand,
special relativity is a fundamental theory that has to be considered in the study of measure-
ments realized by different moving observers. In special relativity, for example, the observed
simultaneity of two space-like separated events can be broken when they are observed in a
different reference frame. As a consequence, there is a natural interest in studying nonlocal
quantum correlations in the framework of special relativity [1]. Recent experiments [2] have
addressed the question about the compatibility of the apparently independent predictions of
quantum mechanics and special relativity. In Ref. [3], Peres et al. have shown that the spin
entropy of a single free spin—% particle has no invariant meaning when the kinematical degrees
of freedom are traced out, while in [4] a kinematical study of entangled states of two electron
spinors are extensively studied. More recently, in Ref. [5], Gingrich and Adami have studied
the transfer of entanglement between momentum and spin of two particles under a Lorentz
transformation.
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116 Generation and degree of entanglement in a relativistic formulation

In this paper, a consistent approach is presented to the generation and measurement
of entanglement in a quantum relativistic framework. As an illustrative example, the case
of two interacting spin-1/2 massive particles, say electrons, is considered in the context of
quantum electrodynamics (QED). We give a pedagogical derivation of the Breit interaction
that produces entanglement [6, 7], maximal or not, between the spin components of the
covariant Dirac spinors associated with the two particles. The main goal is to keep throughout
the process a relativistic covariant formalism for the electrons and to deduce the quantum
interactions that generate entanglement between their Dirac spinors. This interaction is the
relativistic version of the spin-spin interaction studied in a nonrelativistic context, typically in
quantum optics, solid state, and other fields. Revisiting the dynamical aspects of relativistic
entanglement will permit us to discuss consistently the invariant properties of the degree
of entanglement of the generated states [4] and to suggest experimental settings for testing
entangling procedures in the relativistic domain such as pair creation in high energy physics.

Let us consider two non-relativistic spin-1/2 charged particles, e.g. electrons, 1 and 2
with charge e and spin states given in the basis of the z-axis eigenstates |1) = (1,0)T and
|}) = (0,1)T. For the system of the two-particle spin states we construct the spin tensor
product states |ij) = |i) ® |7) with ¢,7 = {1,]}}. The magnetic dipole-dipole interaction
between the spins of two particles, in nonrelativistic quantum mechanics, is described by the
Hamiltonian

H :—pl-Vx<p2xVﬁ)
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where r is the distance between the electrons, n is a unit vector in the direction of r, u=
(eh/2mcc)o is the dipole moment operator of each electron and & = x0® +y 0¥ +2z0* is the
spin operator. When Hamiltonian (1) is applied to the initial state |[|1), for non-overlapping
particles and for n = n, it generates entanglement by means of the term —p, - py /4773, After
an interaction time ¢ an entangled state is produced, which up to a global phase is given by

|¥7) =cos@|{1) —isinf|t]) , (2)

where 6 = (2/h) [Jdt and J = —e?h?/(16mm2c*r?).

The dipole interaction model in nonrelativistic quantum mechanics involves only the spin
degrees of freedom of the two particles and its compatibility with special relativity, frequently
introduced ad hoc, should be proven from fundamental principles. In what follows, we revisit
the derivation of the spin interaction Hamiltonian, similar to Eq. (1), from first principles
and in the realm of quantum electrodynamics, which describes the interaction in a relativistic
manner. This allows the creation of entangled states, similar to Eq. (2), between the spin
components of the Dirac spinors of the two particles, while keeping relativistic covariance in
a natural way.

In the relativistic quantum domain we consider two identical spin-1/2 charged particles de-
scribed by Dirac spinors. They may be considered as relativistic quantum mechanical objects
or as one-state particles of quantum field theory that are allowed to interact with a quantized
electromagnetic field. Their interaction will be studied within the covariant formalism of



J. Pachos and E. Solano 117

QED by considering scattering processes. In particular, the spin interaction Hamiltonian can
be derived by calculating the amplitude that corresponds to Feynman diagrams describing
the scattering of the charged particles when they exchange one virtual photon [8]. Two dia-
grams contribute to this amplitude as a consequence of the indistinguishability of the particles
resulting from the fermion statistics (see Fig. 1).

P j2 P / j2

Py —Dp1 Py —D2

P1 D2 P1 D2

Fig. 1. The scattering process of two particles by the exchange of one virtual photon. This process
incorporates the dipole-dipole interaction between two spin-1/2 charged particles.

Each particle participating in the scattering is described by a Dirac spinor, which for the
plane wave case is given by [9]

Y(@,€) = u(p,e)e 7,

where x is a point in space-time, p is the energy-momentum of the plane wave and € is the
polarization of the spin variable. The wave function ¢(z, €) satisfies the Dirac equation

(78, —m)p =0,

where y* are the Dirac matrices. Then, the vector u(p,€) is a four dimensional spinor of the

wno=(VETE)

where o# = (1,0), * = (1,—0) and £ is any two component spinor normalized to ¢7¢ = 1.

form

For example, for ¢ =1, (7 = (1,0)T, which means that the particle has spin up in the z
direction. The initial state of two well separated particles with known spin orientation can
be expressed as

u(p1,€1) ® u(p2, €2) -

In the following, we calculate their scattering amplitude M without tracing their spin compo-
nents, by employing the QED Feynman diagrams and rules. The leading order contributions
to this amplitude in terms of a perturbation expansion of the QED coupling e are presented
in Fig. 1. Considering that the coupling constant of the QED interactions is small, it is un-
likely that two virtual photons are simultaneously exchanged between the electrons. Hence,
the irreducible graphs given in Fig. 1 are describing efficiently the process even for higher
energies [7]. The amplitude of this process is given by
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For nonrelativistic velocities we can employ the Born approximation for the scattering ampli-
tude, given by (p'|iM|p) = —iV(q)d®)(Ey — Ep) for ¢ = p’ — p. This does not violate the
relativistic covariance of the description but rather isolates the dominant contributions for
particles moving slowly in their center of mass reference frame [10]. By substituting for low
momentum u(p’, € )yiu(p,e) ~ 0 for i = 1,2,3 and u(p', €')y’u(p, €) ~ 1 we obtain by Fourier
transformation the usual Coulomb interaction V(r) = e?/(4nr)§1€1§°>¢2. The Kronecker §
symbols indicate that the spin indices of the spinors remain unaffected by the Coulomb in-
teraction. Here, only the first diagram has been employed as an antisymmetrization of the
resulting wave function automatically compensates for the contributions due to the exchange
diagram. In the next order of approximation with respect to small momentum, where still
the Born approximation holds, we employ the exact formula

i(p1+P1) , 01X (P1—P1)] .o,
- 2m s 2m : ]ﬁ ' 4)
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Considering in the amplitude of Eq. (3) only the cross terms with o, we obtain by Fourier
transformation the dipole-dipole interaction matrix

€01 €02 1
——-Vx(—xV—). 5
2m 2m Amr (5)
This term is analogous to Eq. (1), giving rise to the spin interaction, but this time in the
space of spinors.
If we have an initial two-particle state with non-overlapping wave functions and spins
oriented oppositely along the z axis, the effective Born potential becomes

V _ J (25616’266261 _ 66161 6626’2) , (6)

equivalent to the term —p; - py/47r® of Eq. (1) but acting on four-component Dirac spinors.
If the relativistic description of the particles is relaxed, the spin interaction of Eq. (1) is
recovered.

We consider now the initial wave function of the two particles u(p1, €1) @u(p2, €2), which for
simplicity we shall take to have zero three-momentum [11] and with spin components oriented
oppositely along the z axis, i.e. €1 =] and ez =1. The evolved state after an interaction time
t reads

cosf u(p1 = 0,61 =|) ®u(p2 = 0,e2 =1) — isinf u(p1 = 0,61 =1) @ u(p2 = 0,e2 =|) , (7)

up to an overall phase. Here, we have assumed that the particles are asymptotically at rest
with respect to a common reference frame. The relativistic covariance of the entangled two-
particle state of Eq. (7) is certainly not present in Eq. (2). Notice that the form of the coherent
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superposition of Egs. (2) and (10) is preserved and the action integral [Jdt is a relativistic
invariant quantity due to the invariance of the action of the electromagnetic interactions [12].

The Dirac equation is relativistically covariant, i.e. it has an invariant form under Lorentz
transformations from one inertial frame to the other. Let us consider a spin-1/2 particle
with momentum p and spin e described by the wave function ¥ (p,e). In a transformed
reference frame its momentum is given by p’ = Lp, where L is a Lorentz boost represented
by a non-unitary matrix. The quantized Dirac states |¢(p,€)) = ¥(p, e)ai,”O}, with agT
being the creation operator of an electron and |0) the vacuum state, transform unitarily, i.e.
W' (¢, €)) = U(L)[%(p; €))-

The analytic form of each spinor with zero momentum in the center of mass frame of
the two electrons is given by u(p = 0,e =|1) = /m(&T, 6T, According to the previous
discussion, when the two particles are allowed to interact for a certain time such that § = 7 /4,
the spinor “EPR state”

1 ;
¥(p1 =0,p2 =0) = 7 u(0,e1 =1) ® u(0,e2 =1) — iu(0,€e1 =1) ® u(0, 2 :U] ;
is generated. This state corresponds to a Lorentz frame where both particles are at rest
with respect to each other. For this “EPR state” the kinematical degrees of freedom are
incorporated in a relativistic formalism, in contrast to Eq. (2). Hence, the wave function of
each of the particles can be transformed to a relativistic frame along the z direction where it
becomes

E—pyo, &7
up=poxie =11 = (Vg P )

Note that in general the kinematics and the spin degrees of freedom of each particle are not
factorizable, so they have to be incorporated in the theory ab initio in the entanglement
generation procedure. An arbitrary Lorentz transformation that consists of a boost and a
rotation acting on the “EPR state” gives the state

¥(p1 =p,P2 =P) = % u(p, €1 =) ® u(p, €2 =1) —iu(p, &1 =1) u(p, &1 =1)| , (8)

where € indicates spin up or down in the new spin direction. Here, we are allowed to make
this transformation as the spinors are written in a relativistic covariant formalism. The spin
states of each particle observed in the moving reference frame are equivalent to a local unitary
transformation of the spin states observed in the rest frame, thus preserving the degree of
entanglement. Transforming the entangled state to a different reference frame results into a
state that can be observed by moving detectors. Ideal detectors could distinguish the different
orientations of the spin for different momenta of a particle as the momentum and the spin
operators commute. Therefore, in the considered situation (see also Ref. [4]), even though the
spin is not a relativistic invariant quantity, the degree of spin entanglement of two particles
is. Note that in Ref. [3], the relativistic properties of the spin of a single particle with a
momentum distribution was studied.

In principle, as we mentioned before, the standard high-energy experiments of pair creation
or electron-electron scattering represent a natural realm, even though unusual, for testing
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these relativistic entangling properties. For the case of photons [4], the implementation of
moving detectors in parametric down conversion experiments might be required.

In this paper, we reviewed the derivation of the spin-spin interaction employed in nonrel-
ativistic quantum mechanics to describe the spin entanglement between two spin-1/2 charged
particles from first principles, i.e. quantum electrodynamics. By employing the relativistic
formalism of spinors the system can be described in a Lorentz covariant way throughout the
whole process. Hence, we were able to produce entanglement between Dirac spinors and to ask
consistently about its relativistic properties. We showed that, as a natural consequence, the
measurement outcomes of any two moving observers should witness the same degree of entan-
glement, independent of their relative motion. In this relativistic context, it is clear that no
superluminal communication or causality violation in the spin measurements is expected. All
entangling Hamiltonians could be, in principle, derived from fundamental principles, showing
the fundamental compatibility of quantum correlation measurements and special relativity.
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