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We consider a bipartite continuous variables quantum mixture coming from phase ran-
domization of a pair-coherent state. We study the nonclassical properties of such a
mixture. In particular, we quantify its degree of entanglement, then we show possible
violations of Bell’s inequalities. We also consider the use of this mixture in quantum
teleportation. Finally, we compare this mixture with that obtained from a pair-coherent
state by single photon loss.
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1. Introduction

Entanglement and nonlocality are nowadays considered as fundamental resources for the
quantum information processing [1]. The efficiency of many protocols significantly depends
on the degree of entanglement of a state representing the channel shared by two parties [2].
A paradigmatic example of such dependence is provided by the Werner mixture [3]. Beside
discrete variable systems, a great attention has been also devoted to the quantum information
processing with continuous variables [4]. In such a context the two-mode squeezed vacuum
state [5] is mostly exploited since it provides the maximally entangled state in the limit of
very large squeezing. However, there exist other candidate states for quantum information
processing with continuous variables which are worth studying. Here we introduce a mixture
of pair-coherent state and we study its basic properties, i.e., entanglement, nonlocality and
teleportation.

Pair-coherent states provide an interesting example of nonclassical (also non Gaussian)
states of the two-mode radiation field. They were introduced in Ref.[6], and their proper-
ties were extensively studied [7]. However, the practical generation of such states is rather
difficult and several models have been explored [8, 9] including trapped systems [10]. But
their experimental signature as pure states still remain questionable [11]. Nevertheless, from
a foundational point of view, these states play an important role for testing quantum me-
chanics versus local realism [12].
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A pair-coherent state is given by
27
e, i 2
) = N2 [ i) e pe” &

where N' = [Iy(2¢?)]7! with I,, the modified Bessel function of order n, and ¢ € R.The
subscripts 4, B denote the two parties. The quantum state (1) is potentially generated, from
vacuum fields, in the steady state by nondegenerate parametric oscillation [8] as modeled
by the following Hamiltonian, in which coupled signal-idler loss dominates over linear single-
photon loss,

H = ih&(a'd" — ab) + abI't + a'p'T. (2)

The a', @ and bt, b are the usual boson creation and destruction operators for two spatially
separated systems (field modes) at location A and B respectively. Often, the o and b are
referred to as the signal and idler fields, respectively. Furthermore, £ represents a coherent
driving source which generates signal-idler pairs, while I" represents system’s reservoir which
gives rise to the coupled signal-idler loss. The Hamiltonian preserves the signal-idler photon
number difference a'a — b'b of which the state (1) is an eigenstate with eigenvalue zero. We
note the analogy to the single-mode even and odd coherent superposition states [13], which
are generated by the degenerate form of Hamiltonian (2).
The state (1) can also be rewritten as

) =AY ) aln)s 3)

and represents two coherent states having a well defined phase relation although their phase
is random. However, this phase relation is undermined by phase diffusion induced, e.g, by
the pump £ or by the reservoir I' [14]. We model this process by introducing phase damping
in each mode through the following master equation [5]

5=~ [aa, [ata, ] - [61b, [675,0]] | ()

where we have assumed a symmetric, unity, decay rate. The solution of Eq.(4), with the
initial condition ppgir = |¥)){((¥|, is

e C2n+2m
p(r) =N Z atml &P [—27(n —m)?] [n) a(m| @ [n) B(ml|, (5)
n,m=0 e

where 7 represents the dimensionless time. In the case of 7 — 00, Eq.(5) reduces to

prans =N 3 () alol I (6

which shows no phase relation between the two modes.
We are now going to study in detail the quantum channel given by Eq.(5).
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2. Mapping on two-qubit system

A simple way to study the nonlocal properties of a bipartite state is to map it into two-
qubit system [15], for which separability and nonlocality conditions are known [16, 17]. To
this end, we introduce the local spin—% operators

s = ff<|2n>a<2n+1|+|2n+1>a<2n|>, (7)
S = =i (12n)al2n 41| - |20+ Dai2n]) (8)
S5 = (=) nYalnl, (9)

where & = A, B and |n), are Fock states. The operators (7)-(9) obey the commutation
relation

[567.87] = 2tompsy”. (19)

with €;; the totally antisymmetric tensor.
Now, given a state p ol the bipartite system, we write it through the Hilbert-Schmidt
decomposition

3
p:i I @ IB) 1 yAW.84) @ [(B) 1 [ g v(B.gB) 1 5™ ¢, s gs® | (11)

n,m=1

where v(®) = (vﬁa), véa), véa)) are vectors in R, vga) = Tr[pS](-a)], while S(®) = (Sia), S2a), Séa))
are operator vectors, and I(® are identity operators. Furthermore, v(®).8(®) = Z?:l vga)Si(a) ,
and the coeflicients ¢y, = Tr[p AR Sf(nB)] form the real 3 x 3 matrix T describing the cor-
relations between the two pseudo-qubits.

For the state (5) a straightforward algebra gives

AP = oD = ofP) o, a2
ol = B = NI (2i¢?), (13)
and
o CSn+2 L,
t11 = QNZ—e T, (14)
= (2n)!(2n +1)!
tag = —ft11, (15)
tss = 1, (16)
by = 0 4], (17)

As a consequence of the above equations, the state (5), when mapped into two-qubit, corre-
sponds to the following mixture

P = DPpair + (]- - p)prandv (18)
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where 0 < p = =27 < 1. Thus, it describes a real physical channel where correlated pair-
coherent states are available with probability p, while the phase relation is disrupted by
environmental effects, with probability 1 — p.

3. Entanglement

Let us now quantitatively study the entanglement of the state (18). Several measure of the
entanglement have recently been proposed (see, e.g., [18] and references therein), and none
of them can be considered as the unique, canonical measure. However, the entanglement of
formation [19] plays an important role since it gives the minimal amount of entanglement
necessary to create a given density matrix. Furthermore, there exist an analytical expression
of this quantity for two-qubit systems [20]. Namely, for a 4 x 4 density matrix p one can
defines the flipped state p = Op*O7, where p* denotes the complex conjugation, and the
orthogonal flipping matrix O contains only four nonzero elements along the antidiagonal:
O14 = 041 = —0s3 = —0O35 = 1. As a consequence the concurrence [20] results

C(p) — max {0, )\1 - )\2 - )\3 - )\4} ) (19)

where \;’s are, in decreasing order, the nonnegative square roots of the moduli of the eigen-
values of the non-hermitian matrix pp. Finally, the concurrence determines the entanglement

of formation as
E(p) =h (; [1 + m]) , (20)

where

h{z) = —zlogyz — (1 — z)log,(1 — ), (21)

is the Shannon entropy of the two-element partition {z,1 — z}.
Then, Eqgs.(12)-(17) lead to the following A;’s

1 A 1
)\1 = 5 ]_ — |:1}§ )] 4+ §t11 ) (22)
1 1
)\2 = 5 1 — |:’U:(3A)] — §t11 ) (23)
A3 = A =0, (24)
so that the concurrence results
C(p) = ta1 - (25)

Inserting Eq.(25) into Eq.(20)} allows us to evaluate the entanglement of formation.

This quantity is shown in Fig.1 as function of ¢ and p. One can see that the state (18) for
p — 1 and ¢ > 2 reaches the maximum entanglement, while it results separable approximately
for p < 0.1, or ( — 0. It is also worth noting the presence of slight oscillations as function of
¢ due to the Bessel function.

4. Nonlocality

As a consequence of the commutation relation (10) the nonlocality of the state (18) can
be studied by means of the standard two-qubit Bell inequalities [21]. In particular, the CHSH
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Fig. 1. Degree of entanglement E versus { and p.

inequality [22] reads
B<2, (26)

with the Bell factor given by

B = (o) (b57)) ¢ (5) (57))
{fos) () - (w510) (7))

where a, a’, b, b’ are unit vectors in R?, and the angle brackets denote the averaging over
the density matrix (18).

According to Ref. [17], if the sum of the two largest eigenvalues of the matrix U = T7T is
greater than unity, the state (18) violates the inequality (26) for some choices of the vectors
a, a’, b, b’. Thus, from Egs.(14)-(17), the maximal Bell factor results

Binaz = 24/13, + 125 (28)

The quantity (28) is shown in Fig.2. Contrarely to what it is expected, this plot resembles that
of Fig.1, that is the violation of the Bell inequality occurs for almost all values of entanglement.
This is due to the particular choice of the operators (7)-(9). Furthermore, the violation
becomes very large, attaining the maximum value of 21/2 when p — 1, as opposite to Refs.[12]
where, for p = 1, measurements on quadrature observables lead to small violations only for
(~1.

It is worth noting that, although the operators (7)-(9) employed in Eq.(27) are not realistic
observables, they could be measured through tomographic techniques [23]. For instance, in
the two-mode optical homodyne tomography [24], a complete set of quadrature measurements
should be performed. Then, the collected data should be used to reconstruct the joint density
operator from which calculate the averages (27). This approach is completely different from
those of Ref.[12], where some quadrature distributions were directly involved in the Bell’s like
inequalities.

K

(27)
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Fig. 2. Maximum attainable value of the Bell operator Bmas versus ¢ and p (only the part
exceeding the classical bound Bz = 2 is shown).

5. Teleportation

The state (18) could be used in the standard quantum teleportation protocol for continuous
variable [25]. It consists in measuring the difference £ = z;, — 4 and the sum y; = ¥;n +ya
of the orthogonal quadrature components of the input mode in and the reference mode A at
Alice’s station. Then, the resulting state for the mode B at Bob’s site is conditioned by the
input state |¢);, and the measurement result & = z_ +4y, , which ideally define an eigenstate
|ct)}in, 4 of modes in and A, that is

| zn A= Z Dzn |7’L zn|n> (29)

where D denotes the displacement operator [5].

To evaluate the fidelity of the teleportation protocol, we consider a coherent input state
|B)in, since in this case an upper classical bound has already been established [26]. Then, the
state after the Alice’s measurement will be

Pafter = % A,in<<a| (P & |lg>ln</8|> |a>>in,A P (30)

where the probability P(«) of the outcome « is given by
Pla) = e ~la-pI> Z (S |a—,8|) . (31)

The final output state is obtained by applying the local transformation Dg(«a) at Bob’s site
after receiving the classical communication (the two values corresponding to the real and
imaginary part of &) from Alice. Thus,

Pout — DB(a)pafterDL(a) ) (32)

Finally, the fidelity conditioned to the value o would be

fa) = Tr [poutpin] = (Blpout| B) , (33)
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Fig. 3. Average fidelity F versus ¢ and p (only the part exceeding the classical bound F = 0.5 is
shown).

and the average fidelity
= /anf(a)P(a). (34)

Explicitely it results

F - —N Z 7’L+m <./\/—)(ZnJer)p(n m)? (35)

an

Notice that by integrating overall possible values of o the dependence on the amplitude of
the coherent input state disappears.

The quantity (35) is shown in Fig.3. We note that it never reaches the maximum, even
when the used quantum channel is maximally entangled. This is due to the fact that the
protocol of Ref.[25] has been devised for two-mode squeezed state. Nevertheless, suitable
local operations could optimize the protocol also in such a case [27]. Most important is the
fact that for ¢ > 1 it is almost impossible to have the fidelity above the classical bound while
violations of Bell inequality still occur (see Figs.2 and 3). This is in apparent contrast with the
behavior of the Werner mixture [3, 28]. However, it could be explained by observing Egs.(35)
and (14) where p appears with different powers. That is, when reducing to two-qubit, the
effect of the dephasing is indipendent of the amplitude . Instead, if one tries to exploit the
entanglement resource with continuous variable protocols, i.e. by using the whole Hilbert
space, the effect of the amplitude { can be detrimental.

6. Conclusions

In this paper we have introduced a bipartite mixture of phase randomized pair-coherent
state. This mixture could describe realistic quantum channel for information processing.
Then we have studied its nonclassical properties, like entanglement and nonlocality, on a two-
qubit scale. We have found that it could reach the maximal entanglement and the maximal
violation of Bell inequality. Notwithstanding, we have shown that these features do not always
guarantee reliable quantum information processing, like teleportation, on infinite dimensional
scale (continuous variable).
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Fig. 4. From left to right, degree of entanglement E, maximum value of the Bell operator Bmaz,
and teleportation fidelity F' versus (.

When trying to use pair coherent states as a realistic channels, another undesirable effect
which may occur is the single photon loss [14]. If the channel is symmetric in the two modes,
this process can be described by the use of the superoperators [29, 5]

1 1

which lead to the following conditional state after the environment has witnessed a photon
lost by the system at time 7’ < 7

po(r) = 27 %7 p(0), (38)

with p(0) = ppair. Also in this case we have assumed a unity decay rate, so that 7 represents

the dimensionless time. The unconditional (normalized) density operator corresponding to
Eq.(38) would be

p(1) = exp [2L7] p(0) + /OT dr' 27 exp [2L7"] p(0) . (39)

Then, in the limit of 7 — oo, Eq.(39) becomes

00 2(n+m+2) n m
p = /\/[|0>A<0|<>3’|0>B<0|+ > (nf—l)!(m—l-l)! ((n:2(+2_;1)

n,m=0

x(In) am| ® |+ 1) (m + 1] + |+ 1) atm + 1] © |n>B<m|)] . (o)

By repeating the procedure of Secs.III, IV and V with the state (40), one can see that in
this case the characteristics of the channel remain almost unalterated provided ¢ > 1. This
is shown in Fig.4.

In conclusion, since the realization of an almost perfect quantum channel based on pair
coherent states seems not at the hand, we have provided a study of the tolerance against some
subtle noisy effects.
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