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We discuss the question of the existence of quantum one-way permutations. First, we
consider the question: if a state is difficult to prepare, is the reflection operator about
that state difficult to construct? By revisiting Grover’s algorithm, we present the re-
lationship between this question and the existence of quantum one-way permutations.
Next, we prove the equivalence between inverting a permutation and that of construct-
ing polynomial size quantum networks for reflection operators about a class of quantum
states. We will consider both the worst case and the average case complexity scenarios
for this problem. Moreover, we compare our method to Grover’s algorithm and discuss
possible applications of our results.
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1. Introduction

Quantum computation is a rapidly growing field which explores the relationship between
quantum physics and computation [1]. We have two strong indications that quantum systems
are potentially more efficient than their classical counter-parts at performing computational
tasks. One is Shor’s algorithm [2], which solves the factoring problem and the discrete loga-
rithm problem in quantum polynomial time. The other is Grover’s algorithm [3], which works
quadratically faster than any classical algorithm for the search problem in the oracle setting.
On the other hand, in spite of these results, Bennett, Bernstein, Brassard, and Vazirani [4]
have shown that with probability 1 there exists a quantum one-way permutation relative to
a random permutation oracle.

The existence of one-way functions is one of the most important open problems in classical
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380 On quantum one-way permutations

computation. It is also well-known that one-way functions have applications in cryptography
[5]. Loosely speaking, a one-way function is one that is easy to compute but hard to invert.
We will give the precise definition of one-way function in the following sections. The existence
of one-way functions is linked to the complexity class UP, the class of languages accepted by
a special, called unambiguous, polynomial time bounded nondeterministic Turing machines
and the following relationship is well-known, P C UP C NP. Furthermore the existence of
one-way functions is equivalent to the separation between the complexity classes P and UP
[6], and hence P and NP which indicates the difficulty of the problem of the existence of
one-way functions.

In this paper we counsider the quantum one-way permutations which is a restricted class of
one-way functions. First, we consider the relationship between the complexity of preparing a
state and the reflection about that state. We define a unitary operator on n qubits to be easy
if there exists a polynomial size network implementing that operator. The n-qubit state |¢)
is defined to be easy if there exists an easy operator U on poly(n) qubits such that U|0) = |¢)
up to a total phase. It is straightforward to see that if a state |¢) is easy, the reflection about
|¢) is also easy. We consider the other direction, and by exposing another view of Grover’s
algorithm, we can find a counter-example to its validity if a quantum one-way permutation
exists.

Next, we consider a necessary and sufficient condition for inverting efficiently a polynomial
time computable permutation. In the classical case, Hemaspaandra and Rothe [7] presented
a necessary and sufficient condition for the existence of one-way permutations. We show
that in the quantum setting, the problem of inverting a permutation in polynomial time is
equivalent to the problem of constructing polynomial size quantum networks for the reflection
about a class of quantum states that we will define in this paper. In the proof of this
equivalence, we present a quantum algorithm for inverting a permutation efficiently under
the condition that reflections about their quantum states are efficiently implementable. The
reason for considering those special quantum states is that, similar to Grover’s algorithm, our
algorithm also consists of the iteration of the tagging and reflection operators [3]; we show
that the exponential speed-up over Grover’s algorithm is possible if and only if all the efficient
reflections about those quantum states are possible.

This paper is organized as follows. In Section 2, we revisit Grover’s algorithm from the
viewpoint of the notion of easy states and easy operators. In Section 3, we consider the worst
case complexity scenario and we prove the equivalence between inverting a permutation and
constructing quantum networks implementing the reflection about a class of quantum states.
Then in Section 4 we explore an analogue of our result from Section 3, but now in the setting
of the average case complexity. Finally in Section 5 we discuss other related results and
possible applications of our results.

2. General View

In this paper, we will consider permutation functions in the following setting.

Definition 1 A function f : {0,1}* — {0,1}* is called a permutation if it satisfies the
following conditions

(i) f is one-to-one and length preserving.
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(ii) For some strictly increasing function a : N — N, Dom(f) = U,,cn{0,1}2(™.

These conditions imply that the restriction of f to {0,1}" C Dom(f) is a permutation on
{0,1}™. The definition of one-way function in the worst case complexity is as follows.

Definition 2 A function f is a worst case quantum one-way function, if the following con-
ditions are satisfied:

(i) f is one-to-one, and for all x € {0,1}*, |z|* < |f(z)| < |z|* for some k > 0. That is,
f(=z) is at most polynomially longer or shorter than x.

(ii) f can be computed by a (uniform) polynomial size (classical) network.

(iii) =1 cannot be computed by any polynomial size quantum network.

Note that condition (i) is naturally satisfied for one-way permutations we consider in
this paper. Next, we introduce a notion of complexity of preparing quantum states and
constructing unitary operators.

Definition 3 A unitary operator U onn qubits is easy, if there exists a network implementing
U with polynomial size in n. An n-qubit state |¢) is defined to be easy, if there exists an easy
operator U on poly(n) qubits such that U|0) = |¢).

As mentioned in the introduction, it is well-known that if a state is easy, then the reflection
about that state is easy (Problem 6.2(1) in [1]). Does the converse hold? We call its converse,
i.e., the statement “if the reflection about a state is easy, the state itself is easy”, the Reflection
Assumption. In the following, we revisit Grover’s algorithm for inverting a permutation
function from the viewpoint of complexity of preparing a quantum state and the reflection
about that state, and discuss the relationship between the existence of quantum one-way
permutations and the Reflection Assumption.

For any permutation f on n-bit strings, let Uy denote the unitary operator mapping the
basis state |z)|y) to |z)|f(z) D y), where |z) and |y) each consist of n qubits. We consider the
following problem called hereafter INVERT: for any given x € {0,1}", find f~(z). In the
setting where f is given as an oracle, Grover’s algorithm [3] can solve INVERT with ©(1/27)
queries, while any classical algorithm needs ©(2") queries to solve it. In his algorithm, Grover
uses the tagging operator O defined as

_ | -y i fly) =2
ool ={ L it 2 g

and the reflection 2|v) (x| — I about the uniform state,
=D Iy (2)
ye{0,1}"

which is also called the inversion about the average amplitude. Grover’s algorithm for IN-
VERT (Algorithm A below) is as follows.



382 On quantum one-way permutations

ALGORITHM A

Step 1 (Preparation).
Prepare the uniform superposition

)= > - (3)

ye{0,1}"

Step 2 (Iteration).

i 1 Qg 9 1 3 Qy 9 O
Ierate olep 2.1 aild olep 2.2,

Step 2.1 Carry out the tagging operator
O =1I=2|f"Y&)){f}(z)I. (4)

Step 2.2 Carry out the reflection about the state |¢).

Step 1 and Step 2.2 are easy. The operator O in Step 2.1 is a tagging operator and can
be implemented by using the transformation

Us : lu)lz) = [»)lf(v) & 2) . (5)

In fact, for any y € {0,1}" we have

{( =2 @) (FH(@)) @ IHy)lo) = Up(I @ (I - 2la)(z]))Usly)[0) - (6)

Thus, given Uy as an oracle, we can compute f~'(z) with high probability in O(v/2") queries.
This algorithm is shown to be optimal [14]. Note that the operator 2|f~(z))(f~1(z)| — I
is performing the reflection about the state |f~(x)). Thus, Algorithm A shows that even if
the reflection about the state |f~1(x)) is assumed to be easy, the state itself is not necessarily
easy (where here “easy” means that the number of queries to prepare the state is at most
polynomial in n).

Now, let us consider the case when f is a quantum one-way permutation. Different from
the query model, we will consider the circuit size complexity of preparing the state |f~!(z))
and constructing the reflection operator about it. By condition (ii) of Definition 2 and Eq. (6),
the operator Uy is easy and hence 2|f~!(z))(f*(z)| — I is also easy. On the other hand, by
condition (iii), the state |f~1(x)) is not easy. Therefore, we can infer the following interesting
fact: if there exists a quantum one-way permutation, then there exists a counter-example to
the Reflection Assumption.

So far we have considered only the exact setting. However, using the diamond metric and
its properties [15], similar results also hold in the bounded error setting. In the latter setting
we define the notions of easy superoperator, easy state, and quantum one-way function as
follows. A completely trace-preserving positive superoperator (CPSO) U is defined to be
approzimately easy if there exists a family of polynomial size quantum networks {N.} such
that

IU = Uello <, (7)
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where U, is the superoperator implemented by N, exactly. A mixed state p is defined to be
approrimately easy if there exists an approximately easy CPSO U such that

U(|0)(0) = p. (8)

To give the definition of quantum one-way function in the bounded-error setting, it is enough
to replace conditions (ii) and (iii) of Definition 2 with the following conditions:

(ii") The superoperator Uy - U} corresponding to the unitary operator
Us :|z)|2) = |2)|z & f(2)) (9)
is approximately easy.

(iii’) f~! cannot be computed with probability 2/3 with any polynomial size quantum net-
work.

It is straightforward to check that, in the bounded error setting, if there exists a quantum
one-way permutation then there exists a counter-example for the Reflection Assumption.

3. Worst case complexity

In this section we consider “one-wayness” in the worst case complexity, i.e. the complexity
required for the hardest input. Definitious 1 and 2 give the precise description of quantumn
one-way permutation in the worst case scenario.

As mentioned before, Grover’s algorithm for INVERT uses the tagging operator O (de-
fined in Eq. (1)) which can be simulated by two applications of Uy and n controlled-not gates.
Moreover, if f is polynomial time computable, then it is also possible to efficiently construct
the unitary operator O[k| defined by

_ =2y 3 FW) ekt = Tk kv

Olkllaly) = { [Z)y) i FW) k1) # Tkt (10)
where y; ;) denotes the bit string from ¢-th bit to j-th bit of the bit string y. The operators
Olk]’s will enable us to mark all the states |y) such that 2 qubits of |f(y)) are equal to the
corresponding qubits of |z). Geometrically, O[k] can be considered to be the reflection about
the hyper-plane spanned by the vectors {|y) : f(¥)@ k+1) # T(k,k+1)}- We will show that if
we can efficiently implement O[k]’s and the set of unitary operators

Qi= Y o)l ® 2ya)(tsal - 1), (11)

z€{0,1}"

where L
[$10) = e ), (12)
2 yif(y)(1§=$(1,2j)
then we can efficiently invert f by a polynomial size network. Conversely, we will also prove
that if f is difficult to invert, then @);’s are also difficult to construct.
Now we state and prove this result formally. We say that a set F' of unitary operators is
easy if every U € F is easy.
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Theorem 1 A function f:{0,1}" — {0,1}" is a worst case quantum one-way permutation
if and only if the set F,, = {Qj}jzo,lw,%_l of unitary operators is not easy.

Proof: Without loss of generality, we can assume that n is even.

(=) Suppose that I}, is easy. Then we show that f~! is computable by a polynomial
size quantum network. A quantum algorithm (Algorithm B below) computing f~! is as
follows. Assume that x is given as the input in the first register of the quantum network to
be constructed.

ALGORITHMB—

Step 1 (Preparation).
Prepare the second register in the uniform superposition

1
|tho) = ﬁyeg:l}" ly)- (13)

Step 2 (Iteration).

For j =0 to 3 — 1, implement the following steps 2.5.1-2.5.2.

Step 2.5.1 Carry out O[2j + 1] on the first and the second registers.
Step 2.5.2 Carry out (}; on the first and the second registers.

Step 2.7.1 can be implemented through the following three steps: (1) Carry out Uy :
[¥}|z) — |y} f(y) @ z) on the second and third registers. (2) Compare the 25 + 1-th and the
24 + 2-th qubits of the first register with the corresponding qubits of the third register, and
apply a phase shift of —1 if they are same; otherwise do nothing. (3) Carry out U; on the
second and third registers.

Now we show that Algorithm B computes f~'. After Step 1, the state of the system is

1
—=le) Y Iy (14)
2 96{071}n
We show that after Step 2.5.2 the state of the system is
2i+1
ﬁm Z ly) (15)

yif(¥).2542)=%(1,25+2)

which means that Algorithm B computes f ! after 5 iterations. In the case j = 0, the state
evolves as follows (note that for any = we have (Yo ) = |¥o)):

[
1z
-
[a—
8
~
——

oowm- > |y>\

\y:f(y)(1,2)7é$(1,2) yif(y)(1,2)=$(1,2) /
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1
var

&) | V2" |o) - 2 > |y)

yif(¥)a.2)=2,2)

I:

1
W|~’C>(2|¢o><¢o| —I) [ V2n|i) — 2 Z ly)

y:f(¥)(1,2)=%(1,2)

1

= o) V2 |go) — Vo) — o) > (toly)

—

v f(¥)a,2)=2@,2)

2 ) |¥)

y:f(¥)a,2)=%(1,2)

2

= T . 16
RN SE" (1)

yif(y)a.2)=2,2)

On the other hand, suppose that the case j = k — 1 holds. Then, following Steps 2.k.1-2.k.2,
the state evolves as follows:

2k
ﬁ|x> > |v)

v f(¥)(1,20) =% (1,28)

2kl 2k
yif(¥)(1,20)=%(1,20) ¥ F(Y)(1,2042)=%(1,2542)
2k
= \/—2—n|ﬂ?> V2r=2k|hy o) — 2 Z ly)
yif(y)(1,2k+2)=$(1,2k+2)
akz  2F Von—2k
242 2 ) el — D) (VI -2 )

\ yif(y)(1,2k+2)=$(1,2k+2)

) [ 2V2 T ) — VIR L) — Al >y (r,2y)

y=f(y)(1,2k+2)=Z(1,2k+2)

2k

+\/2—n|$> 2 > ly)

y=f(y)(1,2k+2)ziﬂ(1,2k+2)

= ko) - ). (17)

y:f(y)(1,2k+2)=$(1,2k+2)

Thus, the case j = k holds. From the assumption that {Q;} is easy, it is simple to see that
Algorithm B can be implemented by a polynomial size quantum network.

(<) Suppose that f is not a worst-case one-way permutation. Then we show that
{Qj}jzo’l,m,%,l can be implemented by a polynomial size quantum network. According
to the assumption, f and f~! are quantum polynomial time computable. The following
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operator
My : |z) — |f(2)) (18)
can be implemented by a polynomial size quantum network [8, 9]. To see why note that: for
any z € {0,1}" we have
[M; @ I]|z)|0) = [(Ug-1) " SUy]|2)[0) , (19)

where the swap gate S is defined as S : |a) ® |b) — |b) ® |a).
In the following we show that the unitary operator Q; = (I ® M;)Q;(I ® M £)1 can
be implemented by a polynomial size quantum network, which means that ¢; can also be

implemented by a polynomial size quantum network. The operator Q; can be rewritten as
follows:

v

Q. = (I@Mﬂj N |mwm|®(2 1r_Y‘*|1,>(,'|\_1\1(1®Mm
\ /l LJ | A S | LJI 1 /

= Y e (25 W) W) - T
ze{0,1}" vy’

1 x
= Z |z} (x| ® 2|$(1,zj)><$(1,2j)|m Z 1F (W) 2i+1,) (F W) @jr1,m] — 1

ze{0,1}" Y,y
= Z |2) (2| ® (2|2 (1,25)) (B (1,25 © |9;) (5] — I)
ze{0,1}"

= Y lo@le | lzagmMeaen © Q)@ -1 = Y @ eI]. (20)

ze{0,1}" YYFE(1,25)

Here, Z;y, denotes and |¢;) denotes

v,y F (W) a,2n=F ¥ ) 1,25 =21,25)

R ) (21)

n
2 i€{0,1}n—2i

Thus, we can implement Q;- by comparing the first 25 qubits of the first register with the cor-
responding qubits of the second register and applying 2|¢;)(¢;| — I if they are the same
and applying —I otherwise. The operator 2|y;)(v;| — I is easy, since 2J¢;)(¢;| — I =
H®"=21(2|0)(0| — I)H®"~%| where H is the Hadamard gate and the superscript n — 2j
indicates that the Hadamard gate is applied to the last n — 25 qubits. Therefore, Q; is easy
and this completes the proof. O

Note that all unitary operators Uy are easy if and only if the operation

S k) k| @ Uy, (22)
k

which implements Uy conditionally, is easy. The operator ¢J; implements the reflection about
the state |, ,) conditionally, therefore Theorem 1 gives a necessary and sufficient condition
for quantum one-way permutations in terms of the reflection about a quantum state.
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Using quantum amplitude amplification method [12] we can generalize the definition of
operators O[k] and @Q; in Algorithm B as follows. In each step of Algorithm B we are
concerned with only 2 qubits of input, i.e. the tagging operator O[k] works only with the
kth and (k + 1)th qubits of its input register. However, one can consider the more general
operators O[k,!] as follows:

—|z if = -
otk ={ L K e @)
where [ is any integer satisfying 2 < ! < O(log(n)). The corresponding reflection operators
Qj,z are
Qir= Y |2){el® @je) Whrel — 1), (24)
ze{0,1}»
where

|"/}j,l,w> (25)

1 —
= W L ly) -
Yy f(Y)(1,05)=%(1,15)

Now the generalized Algorithm B’ has the same structure as Algorithm B, but in Algo-
rithm B’ steps 2.5.1 and 2.5.2 will be iterated Tj = O(v/2) times, where the integer T} is
known in advance. Note that 7} is a polynomial in n. Intuitively, Step 2 of Algorithm B is
an analogue of Grover’s algorithm for the search problem where the number of the required
items is i of the total number of items. On the other hand, Step 2 of Algorithm B’ is also an
analogue of Grover’s algorithm for the search problem where the number of required items is
2% of the total number of items. After applying steps 2.j.1 and 2.5.2 (for j = k) of Algorithm
B’, we obtain the state

[ > A+ D> By |, (26)

YESk+1 YyESk11\Sk

where Sy = {y : f(¥)(1,1x) = T(1,k)} and positive numbers 4; and B; are known in advance.
Thus, using the quantum amplitude amplification process [12], we obtain the desired state:

1

WW Z ly) (27)
Y F W)@+ 1) =Tk 1))

and hence we can proceed to the next step.

In the rest of this section we give the relationship between the existence of one-way func-
tions and well-known complexity classes UP and EQP. To this end we recall some definitions
given in [6]. Assume that C is a complexity class; then we define the complexity class C, as
follows:

Cy = {f € Clgraph(f) € P}, (28)
where

graph(f) = {(z,y)|z € Dom(f) &y = f(=)}. (29)

Denote by QPSV, the class of all single valued functions which can be computed exactly
by polynomial time quantum Turing machines; NPSV, the class of all single valued non-
deterministic polynomial time computable function; and UPSV, the class of all functions f
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in NPSV such that for every z in domain of f there exists a unique accepting computational
path. The following lemma introduces two relationships between the quantum and classical
complexity classes.

Lemma 1 The following relations hold:
(i) UP C EQP
= (i) UPSV C QPSV
= (i15) UPSV, C QPSV.

Proof: The proof of (ii) = (iii) is trivial. We give a sketch of the proof of (i) = (ii) [6]-
Assume that f is in UPSV and define R to be the following language:

Ry ={(z,y)|lz € Dom(f) &y < f(z)}. (30)

Since f € UPSV, given input (z,y) one can compute f(r) unambiguously and then check
from the output whether y < f(z). This shows that Ry belongs to UP and by assumption
also belongs to EQP. Therefore using binary search one can show that f € QPSV. O

Now using a similar method to [6] we can prove the following theorem.
Theorem 2 There exists a worst case quantum one-way function if and only if UP € EQP.

Proof: (=) Assume that f is a worst case quantum one-way function. Then by definition we

have f~! € UPSV,. However f ¢ QPSV therefore from Lemma 1 we derive UP ¢ EQP.
(<) Assume L to be a language in UP \ EQP and M to be an unambiguous Turing

machine accepting L. Then, the total function f defined below is a worst case one-way

function:
0 if z = Comp,,(v)

1 otherwise, b

Y
“)_ia:

where Comps(y) denote the unique accepting computation of M on input y. O

4. Average case complexity

In order to apply our result to a realistic cryptographic scenario we need to consider also
the average case complexity domain. This is because a realistic cryptographic protocol should
be secure on “most” cases, which implies that it is hard to break on the average. We define
two types of one-wayness in the average case setting. In what follows, for a property @ defined
on N, we say that Q(n) holds for all sufficiently large n if the set {n € N|Q(n) does not hold}
is finite.

Definition 4 A permutation [ is weakly quantum one-way, if the following conditions are
satisfied:

(i) f can be computed by a polynomial size network.
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(i) There exists a polynomial p such that for any polynomial size quantum network A and
all sufficiently large n € N,

1 1
on we{zo,:un Prob[A(f(z)) # =] > m ) (32)

where Prob: {0,1}" — [0,1] is a probability distribution induced by the measurement in the
standard basis on the output register of the network A given the input x, and where A(z) is a
random variable distributed with the function Prob.

In other words, a weakly quantum one-way permutation is easy to compute but the probability
that any quantum algorithm fails to invert it is not negligible.

Definition 5 A permutation f is strongly quantum one-way, if the following conditions are
satisfied

(i) f can be computed by a polynomial size network.

(i) For any quantum polynomial size network A, any polynomial p, all sufficiently large n,

1 1
o {Z} ProblA(f(@)) =] < s, (33)

where A(z) is a random variable given as the output of the quantum algorithm A given the
input x.

Again, in simple terms, a strongly quantum one-way permutation is easy to compute but the
probability that any quantum algorithm succeeds in inverting it is negligible.
From the above definitions, it is easy to check the following relations.

Proposition 1 In general we have

(i) Every strongly quantum one-way permutation is also a weakly quantum one-way permu-
tation.

(i) Every weakly quantum one-way permutation is also a worst case quantum one-way per-
mutation.

In the applications to cryptography, the existence of strongly quantum one-way permu-
tations is the main concern. However, the following proposition shows that it is sufficient to
characterize the existence of weakly quantum one-way permutations. We omit the proof as it
is the same as the proof of Theorem 2.8 in [13].

Proposition 2 Weakly quantum one-way permutations exist if and only if strongly quantum
one-way permutations exist.
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For the rest of this section we discuss the relationships between weakly quantum one-way
permutations and reflection operators, as we did in the worst case setting. We give a weaker
analogue of Theorem 1 in the average case and finish the section with an open conjecture
regarding the characterization of weakly quantum one-way permutations. In order to carry
out our discussion in the average case setting we need to introduce an approximation of the
identity operator as follows:

Definition 6 Letd: N — N be a function satisfying d(n) > n. A d(n) qubit unitary operator
Jn is called (a(n),b(n))-pseudo identity, if there exists a set X, with |X,|/2™ < b(n) such
that for i € {0,1}"\ X,,,

1= ((21(012) Jn (12)1]0)2)| < a(n), (34)

where |1 and |-)s denote the first n qubit state and the last d(n) — n qubit state.

In what follows, I; denotes the j-qubit identity operator, and [¢);,..;, means that the
system consists of the registers iy,...,% and its state is |¢). For a vector v, we denote
the length of v by |v|. Now we can give the first result on the link between average case
one-wayness and the reflections about quantum states.

Theorem 3 Let f: {0,1}* — {0,1}* be a permutation that can be computed by a classical
polynomial size network. If f is not weakly quantum one-way, then for any polynomial p
and infinitely many n, there erist a polynomial r, and rp(n)-qubit (1/2P(™) 1/p(n))-pseudo
identity operators Jpny such that the family

Fp,n = {(In ® Jp(n))T(QJ X Irp(n)fn)(ln X Jp(n))}jzo,l,...,%—l (35)

is easy, where Q; is the same reflection operator defined in Section 3.

Proof: Assume that f is not weakly quantum one-way. Then, for any polynomial p, there
exist a polynomial size quantum network A and infinitely many n such that

3 > ProblAy) = £ ) > 1- .
ye{0,1}7

(36)

Let X, = {y € {0,1}"| Prob[A(y) = f*(y)] < 3} and Y, = {0,1}" \ X,,. From Eq. (36) we

have
1

1 1
— (Y 1+1X)- 2 ) >1- —
= (| HEERbe 2) pat

and hence we obtain | X] | < 1%2". Define g(n) = 3p(n), then |Y| > (1 — %)2”.

(37)

Now assume y € Y,,. The final state of the network A for input y is:

ayly)ilF T @))2lvy)s + [9)1lw(y))aldf)s » (38)

where ay € R, [1—ay < 3, [F71(®))2 L [w(y))2, and |[¥%)s] = [lw(y))2| = 1 (note that
|¢g)3 is not a unit vector). By repeating the network A at most O(g(n)) times, we can easily
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construct a polynomial size quantum network B whose final state has the same form as Eq.
(38), where now |1 — oy | < ﬁ Denote by C the quantum network constructed from B
by the approximate clean garbage method [4] as follows: (1) Apply B, (2) copy the contents
of the second register (which is the output register of B) to an extra register, (3) apply the
inverse of B and change the contents of the second and the extra registers. Then, we can see

that the final state of C on y is written in the following form:
Byly)1] £ (¥))210)s + [¢5) 123, (39)
where 8, € R, |1 /6y| < 2q<n) and |y)1 |f L(y))210)s L |¢b>123

operators. First, the approxunatlon of the operator My from Theorem 1 for the average case
is defined as follows:

My =Uo) (S D)Use 1), (40)
where S denotes the swap operator on the first and the second registers and Ug is a unitary
operator corresponding to the network C. The operator M; can be written in more detail as
follows:

My = > (Bpwlf(2))110)2s + 165)125)(l1 (0las

€Y,
+ > [9E)realeli(Olas + > D> [¥E ) 12s(@l1(zles, (41)
z€EX, T z:27#0

where |1 — By(o)| < 5567y for any z € Y, = {z € Y}|f(z) € YV;1}, |£(2))1]0)23 L [¢5)12s,
Xn = {0,1}"* \ Yy, and [[95)123] = [|¥5 .)123] = 1. The above form can be obtained by
replacing the following forms of the operators (Ug) ™! and (S ® I)(Uy ® I) in the Eq. (40):

Ue)™! = Z 19,0,0)123(8y (y, £ (), Ol123 + (¢ |128)

yey,

+ Z 19,0,0)123(y,0,0]123U5 "

HeX!
LASEAT'Y

—+ Z Z |y,z,z'>123<y,z,z'|123U0_1 (42)

¥ (2,2")#(0,0)

and

(S@I)(Uf@]) Z |f s Ly 0 123<$ 0 0|123

z€Y)

+ Z |f(z),2,0)123(z,0,0]123
zEX!,

+ Z Z |f(z) ® 2,2, 2 )123(, 2, 2| 125 - (43)
T (2,2)7(0,0)

Next, the approximation of the reflection operators ();’s from Theorem 1 is defined as
follows:

(I® M) Q) ® I)(I @ My)
= (1®M;1Mf)T(Q]- ® I)(I ® M;*My), (44)

L
!
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where Q; is the same unitary operator defined in the proof of Theorem 1. The family
{Q;}; satisfies the required conditions of Theorem 3. First, Q; is easy, since Q}, My
and My can be implemented by polynomial size quantum networks. Next, we check that
Mf_ll\;[f is (1/29(™ 1/q(n))-pseudo identity. Indeed, from |Y| > (1 — 1/2¢(n))2" and
|X1| < (1/2¢g(n))2™, we have that

Yol = [Vl -z eY,|f(z) € X}
1 n_ | y!
> (1- mﬂ | X5

and hence |X,,| < (ﬁﬂ". Thus, it is sufficient to check that for z € Y,, we have

14 1
|1 — ((2[1(0]23) M} M (|2)1]0)23)| < TOR (46)
This relation can be checked as follows. For x € Y,, we have
M;|z)1]0)23 = Bpa)|£(2))10)25 + |5 ) 125 (47)
and
(2]1(0[2s M}t = (f(2)]1(0]2s. (48)
Thus, for x € Y,, we have
((z]1(0l2s) M7 ' M (|2)110)25) = By(x) (49)

and hence from |1 — B (4)| < 55ty we obtain Eq. (46), which completes the proof. [J

It is an open problem whether the converse of the above theorem holds. However, by
restricting the second parameters of pseudo identity operators, we can prove the following
restricted version of the converse of Theorem 3.

Theorem 4 Let f:{0,1}* — {0,1}* be a permutation that can be computed by a classical
polynomaial size network. If for any polynomial p and infinitely many n there exist a polynomaal
rp and an ry(n)-qubit (1/2P(™), p(n)/2")-pseudo identity operator Jy,) such that the family

Frp ={Q;}; = {Tn ® Jp(n))(Q5 © L (n)—n)(In ® Jp(m)) }i=0,1,..,2-1 (50)

s easy, then f is not weakly quantum one-way.

Proof: Assume that for a fixed polynomial p, infinitely many n, and some (1/2P(™) p(n)/2")-
pseudo identity operator Jp(,) the family F, , is easy. To show that f is not a weakly quantum
one-way permutation we give a polynomial size algorithm for inverting f. Algorithm B has
the same steps as Algorithm B except the following two changes:

(i) The number of iterations of Step 2 is now § — [2logp(n)].
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(ii) The operator Q; is now replaced by Qj.

A quantum network implementation for Algorithm B consists of three registers. The first
and the second registers consist of n qubits similar to the network for Algorithm B. The third
register consists of 7,(n) — n qubits. From the definition of pseudo identity operators, there
exists a set X,, with |X,,| < p(n) such that if y € Y,, = {0,1}" \ X,,,

Jo)|1)210)3 = ay|y)2|0)s + |1y )23, (51)

where |10y)23 L |y)2]|0)s and |1 — ay| < ﬁ

In Algorithm l§, we apply Jp(n) before and after Step 2.5.2 for each j. The application
of Jp(n) creates an error in computation of f~'. We call the vector J,(,)|¥) — [¢), the error
associated to [¢). To measure the effect of this error, we use the following lemmas (the proof

is given later).

Lemma 2 Assume that T C S C {0,1}™. Then length I(S,T) of the error associated to the
state

|¢<&T)>=ﬁ 3 o) =S Iy | . (52)

yeS\T yeT

satisfies the following relation
2 18SNY,|+2/SN X,

p(n)
VIS

1(5,T) < 2

&

~
ot
w

~—

Moreover, one can easily check the following lemma.
Lemma 3 Let J,,)|¢(S,T)) = a|9(S,T))+|¥(S,T)*), where [¢o(S,T)) L |¢(S,T)*). Then
19 (S, 7)) < I(S, T).

First, suppose that for some j = k all steps before step 2.k.2 of Algorithm B have been
implemented as Algorithm B. By a similar argument to the proof of Theorem 1 we get the
state

2k
|Z)1[9(8,T))2s = |90>1\/2—n y;s:\leh - ;th 10)s, (54)

where S = {y: f(¥)(1,26) = T(20y) and T = {y : f(¥)(1,26+2) = T(1,26+2)}- In Algorithm B,

Jp(n) is applied for the state |¢)(S, T))2s. For k <n/2 — [2logp(n)], from Lemma 2 we have

s 1S N Y| + 25N X,

RG]

2oy IS|+ 21X,

p(n)
VIS

1(S,T)

IN

272
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25 x 2772k 4 2p(n) oot 1— 242

- an—2k - Von—2k
dp(n 4p(n)
S 95% = ghlegp(n)]
4
< - 55
p(n) (%)
Therefore, for k < n/2 — [2logp(n)], from Lemma 3 we get a vector v = vy + vo where oy s

the unit vector corresponding to the state before Step 2.k.2 (up to a total phase) and v3 is a

v ; § . p n O ; e U 0
happens when J,,(,) is applied before Step 2.k.2.

Next, assume that for some j = k all steps before Step 2.k.2 and Step 2.£.2 itself have
been implemented in the same way as for Algorithm B. We obtain the state

k+1
5 Il (56)

yeSs

l)1]9(S, T))23 = |2)1

where S = {y : f(¥)(1,2k+2) = Z(1,2k+2)} and T = (. By a similar argument to the above, we

get a vector v = v; + vg, where ﬁ—il is the unit vector corresponding to the state after Step

2.k.2 and wvs is a vector of length at most ﬁ orthogonal to v1. The vector vy corresponds
to an error which occurs when Jy,(,,) is applied after Step 2.k.2.

Now, from the above analysis, we can see that after the completion of Algorithm B on
input x the final state is v = v; + vg, where vy is parallel to

1
|$>1W E ly)2(0)3 (57)

Y f(¥)(1,n—27210g p(n)]) =F(1,n—2[21log p(n)])

and vy is a vector of length at most 2(n/2 — [2logp(n)])(4/p(n)) orthogonal to v;. Thus,
lua] < 1/g(n) for some polynomial g. We know in advance that for any z the probability
of obtaining f~!(z) upon measuring the second register in the state v; is 1 /22[2 logp(n)]
Now, using the algorithm in [12] (the quantum amplitude amplification when the success
probability is known), we can change the state v into w = wy + wa, where w; is parallel to
|z)1|f~1(x))2]|0)3, w1 L wo, and |wa|? = |vz|? < %. Therefore, there exist a polynomial
size quantum network B and infinitely many n such that

1

1 -1 YRy
g O ProblB@) = f(@)> 1 o

ze{0,1}"

(58)
We can give any large polynomial ¢?(n) by taking any large polynomial p. Thus, f is not
weakly quantum one-way. [

Finally, we give the proof of Lemma 2.

Proof of Lemma 2: First, we show that the length of the error associated to the state |y}|0)

- 2 e~ a1 at rviaak O IL ..~ U TN o0 o~ L Onns T AN
15 at Imost “B(n) Yy < Inp,andlsat Most 411 Y & Ap. YOI Y © Ip, IO ILGQ. {J1) WE NlAVE
2
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1—loy| <|l—oyl < and hence

_1
2p(n))?

2
2p(n)°

||"¢y>23| —1_|O‘y|2 (1 + |ay N1 = |y ]) <

Thus, for the length of the error associated to |y)|0) we obtain the following relation

| Tp(n)|9)2]0)3 — |¥)2[0)3] (g — 1)[y)2]0)3 + [ty )23]

V0ew = 112+ [[9y)2s]?

2
V w5

IN

IA

On the other hand, if y € X,,, we have

[ Tpm) [9)10) = [9)10)] < [Tp(n)|9)10)] -+ [1)|0)] < 2. (61)

Finally, for the length I(S,T) of the error associated to the state |¢/(S,T)) we have

Z(Sv T) = |Jp(n)|"/}(s7 T)> - W}(Sv T)>|
1

< NG D 1Upy = DIRIOY + D 1(Tpmy = DI)I0)]

yES\T yeT

= \/FZ| o) — 1)[y)]0)]

yeS

1

- ﬁ( S G D)0+ 3 |<Jp<n>—f>|y>|0>l>

yESNY,, yESNXn
1

NEL

( ISNYal 428N X, |) (62)

From Proposition 2, Theorem 3 and Theorem 4, we obtain the following relationship
between the existence of quantum one-way permutations and the reflection operators about
a particular class of quantum states.

Theorem 5 The following relations hold.

(i) There exists a polynomial time computable function f such that: there exists a poly-
nomial p such that for all sufficiently large n and all (1/2P(™ 1/p(n))-pseudo identity
operators Jp(n),

Fn,p(f) ={(l.® Jp(n))T(Qj(f) ® Irp(n)—n)( ® Jp(n )}J 9,1,.,%-1- (63)

peeny—1

18 not easy.
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= (ii) There exists a weakly quantum one-way permutation.
& (i) There exists a strongly quantum one-way permutation.

= (iv) There exists a polynomial time computable function f such that: there exists a polyno-
mial p such that for all sufficiently large n and all (1/2P(™) p(n)/2")-pseudo identity
operators Jp(n),

Frp(f) = {In ® Jpn)) Qi (£) @ I (n)—n) In ® Tp(n)) Yi=0,1,..., 2 1. (64)

18 not easy.

On the other hand, for the bounded-error setting in the worst case complexity, we can
prove the following necessary and sufficient condition by a similar argument to the proofs of
Theorems 3 and 4 (the proof is therefore omitted).

Theorem 6 The following statements are equivalent.
(i) Worst case quantum one-way permutations exist in the bounded error setting.

(ii) There exists a polynomially computable function f satisfying the condition: there exists
a polynomial p such that for infinitely many n and all (1/2P(™),p(n)/2")-pseudo identity
operators Jpn),

Fop(£) ={Qs}i = {Tn @ Jp)) Qi () @ I, )-) Tn ® Jpm)) }i=o,1,.... 31 (65)

18 not easy.

Comparing Theorem 6 with Theorem 5, we can see that condition (iv) of Theorem 5 is
given essentially to characterize the existence of worst case quantum one-way permutation
in the bounded-error setting (the only different part is the condition “all sufficient large”

5. Discussions

We have reduced the problem of the existence of a quantum one-way permutation to the
problem of constructing a polynomial size network for performing the specific task of the
reflection about a given state. Ambainis [14] proved that inverting a permutation on the
n-bit strings in the standard query model requires Q(\/2_") queries. In the standard query
model [16], a quantum computation with T queries is a sequence of unitary operators

Uy—0—-U —-0--—Ur_y -0 — Ur, (66)

where U;’s are arbitrary unitary operators independent of a database to be searched or a
permutation to be computed, and O is the standard query operator. However, our algorithm is
consistent with Ambainis’ result, since we consider the case that U;’s depend on a permutation
to be computed and this does not fit his model.

Another related issue is the work of Chen and Diao [17] where they attempted to present
an efficient quantum algorithm for the search problem, which is similar to our algorithm for
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the problem INVERT. They mentioned that the tagging operation and the reflection about a
given state which varies dynamically can be constructed by polynomial size networks, but they
did not show the construction for their operations. (This construction is, of course, impossible
given Grover’s black box, since it would violate the optimality proof of Grover’s algorithm [10,
11, 14].} For the problem INVERT we have given a polynomial size network for the tagging
operation and we have shown that the difficulty of the construction of the reflection operation
is equivalent to the existence of worst case quantum one-way permutations. Furthermore it
is an interesting open problem whether there exists a reduction from other types of one-way
functions to constructing a polynomial size network for performing the reflection about a

1ven-state
T LAt

given state

On the other hand, we have seen that Grover’s algorithm gives us an example of states
that are difficult to prepare but the reflections about these states are easy, i.e., it provides a
counter-example to Reflection Assumption assuming the existence of one-way permutations.
This investigation of Reflection Assumpiion seems to be useful for cryptographic applications
since recently, quantum bit commitment protocols based on quantum onc-way permutations
have been proposed [18, 19]. Moreover, it is interesting to find such a concrete counter-
example without the existence of quantum one-way permutations. Presenting such examples
of states may provide us with more ideas for constructing novel quantum algorithms.
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