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A set of protocols for teleportation and dense coding schemes based on a multiparticle
quantum channel, represented by the N-particle entangled states of the GHZ class, is
introduced. Using a found representation for the GHZ states, it was shown that for
dense coding schemes enhancement of the classical capacity of the channel due from
entanglement is N/N — 1. Within the context of our schemes it becomes clear that
there is no one-to one correspondence between teleportation and dense coding schemes
in comparison when the EPR channel is exploited. A set of schemes, for which two
additional operations as entanglement and disentanglement are permitted, is considered.
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1. Introduction

In the quantum information processing the large number of protocols are based on a
quantum channel involved entangled particles. In fact, an EPR pair is one of the main
resources of two significant processes as quantum teleportation and dense coding, that are
attractive not only from the theoretical point of view but for many applications. Dense coding
introduced by Bennett et al [1] was realized in the optical experiment with polarized photons
by Zeilinger et al [2] and for continuous variables by Peng et al [3]. The quantum teleportation
protocol proposed by Bennett et al [4] has been implemented by several groups [5, 6, 7, 8].

A lot of teleportation and dense coding schemes and its applications have been considered
by many authors both for discrete and continuous variables. Recently an approach for classi-
fication all schemes has been made by Werner [9]. Generally, this problem is very difficult and
the main results have been obtained in the case of so-called tight schemes which are realized
with minimal resources with respect to the Hilbert space dimensions and classical informa-
tion. As result, it has been found a one-to-one correspondence between all tight schemes of
teleportation and dense coding. Note, an EPR pair or a two-particle quantum channel is used
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in the tight schemes. The obtained result is significant for practice because it tells, that if
one can teleport a qubit, then he could perform dense coding using the same experimental
arrangement without any additional resources.

In this paper a quantum channel presented by a multiparticle entangled state of the GHZ

class is considered for teleportation and dense coding. When the channel involves more

then two particles, its features become quite complicated and all schemes are not tight. For
particular case, one finds the GHZ channel based on the triplet of the GHZ form. If we
wish to exploit the GHZ channel for teleportation, for example, then the task cannot be
simply accomplished by a generalization of the usual protocol. Considering how to transmit

an unknown qubit by the GHZ channel, Karlsson et al have shown, that the unknown state
can be recovered by one of the two receivers, but not both [10]. With the use of the GHZ
channel, the conditional teleportation of two entangled qubits has developed [14, 15]. What
kind of a two-qubit state can be perfectly teleported via the GHZ channel? This problem
has been considered by Marinatto et al [11]. It has been found that the general two-qubit
state can’t be transmitted perfectly but a pure entangled states can. This conclusion is in
an agreement with our result presented in Ref. [12]. It should be noted also that recently
Cereceda [16] considered the three-qubit dense coding scheme based on the GHZ channel and
his results are in agreement with our protocol for the dense coding presented in ref.[17].

The main goal of this paper is to consider the multiparticle quantum channel of the GHZ
class for informational tasks such as teleportation and dense coding. We introduce the protocol
for the three-qubit dense coding and a scheme for distributing a mixed qubit state with two
parties is discussed. The set of the questions we study in this paper is the following: what is
the multiqubit dense coding schemes, whether we could have an enhancement of the channel
capacity and whether the teleportation resources could be used directly for dense coding
similarly tight schemes. Also we consider what kind of teleportation and dense coding schemes
can be created using certain additional resources such as entanglement and disentanglement
operations.

The paper is organized as follows. First, we discuss the main resources and consider tight
schemes, then teleportation and dense coding protocols are introduced for the GHZ channel
and a telecloning scheme is presented. It should be noted that we consider only some new
additional possibilities of GHZ channel to produce an ideal copies of a mixed state. In the
next section using the found representation of N particle entangled states we establish some
main features of the multiparticle channel and calculate its capacity. Then new collection of
teleportation and dense coding schemes is introduced, when such operations as entanglement
and disentanglement are permitted.

2. Tight schemes

Following to Werner [9], we consider a set of objects to create some teleportation and
dense coding schemes. The set includes an observable F| a collection of unitary operators T,
an entangled state w to be a quantum channel. Let the Hilbert spaces of the involved systems
have the same dimension d, and w is the N particle entangled state. Two parameters d and
N play the key role. If N = 2 one can find schemes called tight.

Let the observable F' be a complete set of the N- particle states, > F, = 1, F, =
|®,(N))(®,(N)|, where z is one of the d" elements of an output parameter space X (dV).
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In general these pure states can be not maximally entangled. We assume, that T is the
collection of the m - particle unitary operators U, (m), completely positive, which transform
input state of the channel w to output state U,(m)wU](m). Let the N - particle quantum
channel w = |Q2)(2| be shared N parties A, B, C, .., spatially separated, where  can be one
of the states of ®,(N). Then all resources are

R={w,z € X(d"),®,.(N),U.(m)}. (1)

Using (1) the teleportation and dense coding schemes could be obtained. We consider only
the qubit case, for which d = 2. Note, the multiparticle quantum channel has new properties
due from operators U,(m). When m > 2, these operators may be non-local in contrast the
tight schemes.

If N = 2, one finds an EPR channel of the form Q = ([00) + [11))/+/2, that is shared
two parties, Alice and Bob. Here the observable F is described by the Bell states ®,(2) =
®T, U1, &, ¥~ the set of unitary operators consists of the Pauli and the identity operators
U.(1) = 1,0,,0,, —i0, and the space X has four elements ¢ = 0,1,2,3 by which the 2 bits
of information can be encoded. The following map is possible

z o 2,(2) & Uy(1) (2)

Reading (2) as ®,(2) — = — U,(1) one finds teleportation that allows Alice sending to Bob
an unknown qubit ¢ = a|0)+8|1), where |a|?+|8]2 = 1. In accordance with the teleportation
protocols, Alice performs the Bell state measurement on her half of ERP pair and the unknown
qubit. Outcomes of the measurement = can be encoded with the use of the unitary operators
U, (1) by which Bob acts on his half of EPR pair to recover the unknown state. One ERP
pair and 2 bits of classical information are needed for teleporting a single qubit.

Reading (2) as ¢ — U,(1l) — ®,(2) — x, one can find the dense coding scheme, that
permits Alice sending of a two-bit message to Bob, manipulating one bit only. Because of 2
bits of information & = 00,01,10,11 can be encoded by the four operators U,(1), Alice can
generate the Bell basis manipulating her particle of EPR pair

®,(2) = (1o U1). (3)

Then 2 bits of information are storied in four orthogonal states, that can be distinguished, if
Bob performs the Bell state measurement. The properties of this channel are described by
the Holevo bound, that tells us that the classical capacity of this quantum channel increases
twice because of entanglement.

The considered schemes of perfect teleportation and dense coding are called tight [9]
in the sense of the required resources. These resources are: the EPR channel, the 2 bits of
information, the Bell state measurement and a collection of the one-particle unitary operators.
Werner has proved a theorem, that for all tight schemes there is a one-to-one correspondence
between teleportation and dense coding.

3. The GHZ channel

If three-particle entanglement is used instead of EPR pair one finds a channel which
features are more complicated. This channel shared multi users, Alice, Bob and Claire, allows
not only transmitting of quantum state and classical information by teleportation and dense
coding, but distributing quantum states between several parties by copying or telecloning.

There is a complete set of the three particle entangled states of the form
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(J000) £ |111))/v/2, (]001) + |110))/v2
(|010) & |101))/v/2, (|011) £]100))/v2. (1)

Without loss of generality a triplet of the GHZ form can be chosen as the quantum channel,
whose three particles A, B and C are shared Alice, Bob and Claire. Then Q = |GHZ), where

(GHZ) = 2= (1000) + [111)) asc- (5)

All schemes, based on the GHZ channel, are not tight and the Werner’s theorem cannot
guarantee the one-to-one correspondence between teleportation and dense coding schemes.

3.1. Teleportation

One of the main features of the GHZ channel is a perfect transmitting of the two particle
entangled states of the EPR form ¢ = a|01) + 8]10), where |a|?> +|3|*> = 1. It has been shown
that the general state of a pair of qubits cannot be transmitted through the GHZ channel[11].
If Alice wishes to send the entangled state { of the qubit 1 and 2, she needs to perform
the measurement on particles 1, 2 and her particle A of the GHZ channel in the basis ®,(3)

of the form [12]
©.(3) = {m ® 54, m ® ¥gu}, (6)

where 7% = (|0) & [1))/v/2. Then the total state is the product |¢)12 ® |GHZ)apc. The
task is accomplished because of all outcomes of the measurement have equal probabilities are
non depended from the unknown state and there is a set of the two-particle unitary operators
U, (2), that allow receivers recovering the state to be teleported. It is important, that all
operators can be chosen in the factorized form

UJ:(Q) =B, ® Cy, (7)

where B, and C, are the Pauli operators, that act on the Bob and Claire particle. In more
details it reads

z  ®.(3) |BCY, B. Cy

0 7t@dt  Bl00)+alll) o, 1

1 #t@®  Bl00) — alll) ioy, 1

2 7 ®®t —p|00) +alll) —io, 1

3 #~®® -8l00) —alll) -—o, 1 (8)
4 7t @¥t  B|11) + «|00) 1 O

5 7t @¥  F]11) — a|00) 1 —igy

6 7 ®¥t —B|1l)+a00) 1 o,

7 @l —f11)—al0d) 1 —op

It follows from (8), that Alice cannot rotate the qubit of Bob and vice versa, but trans-
formations are correlated because of they have the same indexes. Thus operators U, can
be considered as local ones. In the same time the task is accomplished, if operators U,(2)
are not factorized. Let ®,(3) = |nt)1|®*1)24, then one finds two operators o, ® 1 and
Upe = (0, @ I)CpcCepCpc be sufficient, where C, is CNOT gate, ¢ is a control bit, ¢
is a target bit, ¢,t = B,C. Indeed, the introduced operation Upg¢c is non-local, that is the
feature of the GHZ channel. The GHZ channel shared three parties A,B and C, spatially
separated, allows distributing information with B and C. Two ideal copies of a mixed state
could be produced by a teleportation protocol so that we shall call it telecloning. We consider
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a scheme, whose main resources are the Bell state measurement and set of the Pauli operators
as for tight schemes.
Let using the above resources Alice wishes to send to Bob and Claire an unknown qubit
in a mixed state
o1 = X0l0) (0] + A1) (1], ()

where Ao + A; = 1. Then combined density matrix is p; ® |GHZ) spc{(GHZ|. The Bell state
measurement on the qubit 1 and A projects the particle B and C into the state, that has the
form ppc = Ag|bb)(bb| £ X1 |bb)(bb|, where b = 0,1, b = 1 — b. Two bits of information allow
Bob and Claire to obtain the density matrix

pc = A0[00)(00] + A1 [11)(11]. (10)

It is a separable and classically correlated state of two particles. In the same time

both receivers have in their hands the unknown state, since the reduced matrices read
pB = pc = Aol0)(0] + A1|1)(1]. As result, two perfect co st
are prepared by teleportatlon. In fact, these copies are not independent, that follows from
the no-cloning theorem. However each receiver can manipulate his state independently, if
and only if he performs local unitary operations. It is not true, when one of them decides
to make a measurement on his own particle. Note that we have no had any aim to consider
the problem of cloning of unknown quantum state in its general form, but considered only
some new additional possibilities of GHZ channel to produce an ideal copies of a mixed state.
The considered telecloning protocol could be useful in practical realization, for example, as a
pumping mechanism (see [20, 21]).

n unknown mixed st
N unxnown mixea

3.2. Dense coding

Is it possible to use the teleportation resources given by (6) and (7) for dense coding similar
the case of the EPR channel? The answer is not, however, a scheme of dense coding can be
achieved.
Let a sender wishes to transmit a three bit message. The 3 bits of information 000,

111 an s PR e | a apt ~AF +ha ctatna 7)) annl ~f -zl Abltainad Lfon +hn (A1T7
111 Cail D€ €1ncoaea U‘y a S€v o1 bllC Clsllb SLALEDS L/, Calll 01 wWiici lb Optainea I1roii bllt: \xLlzi
state using a collection of the unitary operators U,(2) in accordance with (3), for example.
Let the two particle operators be chosen in the factorized form (7), then equation (3) reads

|De)apec =1® B, @ Co|GHZ) apc. (11)

An appropriate collection of the Pauli operators permits a sender to generate the complete
set of states D,, given by (4). All these states are well distinguishable by measurement,
which outcomes encode the three bit message. Then one finds a dense coding scheme, that is

described by the map of the form
Z B, C, D,=DB,C.|GHZ)spc

000 1 1 000) + |111)
001 1 o, 001) + |110)
010 o, 1 000) — |111)
01l o, o4 001) — |110) (12)
100 o, 1 010) + [101)
101 o, o, 011) + |100)
110 —io, 1 010) — |101)

111 —io, o, 011) — |100),
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where we have omitted the normalization factor 1/4/2 in D,. Equation (12) presents the
protocol of the dense coding schemes based on the GHZ channel.
To find the capacity of this GHZ channel it needs to calculate the Holevo function

({pz} P sz pz (13)

where p = >°.pip;, p; are the density matrices of the states sent to receiver according to
probabilities p; and S(p) is the von Neumann entropy. For the considered case p; = |D;)(D;]
and the channel is represented by the maximally entangled state, then assuming p; = 1/8, one
finds C = S(>_, |D;){(D;|/8) = 3, hence per transmitted bit C/2 = 3/2, that is the classical
capacity of the quantum channel. It means, the channel capacity due from entanglement
increases in 3/2 times. Evidently, this result is clear without any calculations. Because of
the presented protocol allows sending the 3 bits of information manipulating two bits only,

as result, profit is 3/2, which is enhancement of the capacity. Also it is clear, that it results
from the entanglement, which degree has to be maximum.

Inspection of (6) and (7) shows, that the teleportation resources are inapplicable for dense
coding. The reason is that collection of states D,, obtained in accordance with equation (11),
where operators C, B, are given by (7), is not the complete set. Also, being suitable for
dense coding the complete set given by (4) cannot be used for teleportation, because of the
outcomes of measurement depend on the unknown state. Therefore there is not a one-to one
correspondence between these schemes in contrast the tight schemes. However a connection
can be established. Indeed, two sets namely D, given by (7) and ®,(3) denoted by (6) can be
converted from one to another using an unitary operation, say of the form &, = HgCpcD,,
where Hg is the Hadamard transformation of particle B. It follows from (11), that eight
distinguishable states can be generated by manipulating only two bits of the GHZ channel as
follows

$,(3) = HgCpe(1® B, ® C.)|GHZ), (14)

where B,, C, are given by (12).

PRI P | PR R I BT R A.A,\ PR Y R R, FR R, R [ (S
undblUll \LLJ:) l;ellb U3t e IMEeasSuremeny Irom tie teieporration scneme m y bE used 10r
dense coding. For that it needs to replace the operations B,  C;, = HgCpc(B, ® C,) before

sending the message. Then 3 bits of information are stored in the complete set of states to
be well distinguishable by the projective measurement of ®,. Note, the unitary operations
become non-local, that is the one of the particular qualities of the three-particle channel.

Indeed, for the dense coding schemes the GHZ channel could be created by operations
U;(2). Let only two qubits A and B of the three ones A, B and C be entangled, in other
words the EPR channel and the ancilla qubit C are introduced, then the GHZ state is prepared
by the way Cec(|®T)ap ® [0)c) = |GHZ) spc. This transformation can be inserted into
each unitary operator U, (2), that becomes more complicated because of U,(2) — U,(2)Cpc¢.
In the same time it looks as the EPR pair is used instead of the GHZ channel.

4. The N-particle quantum channel

Some main features of the teleportation and dense coding schemes can be summarized
when considering a multi particle channel for which the following mapping plays the key role

z < Ugy(m) & ®,(N). (15)



V.N. Gorbachev, A.I. Zhiliba A.I. Trubilko, and A.A. Rodichkina 373

By contrast the tight schemes, it seems to be a hard problem to prove it generally, therefore
we will restrict ourselves by several cases.

4.1. Representation for multiparticle states of the GHZ class

Considering the resources given by (1) one finds the factor m in the operator U,(m) to be
important, as it might be noticed from the case of GHZ channel. For teleportation schemes m
is a number of particles on which an unknown state is transmitted, in other words, m shows
how many particles can be teleported by the channel. For dense coding m indicates a number
of particles for manipulating to send the N bit message and ratio N/m becomes the classical

capacity of the quantum channel due from entanglement.

A one-to-one correspondence z <> ®,(N), where z is one of the 2%V outcomes of the von
Neumann measurement, described by a complete but not over complete set of projectors, is
clear. By contrast, the map U,(m) < ®,(N) is not so trivial. Similarly (3) one could write

8, (V) = (180" & U, (m))®, (16)

where 19V g product of N — m identity operators 1 ® 1.... According to the following

rough dimension count, factor m can be established from (16). In fact, being the N qubit
state, vector ®,(/N) has the 2 components. Any the m qubit operator U,(m) has the 22™
matrix elements. Then for correspondence between ®,(N) and U,{m), it needs

N

Indeed, these reasons are true not only in the qubit case, but for arbitrary dimension of the
Hilbert space d.

A simple observation allows to obtain factor m with more accuracy. Let the channel be
represented by a maximally entangled state §2 of the GHZ class

) = (107 +]1)%Y)/V2, (18)

Cn’)—/.f?\ H b 0.1

ana AT =
Spalt i W...AN, 0= U, 1.

Proposition 1: The set of the N particle vectors
Bpybs.tn (V) = (10) @ bz ... by) + (~1)"[1) @ [b2... b)) /V2 (19)

from the Hilbert space H1®...Hyn, whereby = 0,1 |ba...by) = |b2)®...|bn), and |bg) = 0,1,
by = 1 — by, is the orthonormal basis in Hy, for each k = 2,... N, is the complete set of
mazimally entangled states.

If N = 2, one finds the Bell states ®p,5,(2) = (|0 b2) + (—1)**|1 by)), that are generated
by two classical bits b;,b; = 0,1. When N = 3 three bits b, = 0,1, k = 1,2, 3 generate the
set D (3) = Ppyp,65(3), given by (4). Also Q = ®¢..o(N) belongs to the collection (19).

Proof: Each of the states, that has the form (19), is maximally entangled in the sense
of the reduced von Neumann entropy £ = S(p(1)), where p(1) is the one-particle density
matrix. It follows from (19), that for any particle p(1) = 1/2, then E = 1, and entanglement
is maximum. Also one finds the considered set of states to be complete, because of condition

D Bt by (NN ®oybs by (V)] = 1, (20)
bl...bNZO,l
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that directly results from the completeness of the collections |by) .
Note, all possible entangled states can’t be written in the form (19). It represents the GHZ
like class only. For example, W-states, introduced by Cirac et al [18] and, so called Zero Sum
Amplitude (ZSA) states, proposed by Pati [19], have another form and cannot be converted
from the GHZ-class by local operations.

The next observation plays the key role. Equation (19) tells, that to generate all states of
the set, it needs manipulating N — 1 qubits of any fixed state from this collection. In other
words, there is a set of operators U,(m), including identity operator, for which

m=N—1. (21)
It is in agreement with (17). It results in equation (19) takes the form of (16)
Dp16s..by (V) = (L& Upyp, o (N — 1)), (22)
where the string of bits b1bs ... by is binary notation of z, z = 0,...2Y — 1.

Generally the question of existence and uniqueness of operators Uy, 4,5, (IN — 1) seems to
be rather hard problem and we shall discuss simple examples. Let all operators be factorized
and have the form of product of the one particle operators

Ubybs...bw (N - 1) = Ub1bz(1) ® Ubs(l) s UbN(l)' (23)

Assume that each of the transformations Uy, p, (1), Up, (1) ... can be represented by the Pauli
operators. If N = 2 one finds Up,p,(1) = c22¢%, and in accordance with (19) and (22)

(1@ 02021 )((00) + [11)) = |0b2) + (=1)*|1b2), (24)
where b1,b2 = 0,1. When N > 2, the choice Uy, (1) = o for k = 3,... N is suitable
A@ce @2 @...02%)Q = (|0by...bx) + (—1)"[1) ® |b2 ... bx))/V2. (25)

The obtained equations (22) and (25) tell that the complete set of the N qubit entangled
states of the GHZ class can be associated with a set of the N — 1 particle operators, that

conerate all thege

a ram On fthom In other worde the mannine oiven hv (15) con he
generate aii tnese s T T n DE

om one of them. In other words the mapping given by (15) can
justified. Indeed, the choice of operators may be not unique. For example, if N = 3, there is
a case for which it is possible to manipulate one qubit instead of two qubits

(1® o, ® 0,)(]001) — |110)) = (1® 1 ® icy)(|001) — [110)). (26)

The representation given by (22) is not true for any states to be separable, it needs
entanglement not less then two particles. A state of N’s independent qubits can be written
in the form ®p,5, b, (N) = |b1...bn). When bits take their value 0 and 1, the obtained set
is complete, but it is important, that it can be generated from one of them by manipulating
all qubits. Then instead of (22), one finds ®,(N) = U,(N)S:. If two qubits are maximally
entangled and others are independent, then such state has the form ®;,5,(2)®|bs . .. by ), where
®p,5,(2) is one of the Bell states. Entanglement allows to obtained complete set manipulating
N — 1 qubits of an initial state, say, Q' = ®g9 ® |0...0). It is important, that ' does not
belong to the GHZ class by contrast €2, given by (18). From the physical point of view it is
clear, that both states Q' and €2 can’t be transformed from one to another by local operations.
For example, if N = 3 one finds transformation

(1® Ca3)P00(2) ® |0) = |GHZ), (27)



V.N. Gorbachev, A.I. Zhiliba A.I. Trubilko, and A.A. Rodichkina 375

where ®0(2) = (]00) + |11))/+/2. Here the CNOT operation Cy3 involves two qubits simulta-
neously, that is an interaction between two systems, that results in entanglement. When the
GHZ state is prepared, as initial state {2, the complete set can be obtained in accordance with
(22), but the operators take the non-local form Uy, p,p, = (1 ® Up,p,(1) ® Upe (1)) (1 ® Cag).

This example indicates the fact, that a complete set of the N qubit entangled states can
be generated performing the non local operations on N — 1 particles.

4.2. Capacity of the channel

Using (25), one finds a dense coding scheme, that allows sending a N-bit message by ma-

nipulating V — 1 bits. To discuss capacity of the channel due from entanglement it needs to
replace Q — |0)®Y + G|1)®Y, where |a|? + |32 = 1. Now the channel is not assumed to be
maximally entangled and its measure of entanglement, given by the reduced von Neumann
entropy, has the form

E = —|af*log|al* — |8 log | 8. (28)

The Holevo function reads C({p. },p) = S(p/2"), where all probabilities are equal and p, =
1/2N. For the considered channel

p = (IQU(N-1)IQART(N-1)) = >~ @0, b (V))( By, 5 (V)] (29)

€T bl...bNZO,l
Let operators U, (NN — 1) be factorized and have the form (25), then
e (V) = 010) @ B2 . b) + (~1)2BI1) @ [Ba ... By, (30)

All these states are generated from € by the local unitary transformations, then their degree
of entanglement is E, given by (51).

Ifa=8=1/ V2, then E =1 and the channel is maximally entangled. In the same time
it implies the important fact, that the set of states becomes complete in accordance with (20)
and all these states can be well distinguishable by measuring. For a maximally entangled

channel the equation (29) is the condition of completeness and density matrix p takes the
form p = n(1 \®N urhnrn th

LLLLL p= where rno']e narticle dencitv matrix is n/1\ 1/2

Sil Q20020 GCHUBIVY INaViiX 15 a1 ) — u/ 4.

When the channel can be not maximally entangled, one finds
p=p'(1)®p(1)2ND, (31)

where p'(1) = |a/?|0)(0]+|8|?|1)(1] is the one-particle density operator. Before calculating the
classical capacity of the channel, given by the Holevo function, note that it can be normalized
per transmitted bit. For the considered protocol there are N — 1 bits, that Alice transmits to
Bob. Then using (31), capacity of the channel has the form

_ C{pa}ip) _ E
€= —l—l—N_l. (32)

It takes maximum ¢4, = N/N — 1, when E = 1. Tt means that entanglement results in
increasing of the classical capacity of the N particle channel by N/N — 1 times. Indeed,
this result is clear without calculating. If a channel permits sending of N-bits of classical
information manipulating N — 1 qubits, then profit is N/N — 1, that is enhancement of the
channel capacity per transmitted bits.

4.3. Sufficient tight and other schemes
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The main resources, given by (1), are sufficient also for teleportation of the entangled states
of the form ¢ = a|0)®™=1 4 g|1)®(N-1), The task can be accomplished by the N particle
channel © and the N/N — 1 bits of classical information per transmitted particle because of
the N-particle measurement. The measurement involves all particles to be teleported and one
particle from Q. It can be described by observable of the form (6), where 7% — (7%)®(N-2)
[12, 13].

The presented teleportation and the dense coding schemes are based on the mentioned
resources to be sufficient and minimal for these tasks. This set of schemes we shall name
suffictent tight schemes by contrast the other ones, that can be obtained if some additional

HBreesare-permitted

resources arc permitted.

Let introduce the k-bit operators En(k) and Den(k) to be transformations of entangle-
ment and disentanglement. Their existence is the open question generally, In our particular
case we consider unitary operations, that can entangle and disentangle only a specific set of
pure states. Let operators En(k) and Den(k) transform k independent qubits into a k-qubit
entangled state and vice versa. For our purpose C — NOT' and Hadamard gates are useful.
As for implementation of the En(2) operation one could bear in mind Optical Parametric
Oscillator (OPO), well known in quantum optics. OPO generates EPR pair by ”entangling”
two input vacuum modes in the non-linear transparent crystal to be loss-free-medium in good
approximation, therefore theoretically this transformation is unitary and reversible. Some
modifications of schemes arise when these operations are permitted. It is well known that
operator En(2), say of the form En(2) = C}2, plays the key role in the one-bit teleportation,
when an unknown qubit is entangled with ancilla [22]. It results in one bit of classical informa-
tion is needed for sending the qubit. Indeed, the one-bit protocol can be directly generalized
for teleportation of two entangled qubits, when two bits of information are required.

For dense coding schemes all modifications reduce to preparing of the channel state 2
and revising of observable just as the way the considered GHZ channel. Suppose, there is a
collection of N qubits, in which the &k particles are independent and the remainder N —k qubits
are entangled. Let only one qubit from entanglement be in the receiver hand. For preparing §2

+ manda antanglamant Af all mantinlag that ~ran ha ashiovad with +ha AF Aot an el |
1L 1LITTUD Tliuva. lslclllcllb wuL all PCLL Ul\/lCD viiau vall uUcT a,\/ulc VOoOu wiull l/llC UDU UL UPCLGDUL .L/lb\n/ T .L}
It looks as all operators U,(N — 1) from a sufficient tight scheme are replaced as follows

U, — U, ® En(k + 1). Revising of observable or measurement is another independent step.
Assume, the N bit message is already encoded by entangled states ®,(N). Then before
measuring, these states can disentangled by operator Den(n), that produces n independent
qubits, where n < N. The measurement becomes more simple because observable can be
described by a set of states in which not all qubits, or maybe all of them are independent.
The cost of modification is U, — Den(n) ® U,. As result, the main revising of the dense
coding sufficient tight schemes is

U, = Den(n) @ U, ® En(k + 1). (33)

In the case of the GHZ channel (33) takes the form U, - HpCpc ® U,(2) ® Cpe.

Both the entanglement and the disentanglement operators are useful for modification of
the sufficient tight teleportation schemes for which there are some ways how to prepare the
channel state 2. As the N - particle channel allows transmitting perfectly only the N — 1
particle entangled state of the form ¢(N—1) = a[0)®WN -1 4 3]1)®WV=1) then one of the idea of
modification is disentanglement of the state to be teleported: ((N—1} — («]0)+8|1))®|N-2),
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where N —2 particles in state |V —2) can be entangled with two ancilla qubits, say in the EPR
state, for preparing the quantum channel 2. Combining with disentanglement operations it
results in a collection of schemes, which based on one EPR pair and the Bell state measurement
as one of the initial resource, however the measurement will involve not all particles to be
teleported.

We illustrate the generalization of the one-bit teleportation protocol, considering for
simplicity how to transmit two entangled qubits. It can be done, if an unknown state
¢ = (a|00) + B|11))12 is entangled with an EPR pair of the form € = (]00) + [11))45/v/2 as
follows C42|¢)12® |2) ap. Then the joint measurement of the qubit 1 and 2 in basis ﬂ'it ®|b)2,
b= 0,1 proje i i
state up to unitary transformations. Note, here the non-Bell state measurement allows tele-
porting two entangled qubits by the 2 bits of classical information, however it requires the
non-local operations.

A aval 5 onto he o P

5. Conclusions

We have studied quantum information tasks such as teleportation of entangled states and
dense coding based on the N-particle quantum channel of the GHZ-class. In the multiqubit
dense coding scheme we introduced the protocol how any N-bit message could be transmitted
by manipulating of the N — 1 qubits of the channel. This property arises from the fact, that
a complete set of the N-particle entangled states of the GHZ form can be generated from
one of them by a collection of the N — 1 particle operators. It results in enhancement of
the classical capacity by N/N — 1 times due from entanglement. By contrast the Werner
theorem, proved for a two-particle channel, resources of the dense coding cannot be used for
teleportation, when N > 2 and visa versa. The multiparticle channel is suitable also for
distributing of unknown states or telecloning. When the GHZ channel shared three parties,
then one of them can transmit an unknown qubit in a mixed state and the others find in their
hands perfect copies, that are classically correlated. The telecloning protocol could be useful
as a pumping mechanism in the micromaser theory. A set of new schemes of teleportation
and dense coding can be introduced, if two operations as entanglement and disentanglement
are permitted. As result, by this way generalization of the one-bit teleportation is obtained,
but it cannot be done locally.
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