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 Quantum entanglement is an enigmatic and powerful property that has attracted much attention due to its usefulness 
in new ways of communications, like quantum teleportation and quantum key distribution. Much effort has been done to 
quantify entanglement. Indeed, there exist some well-established separability criterion and analytical formulas for the 
entanglement of bipartite systems. In both, the crucial element is the partial transpose of the density matrix.  In this 
paper, we show numerically that one can also have information about the entanglement of bipartite state, in C2⊗C2, 
without looking at the partial transpose. We furthermore study properties of disentanglement operation, as well as 
properties of the relative entropy. 

 
Keywords: Density Matrix, quantum entanglement measures and separability criterion  
Communicated by: B Kane & C Williams 
 

1.  Introduction 
 
 Entanglement is the physical property fundamental for development of quantum information 
processing such as quantum cryptography (based on non-locality) and quantum teleportation both at the 
heart of the recently created quantum information theory. The density matrix of a quantum state contains 
all information available on all possible future developments of a quantum state. Indeed, the separability 
(if a state is entangled or not) as well as the quantification of the entanglement of composite quantum 
systems are obtained using the density matrix, through its partial transpose [1-6]. In this article we 
propose a different approach in the treatment of the density matrix to obtain information about the 
entanglement of bipartite states in C2⊗C2. We separate the density matrix in a sum of two other matrices, 
where the first one represents a disentangled quantum state stemming from the individual parts of the 
composite system, and the second one, with null trace, is the rest matrix. Our goal is to find, numerically 
(in order to avoid long and tedious calculus), relations between the properties of the rest matrix and the 
entanglement properties of the overall system. In the following two sections we do a review of the 
separability criterion and entanglement measures for bipartite states. In the fourth section we analyse 
properties of the matrix R that can be seen as hints of entanglement presence. We show simulations and 
comment our results. In section 5, we consider our decomposition of the density matrix in the procedure 
of disentangling, which erase the entanglement preserving the individual subsystems. Finally, in the last 
section, we investigate the usefulness of the relative entropy between an entangled state and a 
disentangled state with the same individual parts.        
 
2. Separability Criterion  
 
    The separability criterion for 2x2 and 2x3 systems was proposed by Peres and the Horodecki 
family in [1,2]. It states that if the partial transpose of the density matrix does not have negatives 
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eigenvalues then the state is separable otherwise it is entangled. Explicitly, let Γ be the density matrix of a 
bipartite system with density matrices of the individual parts ρa = Trb(Γ) and ρb = Tra(Γ), where Tra(b) 
stands for the partial trace with respect to subsystem a(b). The elements of Γ can be given as: 
 

νµνµ BABA nmnm ,,, Γ=Γ  

 
where {Am} and {Bµ} are (arbitrary) orthonormal basis, in the Hilbert space, for the individual systems, A 
and B, respectively. Using this representation, the partial transpose relative to the A system is given by 
[1,2]:  

νµνµ mn
T

nm
A

,, Γ=Γ  
 
If Γ is separable (disentangled) it has the form: 
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In this case, Eq. (2) is equivalent to: 
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The Peres-Horodecki criterion is a binary condition: The partial transpose has or has not any negative 
eigenvalue? A quantitative version of this criterion was proposed by Vidal and Werner by using a new 
quantity, based on the trace norm of the partial transpose, called negativity [3]: 
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The negativity is an entanglement monotone [7] and, hence, it can be used as a measure of entanglement. 
It is null when the state is separable.  
 
3. Quantum Entanglement Measures 
 
 When the state is a pure state, denoted by σ, the entanglement can be quantified by the von 
Neumann entropy of one of the individual parts of the system, ( )ρρ logTrS −= , where 

σσρ ba TrTr == , being a and b the individual parts [4]. However, when the composite state is a 
mixed state, that we will call Γ, that is, a statistical mixture of pure states, the task to quantify the 
entanglement is harder. The first two measures proposed were the entanglement of formation, EF, and the 
distillable entanglement, ED [4]. The first one, EF, is defined as the least expected entanglement of any 
ensemble of pure states realizing the mixed state whose entanglement we want to measure, 

( ) ( )∑=Γ
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necessarily orthogonal. The entanglement of formation can be calculated analytically by using Wootter’s 
expression [5,6]:  
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C(Γ) is the concurrence given by: 
 

( ) [ ]4321,0max λλλλ −−−=ΓC  
 
where λ1-4 are the eigenvalues, in decreasing order, of the Hermitean matrix: 
 

ΓΓΓ= ~T  
 
In Eq. (11) Γ~ is the spin flipped state: 

( ) ( )








 −
=

⊗Γ⊗=Γ ∗

0
0

~

i
i

y

yyyy

σ

σσσσ
 

 
At last, Γ* is the complex conjugated in the standard basis {|00〉, |01〉, |10〉, |11〉}. The distillable 
entanglement, ED, is the maximal number of maximally entangled states that can be obtained, from a 
mixed entangled state, by using a purification protocol that involves local operations and classical 
communication between the parties, and its value depends on the protocol of purification used. Any other 
entanglement measure, obeying certain natural axioms, must be confined between EF and ED [8]. Among 
them, one of the most direct is the measure based on the relative entropy [9,10]. In order to calculate this 
measure, we need search the minimal relative entropy between the entangled state, whose entanglement 
we want to quantify, and all possible disentangled states. The relative entropy was introduced by Vedral 
and Plenio and, in a short way, can be described as follow [10]: The entanglement of a composite 
quantum state Γ can be given by the distance between this state and its nearest disentangled state: 
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ρ
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where d is the set of all possible disentangled state. For the distance D, not necessarily a metric, we can 
use the quantum relative entropy, given by: 
 

( ) ( ) ( )ρρρ lnln Γ−ΓΓ=Γ≡Γ TrSD  
 
As we must search the solution among all possible disentangled states, we must use the most general 
formula of a disentangled state. For a bipartite state, in which we will concentrate our attention, this most 
general formula is [10]: 
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where the coefficients ip  obey the normalisation condition: 

1
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Finally, i

ba ,ρ  are pure states of the form: 
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The minimal distance, given by (15), can be obtained numerically using either the gradient method [10] 
or a genetic algorithm [11]. The most recent and easily computable quantum entanglement measure is the 
negativity given in (6), however, it is not based on asymptotic distillation and dilution of pure-state 
entanglement, like EF, ED and the measure based on relative entropy. Due to this, conversely those 
measures, it does not reduce to von Neumman entropy when applied to pure states [3].  
 
 
4. Numerical Investigation of the Density Matrix 
 
 The main element to decide if the composite bipartite state is entangled or not, according Peres-
Horodecki separability criterion and Vidal negativity, is the partial transpose of the density matrix. 
However, we can try to obtain information about the entanglement without use the partial transpose. 
Suppose, initially, a state Γ, which can be entangled or not, and whose individual parts are ρa and ρb. We 
can write this state as a sum of two matrices: 
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As we can see, the R matrix is Hermitean and it has null trace, hence, it does not represent a quantum 
state. Further, it has not influence in the density matrices of the individual parts. However, R influences 
strongly in the entanglement of the overall state. The amplitude of the elements of R must be such that the 
density matrix of the overall system, Γ, has not negative eigenvalues. The decomposition in (20) is not 
related with the decomposition proposed in [12]. In this one, a separable and, in general, not normalized 
matrix sρ is subtracted from Γ such that the matrix Γ- sρ is still non-negative. If there exist a 

matrix ∗
sρ that has unitary trace and Γ- ∗

sρ is still non-negative, then Γ is separable. In our case, the matrix 
that is subtracted from Γ is always normalized with trace equal to 1. Further, we do not require any 
condition to R matrix. Our investigations consist in search relations between properties of R, such as 

(20) 

(21) 

(17) 

(19) 

(18) 



         Numerical analysis of entanglement properties of density matrices in C2⊗C2 system 
 
226 

determinant, eigenvalues, norms and singular values, and try to relate them to the entanglement of Γ. To 
test our hypotheses about the relations between those properties of R and the entanglement of the overall 
state Γ, we will use density matrices chosen randomly. Random density matrices for pure states can be 
obtained by [13]: 
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where θk are random variables distributed uniformly in the interval [0,2π) while ϕk, belonging to the 
interval [0, π/2], are obtained from the random variables εk, distributed uniformly in the interval [0,1], 
according to ( ))2(1arcsin k

kk εϕ = . On the other hand, random matrices of maximally entangled states, 
that is a particular class of pure states, are obtained by [13]:  
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Finally, an arbitrary density matrix Γ can be obtained by [14]: 
 

+=Γ UDU  
where U is an unitary matrix and D a diagonal matrix. The U matrix can be obtained from an ensemble of 
random unitary matrices produced in the following way [14-16]: 
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where U(i,j), i,j=1,2,3,4, are complex matrices with three real parameters, φ,ψ and θ. Their rule of 
formation is: 
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The angles ψ and θ are random variables uniformly distributed in the interval [0,2π), while the angles φ 
are obtained from ( )( )i

ij
21arcsin εφ = , i=1,2,3, where ε is a random variable uniformly distributed in 

the interval [0,1). At last, the diagonal matrix, D, has the following elements:  
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where ξ1-3 are also random variables distributed uniformly in the interval [0,1). As mentioned before, the 
unitary matrices obtained using (27) and (28) are representative for the circular unitary ensemble. This 
ensemble consists of all unitary matrices with the natural Haar measure on the group U(4) [15]. At last,  
(29)-(32) ensure the D’s elements are uniformly distributed on the manifold defined by 1=∑i iiD . 

Most of the mixed states produced using (26)-(32) are separable states. From numerical simulations it was 
estimated in [14] the probability of a created mixed state to be entangled is close to 0.365. In one 
simulation using only 20,000 states we found it equal to 0.3484. 
 
4.1. Analysing Pure States  
 
 For each density matrix obtained using (22)-(23) the R matrix is obtained using:  
 

( ) ( )Γ⊗Γ−Γ= ab TrTrR  
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Fig. 1. Entanglement of formation (EF) versus the maximum (λmax) and minimum (λmin) eigenvalues of R, for pure 
states obtained randomly. 
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For each density matrix chosen the entanglement of formation, EF, is calculated using the Wootters’s 
equation, (8)-(13). For pure states, strong correlations between the entanglement of Γ and the eigenvalues 
of R appear. In Fig. 1, we can see the relations between EF and the minimum (λmin) and the maximum 
(λmax) eigenvalues of R. As can be observed in Fig. 1, the larger the absolute value of λmin and λmax the 
larger the entanglement.  
 
It is interesting to analyse if the ordering induced by EF is the same as the ordering induced by λmin and 
λmax. For this, we plot, in Fig. 2, ∆EF versus ∆λmin and ∆EF versus ∆λmax, where ∆EF, ∆λmin and ∆λmax are 
given by: 
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As we cannot find points in the second and fourth quadrant, we can see that the ordering induced by EF, 
λmin and λmax is the same. It is easy to verify that the eigenvalues of R is related to the entanglement of 
bipartite pure states. An arbitrary bipartite pure state is described by Schmidt decomposition as 
|Ψ〉=a|00〉+b|11〉, where a and b are real non-negative numbers and a2+b2=1. The concurrence (10), that is 
also an entanglement measure, of such states is C(|Ψ〉〈Ψ|) = 2a(1-a2)1/2. Calculating the eigenvalues of R 
matrix for that class of states we obtain the following eigenvalues in decreasing order {C2/4+C/2, -C2/4,    
-C2/4, C2/4-C/2}. In Fig. 3 we can see R’s eigenvalues versus Concurrence.    
 
 Since all eigenvalues of R are well related to C, they can be used to measure the entanglement of pure 
bipartite states. However, we have to multiply the eigenvalues for a suitable constant like 4λmax/3 or         
-4λmin in order to have the entanglement measured varying from 0 to 1. The relations between the 
entanglement and some R’s properties are expected since a pure state is disentangled only if R is the null 
matrix.  

 

FE∆
minλ∆

maxλ∆  

Fig. 2. ∆EF versus ∆λmax and ∆EF versus ∆λmin for 10,000 entangled pure states. 
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4.2. Analysing Mixed States 
 
 We choose the density matrices using (26)-(32) and the R matrix is obtained using (33). For each 
density matrix obtained, the Peres-Horodecki separability test is applied and the entanglement of 
formation, EF, is evaluated using the Wootters’s equation, (8)-(13). The problem for mixed states is much 
more hard. From all properties of R tested, the most interesting and the only one really important, was 
showed by the eigenvalue of R with maximal absolute value. In fact, based on the simulations, we can 
infer that, if the eigenvalue of maximum absolute value of R has a negative sign or is zero, then the state 
is disentangled. This can be seen in Fig. 4, where R

maxλ is the eigenvalue of R with maximum absolute 

value and T
minλ is the minimum eigenvalue of the partial transposed of Γ.  

 
In Fig. 4, using 20,000 points (states), we can observe that there are not entangled states ( 0min <

Tλ ) for 

which R
maxλ is negative, that is, the third quadrant is empty. Moreover, it seems to exist a forbidden 

region, that is, for each value of the T
minλ there is an upper bound to R

maxλ and the boundary seems to be a 

straight line. Further, when the state is entangled, the larger the module of T
minλ  the smaller the range of 

possible values of R
maxλ . In Fig. 5 we plotted R

maxλ  versus EF. As we can see in Fig. 5, there is a 

correlation between R
maxλ  and EF, however, the ordering induced by EF is different of the ordering 

induced by R
maxλ , that is, ( ) ( )21 Γ>Γ FF EE  does not necessarily imply ( ) ( )2max1max Γ>Γ RR λλ .  

 
It is interesting to analyse the ordering question in a more restricted set of states. Suppose the states: 
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Fig. 3. Eigenvalues of R versus Concurrence for pure bipartite states of the form |Ψ〉=a|00〉+b|11〉. C= 2a(1-a2)1/2. 
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The difference between them is only the R matrix. Is the ordering induced by EF the same for any 
property of R1,2? Let us suppose, as a hypothesis, that the larger (lower) the norm of R, N (largest singular 
value of R), the larger (lower) the EF. To test this, we generated, randomly, 23,660 states and we 
calculated:  

 

Fig. 4. Eigenvalue of maximum absolute value of R versus minimum eigenvalue of the partial transpose of Γ, for 
mixed states. 

 

 
Fig. 5 – Eigenvalue of maximum absolute value of R versus entanglement of formation of Γ, for mixed states. 
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The plot of ∆EF versus ∆N can be seen in Fig. 6. In Fig. 6 we can observe the presence of states in the 
second and fourth quadrants, what imply that, even in the restricted set of states given by (36)-(37), the 
ordering induced is not the same, as well as the ordering induced by EF and T

minλ is not the same, as can 

be seen in Fig. 7 [14], with ∆λ given by: 
 

( )
( ) ( )
( ) ( )2min1min

2min1min
21 ,

Γ+Γ

Γ−Γ
=ΓΓ∆

TT

TT

λλ

λλ
λ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In fact, for mixed states none of the properties of R tested conserved the order induced by EF. It is also 
interesting to know if the decomposition (20) is the one that give us most information about the 
entanglement of the state. This is not easy to answer since infinite decompositions are allowed. We will 
test now another decomposition. Suppose the states:   
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Fig. 6. ∆EF versus ∆N for 23,660 entangled mixed states. 
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Hence, the disentangled state in the decomposition can be a product state, (41), or a separable state, (42). 
In both the R matrix is the same. In Fig. 8 we have, for Γ1 and Γ2, the plot of R

maxλ  versus T
minλ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
    
 
 

 

Fig. 7. ∆EF versus ∆λ for 23,660 entangled mixed states. 

Fig. 8. Eigenvalue of maximum absolute value of R versus minimum eigenvalue of the partial transpose of Γ, for 
mixed states. Γ1 → Eq. (41) and  Γ2  → Eq. (42). 
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As can be observed in Fig. 8, for the state Γ2, if the eigenvalue of R of maximum absolute value is 
negative the state is not necessarily disentangled. We also cannot see the forbidden region shown in Fig. 
4. In fact, the data for Γ2 are more diffused. 
 
5. Disentanglement 
 
 Now we will use the matrix R in a different problem: the disentanglement [17-19]. The 
disentanglement process consists in erasing the entanglement of a composite system, while leaving its 
individual parts intact. Let M to be a completely positive linear map preserving the trace of the state:  
 

Γ=Φ M  
 
then, for the initial and final states we have the same individual parts:  
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Since the final state Φ is disentangled it can be a product state Φ=ρa⊗ρb or a separable state 

i
b

i

i
aip ρρ∑ ⊗=Φ . Our decomposition, (20)-(21), is very suitable to study the disentanglement, since 

any disentangling procedure will act only in the R matrix, leaving the first term on the right side of (20) 
intact. Mathematically we can work with the elements of R in order to disentangle Γ.  Let us firstly 
consider a natural disentangling machine: a noisy quantum channel. We will use the bistochastic channel 
defined in [13]: 

(45) 

(46) 
(47) 

Fig. 9. Evolution of the entanglement of formation during the propagation in the bistochastics channel B1. 
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where σ1-4 are the Pauli matrices. The bistochastic quantum channel increases the entropy of the 
individual parts leaving them towards to maximally mixed states. Hence, in order to preserve the 
individual parts of the overall state during the propagation in the channel, the states considered are 
maximally entangled states chosen randomly according to (24)-(25). The individual parts of these states 
are the maximally mixed states ρa = ρb = 0.5*I, where I is the identity matrix. For simplicity, only one 
subsystem will be sent trough the bistochastic channel. Let us consider firstly the channel B1 with the 
parameters: p1= (1-e), p2 = p3 = p4 = e/3, with 0 ≤ e ≤ 1. Using e = 0.001 we obtain the curve for EF shown 
in Fig. 9. In Fig. 10 we plot the absolute value of R’s elements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Their angles are not changed during propagation. As we can see in Figs. 9 and 10, the entanglement of 
formation and the absolute value of R’s elements decay exponentially. Further, they fall off with the same 
velocity. In fact, those curves are very well fitted by exp(-1.335 eL), where L is the “distance of 
propagation” in the quantum channel. The error is close to 10-4. The curves in Figs. 9 and 10 are equal for 
any initial maximally entangled state. Hence, the propagation of a maximally entangled state in the 
channel B1 can be simply modelled by: 
 

( ) ( ) ( ) ( )eLRTrTrL ab 335.1exp −+Γ⊗Γ=Φ  
 
where Γ is the initial maximally entangled state and Φ(L) is the state in the “position” L. Let us call LD the 
distance in which the state Φ becomes disentangled, EF[Φ(LD)] = 0. Then, for the channel B1, the relative 
entropy, between Γ and Φ(LD) is ( )( ) 1.0005679≈ΦΓ DLS . The relative entropic distance (15) 

( )( )DLS ΦΓ  depends on the value of e.  Let us consider now the channel B2 with parameters: p1= (1-e), 
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Fig. 10. Evolution of the absolute value of the R’s elements during the propagation in the bistochastics channel B1. 
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p2 = 0, p3 = p4 = e/2, with 0 ≤ e ≤ 1. Using e = 0.001 we obtain the plot for EF shown in Fig. 11. In Fig. 12 
we plot the absolute value of R’s elements. Their angles are not changed during propagation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EF decays, as expected, but not exponentially. On the other hand, the absolute values of R’s elements 
decay exponentially but with different velocities. The curves for |k| and |p| are well fitted by exp(-2eL), 
while the curves for |q|, |z| and |x| are well fitted by exp(-eL). The errors are close to 10-4. Hence, the 
propagation of maximally entangled states in the channel B2 is modelled by: 

Fig. 11. Evolution of the entanglement of formation during the propagation in the bistochastics channel B2. 

Fig. 12 – Evolution of the absolute value of the R’s elements during the propagation in the bistochastics channel B2. 
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The relative entropy between Γ and Φ(LD), for the second channel used, is ( )( ) 1.0001659≈ΦΓ DLS . 
At last, we did several simulations choosing the channel’s parameters randomly, using (29)-(32). We 
found that the absolute values of k and p always fall off with the same velocity. The same occurred to the 
absolute values of z, x and q. Hence, in general, for maximally entangled states, the entanglement during 
propagation in the bistochastic channel does not decay exponentially. In the especial case when p2 = p3 = 
p4 it does.  
 
 
6. R Matrix and Relative Entropy 
 
 Here we investigate what is the importance of the relative entropy between an entangled state and a 
disentangled (product) state with the same individual parts. Let us introduce the two relatives entropies 
that will be used.  
 

( )ΦΓ= SS1  
where 

( ) ( ) ( )α−+Γ⊗Γ=Φ expRTrTr ab  
and 

( ) ( )( )Γ⊗ΓΓ= ab TrTrSS2  
 
where α is the minimal value for what the state Φ becomes disentangled. For a pure state the 
entanglement of formation (or von Neumann entropy of the individual parts) can be approximated by 
0.5S2. We did several simulations, choosing pure states randomly according to (22)-(23), and one of them 
is shown in Fig. 13. In this picture we plot EF, circles (o), S1, points (·), and 0.5S2, crosses (+), for only 
100 states for better visualisation.  
 
As we can observe in Fig. 13, 0.5S2 fits EF very well. For mixed states (52) can be used as a first 
approximation for the closest disentangled state of Γ. This is useful in algorithms to calculate the entropy 
measure based on the relative entropy, which require a minimisation procedure. Since (52) is a good start 
point, the time of search of the algorithm of minimisation tends to decrease. To have an idea of how good 
it can be, let us consider now the following family of states introduced in Ref. 20: 
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where 0 < g,a < 1 and the states 10,01,00  and 11  form the standard basis. The density matrix, 
(55), in the standard basis is: 

(52) 

(53) 

(54) 
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(56) 

(57) 

(51) 
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Fig. 14. Entanglement of formation (EF) and relative entropy S1 for the class of states in (58) with a = 0.75. 

Fig. 13. Entanglement of formation (EF) and relative entropies S1 and S2 for 100 pure states chosen randomly. 
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In Fig. 14, we show the entanglement of formation (continuous line), EF, and the relative entropy S1 
(dotted line), for the state in (58). In this simulation we use a = 0.75 and g varying in the interval (0,1). As 
we can see in Fig. 14, S1 is reasonably close to EF implying that (52) is a good starting point for an 
algorithm to calculate the entanglement based on the relative entropy, like the one used in [11].  
 
 
7. Conclusions 
 
 We proposed a different approach to treat the density matrix aiming to obtain information about 
the entanglement. We separated the density matrix in a sum of two other matrices: one representing a 
disentangled state, which is responsible for the individual parts of the overall state, and the other, called 
R, being only the rest. We have found, numerically and analytically, for pure states, that the eigenvalues 
of R are directly related to the concurrence of the overall state. Hence, for pure states, we can measure the 
entanglement using the eigenvalues of R. For mixed states we can find out if a state is disentangled 
looking at the signal of the eigenvalue of R of maximal absolute value. If it is negative or null, then the 
state is disentangled otherwise nothing can be inferred. For mixed states, none of the parameters of R that 
we tested preserve the order induced by the entanglement of formation, hence, they are not useful. We 
also tested another decomposition, equation (42), for the density matrix but it did not show the same 
property of the decomposition given by equation (20). Following, we analysed how the R’s elements 
change during the disentanglement caused by a bistochastic channel. The magnitude of R’s elements 
decay exponentially with two different velocities, one for |k| and |p|, and other for  |q|, |x| and |z|. Hence, in 
general, for bistochastic channels, the entanglement does not fall off exponentially during the 
disentanglement process preserving the individual parts. At last, we found that the entanglement of pure 
bipartite states can be approximated by the half of the relative entropy of the entangled state and the 
product state of its individual parts. Further, the state disentangled obtained by the exponential decay of 
the R’s elements can be used as a good starting point in algorithms to perform the minimisation required 
by the measure of entanglement based on the relative entropy. 
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