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Estimating the eigenvalues of a unitary transformation U by standard phase estimation
requires the implementation of controlled-U-gates which are not available if U is only
given as a black box. We show that a simple trick allows to measure eigenvalues of U@ UT
even in this case. Running the algorithm several times allows therefore to estimate the
autocorrelation function of the density of eigenstates of U. This can be applied to find
periodicities in the energy spectrum of a quantum system with unknown Hamiltonian if
it can be coupled to a quantum computer.
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1. Standard phase estimation and its weakness

Finding the eigenvalues of unitary transformations or self-adjoint operators is a central task
in quantum mechanics. The spectrum of a Hamiltonian and the corresponding unitary trans-
formations are important to understand the thermodynamic and dynamical properties of a
quantum system. Furthermore the estimation of eigenvalues is an important tool in quan-
tum computation [3]. For that reason the algorithm for phase estimation has been developed
[1, 2, 3, 4]. We rephrase it as follows. We have a Hilbert space R, ® H where H is the target
register where the considered unitary U acts on and an ancilla register R, consisting of k
qubits if an accuracy of the eigenvalues of U of the order 27* is desired. Assume the target
register to be in an eigenstate |ty ) of U with eigenvalue exp(i¢). Initialize the ancilla register
in an equal superposition of all its logical states, i.e.,
— 1 ®Xn _ 1
lvr) = (ﬂ(l()) + D))" = o g;k 1),

where [ is the binary number corresponding to the k ancilla qubits j = 0,...,k — 1. On the
joint Hilbert space R, ® H apply for all j =0,...,k — 1 the transformations

Vi o= L)L @ U +10,)(0; ® 1, (1)

where |1;)(1;| and |0;){0;| are the projectors onto the |0) and |1) state of the ancilla qubit j,
respectively. The operation U?’ is the 2/-fold iteration of U.
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If #H is in the state |¢py) then |r) is converted into the state
1 ,
—=>_ <l
e
2k ;
by the ‘kick-back-effect’ [2]. After Fourier transformation on R, we obtain

t ) )
2_k Z 6727rzlm/(2k)ez¢l|m>:

I,m

i.e., the probability distribution is peaked around m = ¢2* /(2x). If |1)5;) is not an eigenstate
of U, than the algorithm will project approximatively (in the limit of large k) onto any of the
eigenstates [4]. If the initial state on H is a density matrix that is diagonal in the basis of U,
one will obtain any of the eigenvalues of U with the corresponding probability.

At first sight, quantum phase estimation seems to be applicable for finding energy values
and eigenstates of an unknown Hamiltonian of an arbitrary quantum system simply by setting
U := exp(—iHt). This would be interesting for the investigation of complex physical systems.
To measure eigenvalues of interaction Hamiltonians in many-spin systems, as molecules or
solid states, for instance, would be rather useful.

But there is a severe problem which is essentially that quantum phase estimation does not
use the implementation of U as a black box subroutine. It uses the conditional transforma-
tions V; (see eq. (1)) as black boxes and one should emphasize that no canonical conversion
procedure building V; from U is known if U is a black box. Sometimes this fact is hidden by
using a language too classical if one explains the action of V; by claiming that it implements
U (or its iterations) if the corresponding ancilla qubit is in the logical state [1). This hides
the fact that a superposition state of the ancilla has to lead to a superposition of the two
actions ‘implementation of U’ and ‘no implementation’. However, in [5] we have shown that
the Hamiltonian evolution according to a Hamiltonian H can in principle be conjugated by
other unitary transformations in such a way that the net effect is the evolution according to
a ‘controlled-H’. But the algorithm presented there is restricted to n-qubit pair-interaction
Hamiltonians. Furthermore the black-box query used there is not a specific unitary transfor-
mation U := exp(iHt) but the whole semi-group (exp(iHt)):>o-

Here we address the question how to use quantum phase estimation for obtaining informa-
tion about the spectrum of U if we have no prior information about U at all. We show that
it is at least possible to get the autocorrelation function of the spectrum of U, or, speaking
more explicitly, the spectrum of U ® UT, provided that the following assumptions are true:

1. The operation U is implementable on a system H that can be brought into interaction
with another register R; of equal Hilbert space dimension in such a way that complete
exchange of quantum information between # and R; is possible. Explicitly, this means
the following. Let ¢ and v be states of H and Ri, respectively. Then the unitary
transformation S defined by S|¢) ® |9) := |[¢) & |@).

If U = exp(—iHt) for an appropriate ¢ > 0 and H is the real Hamiltonian of the system
‘H we assume that this exchange of information can either be done on a small time scale
compared to the evolution according to H or the natural evolution can be switched off
during the implementation of this information exchange.
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2. There is another quantum register R, with the same dimension as H and R, and an
ancilla register R, consisting of k bits if the desired accuracy for the eigenvalues is 2*.

3. On the system Ry ® Ry ® R, we have a set of quantum transformations available which
is universal for quantum computation.

Of course the assumption that the unknown Hamiltonian I can be switched off is prob-
lematic, but if additional prior information about the structure of H is available, standard
decoupling techniques [6, 7, 8] can be used. Note that assumption 1 is considerably weaker
than the assumption that H can be switched on and off by the quantum state of an ancilla
qubit?

2. Implementing a conditional transformation

The essential part of our algorithm is rather simple in contrast to [5] for the cost that
we obtain eigenvectors and eigenvalues of U ® U~ ! instead of those of U. It consists of a
conjugation of U by known unitary transformations in such a way that the net effect is the
conditional transformation

V=145 0 U @14 10,)(0;] © 10 U,

where |0;) and |1;) are states of the ancilla qubit j. One can see easily that the effect on the
ancilla’s states is the same if the unconditional unitary U~2" is implemented on Ry after each
implementation of V. This implements the conditional transformation

V=01 U @ U™ +10,)(0| 010 1.

Using standard phase estimation we can use V' for obtaining eigenvalues of U ® U i,
The procedure for implementing Vj’ consists of the following steps for 7 =0,...,k — 1.

1. Implement state exchange of the registers H and Ry, i.e., the unitary W with W(|a) ®
18)) = 18) ® |a).

2. Implement U? on H. If U = exp(—i1Ht), i.e., if U is the unitary evolution according to
the system Hamiltonian H, then one has to wait for a period of time 27¢.

3. Implement state exchange of H and R again. Steps 1-3 implement the transformation
exp(—iHt) on the register Ry.

4. Implement a conditional exchange of the states of R; and Ry depending on the state of
qubit j in the ancilla state, i.e. we implement

[1;)(1;] @ W +10;)(0;| ® 1

on RG®R1 ®R2

*This is discussed in more detail in [5]
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The essential part of the algorithm can be seen in Fig. 1. Note that the algorithm can
actually be simplified by substituting Rq by H and dropping R, completely. Our motivation
for formulating the algorithm as we did is that 7 may be any physical system that can be
made to interact with R, in an appropriate way. In the case that # is not part of the
quantum computer’s register it is clearly a weaker assumption that an unconditional swap
can be implemented than assuming that a conditional swap can be implemented.

H UQJ

R — | |/ A I

Re — | I

Ra ' '
(jth qubit)

Fig.1: Circuit describing the algorithm. Here only one ancilla qubit is shown.

The conditional exchange between R; and Rs can easily be implemented, if the registers
R1 and R4y consist of qubits. In this case the conditioned permutation of two corresponding
qubits is a usual Fredkin-gate [3]. The Fredkin gate acts on three qubits. They are part of
the registers R1, Rz, and R, and the first two qubits are permuted if and only if the third is
in the state |1).

Our algorithm may have applications for investigating the spectrum of a many-particle
Hamiltonian in solid-state physics. This is interesting since the spectrum and its gaps
determines dynamical and thermo-dynamical behavior of the system [9] and information
on the spectrum of many-particle systems is difficult to obtain by classical methods. Of
course for many-particle systems it is not possible to find the complete set of eigenvalues of
exp(—iHt) @ exp(i Ht) since the dimension of H grows exponentially. But periodicities in the
spectrum of H could be found. We sketch this idea. First we assume that ¢ is chosen in such
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a way that tA < 7w, where A is an upper bound on the difference between the largest and
smallest eigenvalue of H given by prior knowledge. Prepare both registers in the maximally
mixed state. This can easily be done by preparing randomly one of the eigenstates of the com-
putational basis. For every complex number z with |z| = 1 we define M (z) as the multiplicity
of the eigenvalue z if such an eigenvalue exists and 0 otherwise. Set m(z) := M (z)/N

(For systems with large dimensions where many energy levels get close together it is
common to substitute the function m by an appropriate piecewise continuous function, the
so-called density of states [9].).

The distribution of eigenvalues of U ® U ! is given by

p(z) = Z m(xz)m(zx)

Let R1 and Ro be in eigenstates of H corresponding to the eigenvalues A; and Ao, respectively.
Then the outcome of the algorithm will be z = exp(it{A\; — A2)). Since (A — A2)t < 27 each
possible outcome z corresponds uniquely to such an energy difference. The probability for
the value z = exp(i¢) is given by the autocorrelation function

o) =Y mla+ ¢)ym(e)

with ¢ € (—n,n) and where m describes the relative multiplicities of the eigenvalues of {H.
The function § describes the relative multiplicities of H ® 1 — 1 ® H. In the many-particle
approximation p is the autocorrelation function of the density of states. If the spectrum of H
contains periodic gaps this is mirrored in the function p. Assume for instance the eigenvalues
of H to be 0,1,2,... (like quasi-particle excitations) then one finds clearly spectral gaps of
H®1—-1® H. In general the function p contains information on the periodicities in the
spectrum of H.

Now we examine the number of runs that will be necessary in order to get reliable esti-
mation on spectral gaps of U @ UL,

For every interval I C (—m,m) set p(I) := > ,.;P(¢). It is the probability for obtaining
an outcome in the interval I. Assume that several runs of the eigenvalue estimation gave
no result in I. Then it is straightforward to conclude that p(I) is small. Unfortunately, the
reliability of this conclusion cannot be estimated without referring to prior probabilities of the
statement “p(I) smaller than €” for an appropriate value ¢ > 0. However, statistical learning
theory [11] provides us with the following bound (see [5] for details): Assume we say that the
algorithm with & runs of the eigenvalue estimation has succeeded up to the accuracy ¢ if and
only if there is at least one outcome in I for every I with p(I) > e. Then the risk that the
algorithm fails is less than

4e*k? exp(—e’k/4)) .

The risk is exponentially decreasing with the number of runs.

As long as the energy gaps that should be detected are not exponentially decreasing with
the number of particles the algorithm can be used for finding periodic energy gaps in any
many-particle system efficiently.
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