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1. Introduction

Simulating Hamiltonian evolutions of arbitrary quantum systems is an interesting appli-
cation for future quantum computers. Historically, the idea of simulating Hamiltonian time
evolutions was the first motivation for quantum computation [1]. Whereas in early works on
this problem the desired Hamiltonian was proposed to be simulated by a discrete sequence of
gate operations (see e. g. [2]), a more control theoretic formulation of the problem has become
popular recently [3, 4, 5, 6, 7, 8]. In this formulation one assumes that the dynamics of the
quantum computer is determined by its Hamiltonian together with external control possibil-
ities. Here the task is to simulate an evolution that would have occurred under some other
Hamiltonian by interspersing the natural time evolution with control operations. More explic-
itly, one assumes that the natural evolution exp(—iHt) alternates with fast implementations
of unitary operations Vj, i.e., the resulting evolution is given by

exp(—iHTNt)Vy - - - exp(—iH1ot) Vo exp(—iHmt) V1, (1)
where the relative times between the control operations are given by =; fori =1,... ,N. If
t is small compared to the time scale of the evolution exp(—iHt), the resulting evolution is

approximatively given by

exp(—iHt).
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134 Universal simulation of Hamiltonians using a finite set of control operations

Here H is the average Hamiltonian

N
H:= ZTZ-UJHUZ-,
i=1

where we set U; := Hj’:l V;. Important characteristics of simulation schemes like (1) are
the amount of operations performed (complexity) and the total operation time (overhead).
The average Hamiltonian method is the basis for simulating Hamiltonians by a given one and
has applications which go beyond the usual aims of quantum computation. As examples we
mention the following applications:

1. Decoupling / Suppression of Decoherence

The time evolution on the joint Hilbert space of a system and its environment can be
interspersed with transformations on the system’s space alone in such a way that the
net effect is a separate (“decoupled”) time evolution of the system and the bath [9)].
This is a generalization of decoupling techniques in Nuclear Magnetic Resonance [10].

2. Time inversion

The natural time evolution ¢ — exp(—iH¢t) with ¢ > 0 can be conjugated by unitary
transformations in such a way that the total effect is a transformation of the form
exp(—iHs) with negative s. Remarkably, there are schemes for inverting unknown
Hamiltonians. This fact is closely related to the existence of decoupling schemes [9].
Time inversion for unknown Hamiltonians is a useful primitive in quantum process to-
mography, 1. e., procedures that distinguish between unknown time evolutions [11]. The
essential idea is that time inversion enables to implement transformations of the form
exp([H, A]) for arbitrary self-adjoint A even if H is unknown.

3. Generating arbitrary time evolutions with a finite control group

Assume that the only external control operations of a quantum system are implementa-
tions of unitary operations taken from a finite group S. If the natural time evolution is
non-trivial and S in a sense is large enough, than every unitary transformation can be
generated by concatenations of the natural evolution and elements of S. In particular,
this is possible if the natural Hamiltonian H can be transformed into any other in the
sense of the average Hamiltonian method.

This is a special instance of the following problem: Given an arbitrary R-linear map L
on the set of self-adjoint traceless operators, the task is to find a sequence of unitary
operations such that the system evolves according to the Hamiltonian L(H) if its nat-
ural (unknown) Hamiltonian H is present. The problems of inverting or switching off
unknown Hamiltonians are special cases of this problem with L =0 or L(H) = —H. In
its full generality, procedures for simulating L(H) if an unknown H is present can be
used as primitives in quantum process tomography [11] and quantum control procedures
[12].
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4. Simulating interactions by other ones

Consider a bipartite system with Hilbert space C¢ @ C?. Assume that the interaction
between both parts is a fixed Hamiltonian on the joint Hilbert space which cannot be
controlled at all. The only possibilities to control the system are implementations of
local transformations on each of the subsystems. These transformations can be used to
imitate other interactions [6, 8].

In n-partite systems (C?)®", where the interaction between each pair of subsystems is
assumed to be fixed, one can simulate other pair-interactions in the sense of the aver-
age Hamiltonian method. Time optimization of these simulations leads to interesting
problems of parallel execution. For n-qubit networks, this problem has been addressed
in [5, 13, 7, 14].

The paper is organized as follows. In Section 2 we define what it means to simulate a
Hamiltonian and explain the physical meaning in the context of average Hamiltonian theory
[10, 15, 16].

In Section 3 we introduce the concept of an annihilator for d-dimensional quantum sys-
tems characterizing control procedures that switch off the possibly unknown dynamics of the
system. These procedures directly give decoupling and inversion schemes. Explicitly, they
can be constructed using nice error bases [17, 18] which yield minimal annihilator procedures
attaining the lower bound d? on the complexity. We show a lower bound on the overhead of
inversion procedures of a general, possibly unknown Hamiltonian to be d — 1 and an upper
bound of d? — 1. Furthermore, a lower bound on the complexity is shown to be d? — 1.

In Section 4 we address the question how to simulate an arbitrary Hamiltonian by any
other if only a restricted set of control operations is available. The condition on the set
of available control operations for making universal simulation possible is stronger than the
requirement to make annihilation possible. A sufficient condition for a group of available con-
trol operations allowing universal simulation can be formulated in terms of group characters.
Groups satisfying this criterion will be called transformer groups. We present transformer
groups for dimensions 2 and 3. Furthermore, we show in Section 5 that the transformer
groups allow to transform any interaction in a bipartite system into any other by operating
on the subsystems only.

2. Dynamical control

For the implementation of a quantum computer it is necessary to control the time evo-
lution of the used physical system in a universal way. In many physical systems the only
directly accessible control possibilities are given by a set of control unitaries and the system
Hamiltonian that cannot be switched off. By applying the control operations we effectively
change the Hamiltonian into a piecewise constant time-dependent Hamiltonian. The formal-
ism of average Hamiltonian theory [10, 15, 16] allows to solve for the resulting time evolution
at a time ¢t by writing the evolution of a time independent average Hamiltonian H. Following
[10, 15, 16] we briefly sketch average Hamiltonian theory: the overall dynamic after a period
of evolution is given by

U(t) = T exp(—i /0 " ArH(r)) = exp(—ifit),
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where 7 denotes the Dyson time ordering operator. A solution of this equation is a time
independent Hamiltonian that would result in the same unitary if it were applied over the same
period. If the Hamiltonian H(7) commutes with itself at all times we have H = fot drH(7).
However, this is rarely the case. For sufficiently small ¢, the Magnus expansion provides a
formal means of calculating the average Hamiltonian:

A=+ 4+ 5® 4 . (2)

where the operators H(®, A1) ... are the average Hamiltonians of increasing order
_ 1 [t
7O = /mm) 3)

a2V = / dr’ / dr'[H("), H(")] . (4)

We have ||H(®|| < 1 and |HY)| < t/2 since ||[[H(7'), H(")]|| < 2||H(")||[|H(7")|| = 2 and
we are integrating over the simplex of area t>/2. The norm of the higher order terms is
bounded by higher orders of ¢. Therefore for sufficiently small time ¢ the resulting unitary
U(t) is essentially determined by H®) (see e.g. [19]).

We assume that the only directly accessible control possibilities are the unitaries in the
control set C C SU(d) and assume in addition that they can be performed arbitrarily fast
compared to the natural time evolution. This socalled fast control limit is justified e.g. in
NMR because the coupled and local evolutions act on significantly different time scales. We
will now subject the system to a cyclic pulse train. The pulses are assumed to be infinitely
short. A sequence consisting of N pulses will be denoted by

P:=WVi,71,...,VN,TN) (5)

where V; € C and 7; > 0 are relative times, i.e. 7; > 0 and Zf;l 7; = 1. The pulses are
applied from left to right. If we apply the sequence over the time ¢ the resulting unitary is
given by

Up(t) = H exp(—iHT;t)V;. (6)

The 7; specify the fraction of time between the pulses. For a cyclic sequence (defined by
N . .
Hi:l V; = 1) we can express the resulting unitary as

N
Up(t) = | [ U] exp(—iHmt)U;, (7)
i=1
where U; = Hj-:l V;. Using the identity UT exp(H)U = exp(UTHU) we get
N

Up(t) = H exp(—iHiTit) , (8)

i=1
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where H; = UZTH U;. These operators are the Hamiltonians in the so-called “toggling frame”.
Let Adc(H) denote set of conjugates of H, i.e.,

Ade(H) = {Ady(H)=U'HU |U € C}. (9)

Then the unitary Up(t) is the solution of a time-dependent Schrédinger equation with piece-
wise constant Hamiltonians in Ad¢(H).

The previous discussion motivates the following definition of the notion of simulating a
Hamiltonian by another Hamiltonian.

Definition 1 (First order simulation) Let H be any Hamiltonian. We say H can be sim-
ulated by H with overhead 1, written H < H, if and only if there are T; > 0 summing up to
1 and H; € Adc(H) such that H = Zj 7;H;, i.e. H can be written as a convex combination

of conjugates of H by elements of C. H can be simulated by H with overhead 7 iff H < 7H.

Using this definition of simulation the problem of time-optimal simulation of a Hamiltonian
is reduced to a convex optimization problem (this has been noted in [6, 5]).

3. Annihilators

In this section we introduce the concept of an annihilator for a d-dimensional quantum
system characterizing control procedures for switching off the possibly unknown dynamics of
the system. These procedures directly give decoupling and inversion schemes. We prove some
optimality properties of annihilators and show how a minimal annihilator can be explicitly
constructed using nice error basis.

Definition 2 (Annihilator) Let P := (Vi,71,V2,72,..., VN, Tn) be a cyclic pulse sequence
of length N, i.e. 7; > 0, Zil =1, and vazl Vi=1. Set U; = H§':1 V;. The sequence P
is called an annihilator of dimension d and length N iff

N
> nUfal; =0 (10)

i=1
for all a € su(d). An annihilator is called minimal if there is no shorter annihilator.

Theorem 1 (Minimal annihilator) A minimal annihilator has length d®. Furthermore all
relative times 1; of a minimal annihilator are equal.

Proof: Let (Vi,71,V2,72,...,VnN,7n) be an arbitrary annihilator. The corresponding U; =

H;Zl V; and 7; define a realization of the depolarizing channel A on C? by random external
fields [20] since

Ap) = iTiUJpUi =1/d. (11)

i=1

This permits to show that N > d? as follows: by sending one part of a maximally entangled
state |¥)(¥| in C*®C? through the depolarizing channel we end up with the maximally mixed
state 1/d2. Therefore we need at least d? unitaries since the rank of each (10U, )| ¥)(¥|(10U;)
is 1 and they must sum up to d? (the rank of the maximally mixed state). For N = d? all 7;
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must be equal for entropy reasons (see [21], page 518) since for 7; # %

d2
S| S raeU)w@AeU) | < Hirym,... 7)< logyd? = S(1/d?),

i=1

where S denotes the von Neumann and H the Shannon entropy. The existence of a minimal
annihilator is guaranteed due to the concept of nice error basis to be introduced in the next
subsection. [J

Theorem 1 shows that a minimal annihilator corresponds to a unitary error depolarizer
[22] and thus to a unitary basis. The connection between annihilators and unitary error basis
has already been mentioned in [23].

3.1. Nice error bases

In this section we deal with the problem to construct a minimal annihilator. For this we
construct bases for the vector-space C¢*¢ of d x d-matrices which consist entirely of unitary
matrices and are orthogonal with respect to the trace inner product. One way of constructing
such bases relies on the concept of nice error bases. We refer to [17] and [18] for an overview of
this method and mention that nice error bases are used in the construction of quantum error
control codes [24, 25, 26, 27]. They are also of interest in the theory of noiseless subsystems [28,
29] and in connection with the development of quantum authentication codes [30].
Definition 3 Let G be a group of order d* with identity element e. A nice error basis on C?
is a set £ ={Uy € U(d) | g € G} of unitary matrices such that

(i) U, is the identity matriz,
(it) trUy = dég.e for all g € G,
(iii) UgUp = a(g, h)Ugn for all g,h € G,

where the factor system a(g,h) is a function from G x G to the set C* := C\ {0}.

In [18] it was shown that the map g — U, defines a projective representation of G; this
is a consequence of conditions (i) and (iii). Condition (ii) shows that the matrices U, are
pairwise orthogonal with respect to the trace inner product (A4, B) := tr(A'B)/d. Hence, a
nice error basis is an irreducible projective representation of the finite group G. The group G
itself is also called index group since its group elements index the elements of the nice error
basis £.

Note that in general the group generated by the matrices Uy for g € G will be larger
than G, since these matrices are not closed under multiplication. A well-known theorem from
projective representation theory (cf. [31, Theorem V.24.6], [32, Theorem 11.15]) states that
it is always possible to switch to an equivalent projective representation such that the images
U, generate a finite group G (see also [18]). This group is called the abstract error group
corresponding to £. Whereas g — Uy is an irreducible projective representation of G, this
yields an irreducible ordinary representation of G. Tt is a well-known fact that G is a central
extension of G (cf. [32]): denoting the center of G by ¢(G) this means that G/¢(G) = G.

Given a nice error basis {Uy |g € G}, then the abstract error group is isomorphic to the
group generated by the matrices Uy;. The assumption that the factor system « is of finite
order ensures that the abstract error group is finite.
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Example 1 (Heisenberg group) The discrete Fourier transform of length d € N is the uni-
tary transformation defined by DFT, := ﬁ(wk'l)k,lzo,"_ .d—1, where w denotes the primitive

d-th root of unity e>™%/¢, Define ; := {S*T7 :i=0,...,d—1,7=0,...,d — 1}, where
0 1 1

S = R , T:=DFT,'-S-DFT, =

d—1

Here again w is the primitive d-th root of unity e?"*/¢. Then &, is a nice error basis on C?
showing the existence of nice error bases for any dimension d € N of the underlying system.
The index group in this case is the abelian group G = Z; x Z; whereas the corresponding
abstract error group is a nonabelian group isomorphic to a semi-direct product G~ (Z4 %
Z4) X Zg (the so-called Heisenberg group). The projective representation of G leading to the
error basis £y is defined by mapping the generators of G as follows: (1,0) — S and (0,1) — T'.
The identity ST = wT'S is readily verified which shows that the commutator subgroup of G
is contained in the center ¢ (G’) This also shows that the factor system « corresponding to

the projective representation of G defined &, is given by
a((i,4), (k1)) = w—jk,

for all (,7), (k,1) € G.

We give a brief account of some general properties of nice error bases (see also [18]). A
complete classification of abstract error groups on C¢ for 1 < d < 11 was given in [18].
Index groups of abstract error groups are in general not abelian: in [18] a family of groups
having nonabelian index groups was constructed. It is known that all abstract error groups
are solvable. Moreover, it is known that all solvable groups can occur as subgroups of index
groups of nice error bases. On the other hand, it is known that not all solvable groups can
occur as index groups.

3.2. Averaging and Annihilation

Using the concept of abstract error groups we describe the idea of switching off an interac-
tion by averaging over a group. Whereas usual techniques are based on ordinary irreducible
representations [9, 23], the following lemma shows that averaging over a projective irreducible
representation also projects onto the set of scalar matrices.

Lemma 1 Let M € C¥*? G be a finite group, and R : g — U, € U(d) an irreducible
projective representation of G. Then the following equation holds:

1 tr(M)
1 Sty = )
| G|§ UiMU, = =71

geG

Proof: We have seen that each projective representation of an index group G with associated
factor system « gives rise to an ordinary representation of the corresponding abstract error
group G and that G is a central extension of G. It follows that {U, : g € G} is a set of coset
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representatives for ¢(G) in G, i.e.,

G = U C(G)Ug

geaqG

Each element o € G has a unique factorization of the form o = zg where z € ( (G’) and g € G.
From Schur’s Lemma (cf. [33, Section 2.2]) follows that for M € C%*?, G a finite group, and
R :0 — U, € U(d) an irreducible (ordinary) representation of G the following identity holds:

tr(M)
y 1. (12)

Using this we obtain

‘G|ZUMU = IG\IC ZZUTUMUU

geqG gEG e((g)
1
= — Ulmu,
G|~
oceG
tr(M)
= 1
d b

where the last line is due to Schur’s Lemma (12) for ordinary representations. O

3.3. Decoupling

We consider a bipartite quantum system (e.g. a system coupled to a bath) living on
the joint Hilbert space Hs @ Hp. Here Hg and Hp denote the Hilbert spaces of S and B
respectively. Let su(H) denote the Lie algebra of traceless self-adjoint matrices acting on the
Hilbert space . The Hamiltonian can be written as

H=Hs®1p+1ls® Hg + Hsp, (13)

where Hg € su(Hg) is the free system Hamiltonian, Hg € su(Hp) is the free bath Hamil-
tonian, and Hgp describes the coupling between the system and the bath, i.e. Hgp =
>.;A; ® B; with A; € su(Hs) and B; € su(Hp). In order to protect the evolution of
S against the effect of the interaction Hgp we seek a cyclic pulse sequence as a suitable
decoupling interaction.

By applying the pulse sequence of an annihilator we get

ﬁ:|G|ZUT®1) (U, ®1)=15® Hp . (14)
geaG

This shows that decoupling can be achieved using an annihilator procedure on only one of
the subsystems (cf. [23, 9]).
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3.4. Inversion of Hamiltonians

We consider the problem to invert an arbitrary, possibly unknown Hamiltonian, i.e. to
simulate —H given the Hamiltonian H.

We can use the following trick [11]: by averaging over all elements of G but the identity
we can invert the Hamiltonian

Y UHU, =-H (15)
g€G\{1}

because of Lemma 1 (note that H is traceless). The resulting time overhead is |G| —1 = d?—1
and the complexity is d> — 1. This can be seen as a generalization of the refocussing technique
used in NMR (see e.g. [34, 35]). In general, the inverted time evolution will be slower than
the original one:

Lemma 2 (Lower bound on inverting) Let r be the greatest eigenvalue and let q be the
smallest eigenvalue of H. Then T > }q is a lower bound on the overhead for simulating —H
by H.

Proof: Write —H as a positive linear combination of conjugates of H as in Definition 1. Let
Amin(A4) be the smallest eigenvalue of an operator A. Then we have

= A~ H) = Ain ( S U HU; ) 2 m\in (H) = g

The inequality is due to Amin(A + B) > Amin(A4) + Amin(B) (see [36], Theorem III.2) for the
sum of two Hermitian matrices A and B. Since q is negative it follows that —r/q < 7. O

For the Hamiltonian H = diag(d—1,—1,...,—1) the overhead is at least d — 1. Therefore
a lower bound on time overhead for inverting an unknown Hamiltonian is d — 1.

4. Universal transformation of Hamiltonians

In Section 3 we have given a necessary and sufficient condition on the minimal set of
available control operations in order to enable inversion and cancelling of Hamiltonians. If
we want to simulate an arbitrary Hamiltonian by any other this condition is not sufficient.
This can be seen by the following example. Assume that the only control operations on
C? are given by the Pauli-matrices (in their role as unitary operators). If the Hamiltonian
H := o, is given, conjugation of H by a Pauli-matrix can only lead to either H or —H. All
the Hamiltonians which can be obtained as average Hamiltonians are scalar multiples of H.
Hence one cannot simulate e.g. o,. The following concept will be useful in order to find
groups which enable universal simulation.

Definition 4 (Transformer) A subgroup T of SU(d) is called a universal transformer of
Hamiltonians iff every R-linear map L on su(d) (i.e., the set of self-adjoint traceless opera-
tors) can be written as

L(A) = p,U AU;
J

with positive real numbers p; and U; € T.
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The physical of this is that a transformer allows to simulate the Hamiltonian L(H) if the
unknown Hamiltonian H is present. In [11] it has been shown that SU(d) is a transformer
for every dimension d.

Observation 1 In particular, a transformer is able to simulate an arbitrary Hamiltonian
H € su(d) by an arbitrary Hamiltonian H € su(d).

Remarkably, the condition for a finite group to be a transformer can be characterized in

terms of irreducibility of certain representations. In contrast to the condition for an annihi-
lator, it refers to the adjoint action on the set of operators instead of the underlying Hilbert
space.
Definition 5 (Adjoint action) Let G be a finite group and ¢ a unitary representation of
degree d, i.e., ¢ operates on V = C%. We define a linear representation paq on V@V by
©ad(g) = @@ga(g) for all g € G, where U denotes complex conjugation of a matriz U. We
call paq the adjoint action of ¢. Note that this action can be identified with the action of G
on matrices via conjugation g — (M — ¢(g)tMp(g)).

In the following we make use of the fact that the algebra generated by the images of an
irreducible m-dimensional representation ¥ of a finite group G over the complex numbers is
equal to the full matrix algebra C™*™. We cite the corresponding theorem from [32, Theorem
9.2]. Recall that a representation ¢ defined over a field F is called absolutely irreducible if it
remains irreducible when considered over an extension field E/F.

Theorem 2 Let ¢ be an absolutely irreducible representation of a finite group G which has
degree m and is defined over the field F. Then

{ Z ag¥(g) a4 € F} = Fmxm,

geqG

In particular for any m-dimensional irreducible representation over the field C of complex
numbers the vector space generated by the images equals C™*™.

We now have the necessary prerequisites to characterize finite transformers.
Theorem 3 (Characterization of finite transformers)
A finite group T < SU(d) is a transformer if and only if the adjoint representation ¥ given
by

d(U) := (A UTAU)

with U € T acts irreducibly on sl(d) = su(d) + i su(d), i. e., the space of traceless operators.
Proof: (<) Let L be a given R-linear map on su(d) and assume that the adjoint action of T
is irreducible on sl(d) and denote this representation by 9. From Theorem 2 follows that the
complex linear span of the images of ¥ is the full matrix algebra acting on sl(d). Hence, the
mapping L can be written as a complex linear combination of the form L : A — )", quiTAUi.
We now show that the coeflicients can be chosen to be real: since UiTAUi is self-adjoint
for all i we have L(A) = L(A)t = Y, U] AU;. Therefore we can write L in the form
L:AwY, piUiTAUi with coefficients p; = %(ql +q;) € R Using the inversion scheme of
Section 3.4 we can chose the coefficients p; to be positive real numbers.

(=) Assume that every R-linear map on su(d) can be implemented in the sense of Defini-
tion 4 using 7. Let M be the complex linear span of the maps #(U) with U € 7. The idea is
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to show that any F € sl(d), F # 0 can be mapped to any other F € sl(d) by a map T € M.
This in turn shows that the adjoint action is irreducible since there cannot be a nontrivial in-
variant subspace. To construct T proceed as follows. Let F = H; +iHs with Hy, Ho € su(d).
Assume w.l.o.g. that H; # 0, otherwise multiply F' by —i. The set M contains maps L; and
L2 with Ll(Hl) = Hl, LI(HQ) = )\Hl and Lz(Hl) = _[;[2, L2(H2) = ,U,I:Ig with ,U,,)\ € R. Then
T:=L;/(1+A)+iLy/(1+ p) is the desired map. O

4.1. Finite transformers

We derive a necessary and sufficient condition for a finite group to be a transformer
group in the sense of Definition 4. Theorem 3 shows that the problem to construct a finite
transformer group is to find for given dimension d > 1 a finite group G and an irreducible
(unitary) representation ¢ of G such that the adjoint action becomes irreducible if we split off
the trivial representation 1 of G. The trivial representation is always contained in .4 since
the one-dimensional space corresponding to the linear span of the identity matrix remains
invariant, i.e., ¢,q = 1 ® 7 for some representation m of G. Abusing the notation we will
write paq — 1 to denote the summand 7 in this decomposition.

Once we have found a suitable pair (G, ¢) with deg(¢) = d this yields a transformer group
as in Definition 4. For basic results concerning representation theory of finite groups we refer
the reader to [32].

Example 2 We examine the case of a two-dimensional system, i.e., d = 2. Starting from
the Pauli matrices

(01 (0 — (1 0
o=\ 41 0 )%=\, o) %={0o _1 )

we first note that the group (i - 04,1 - 0y,i - 0,) is isomorphic to the quaternion group Qs
of order 8. This group has an (outer) automorphism of order 3 which permutes the Pauli
matrices cyclically. This automorphism is given by the matriz

i—1( i i
R'_T<1 1)'

Setting sy := ioy, for k € {z,y,z} the automorphism is given by R~ *s, R = s,, R *s,R = s,
and R™'s,R = s,. The group generated by the s; and R is isomorphic to SL(2,F3), i. e., the
group of 2x 2 matrices over the finite field Fs which have determinant 1. Let ¢ be the (natural)
representation of the matric group given by (sg, Sy, s, R). Then the 24 matrices in the image
of ¢ form a faithful irreducible representation of SL(2,F3). Choosing the basis {sz, sy, .} of
sl(2) we see that the images of paqa — 1 are given explicitly by s, — diag(l,—1 — 1), sy —
diag(—1,1,—1), s, — diag(—1,—1,1), and R maps to the permutation matriz corresponding
to the 3-cycle (1,2,3). It is readily verified that this is an irreducible representation.

Let G be a finite group having an irreducible representation ¢ such that the images of
@ are a transformer in the sense of Definition 4. Then necessarily ¢ must be nonmonomial*
for otherwise the set of diagonal matrices would be an invariant subspace under the action of
©vad — 1. Note that in fact the group SL(2,F3) is the smallest group which is not an M-group,

*A representation is called monomial if all representing matrices have the property to contain precisely one
non-vanishing entry in each row and each column.
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i.e., SL(2,F3) has representations which are not equivalent to monomial ones. Therefore a
necessary condition for ¢ to be a transformer has been found.

There is a necessary and sufficient characterization of transformer groups which can be
verified from the character table alone. Recall that the character x of a representation ¢ is
defined by x(g) := tr(p(g)) and that a character is called irreducible iff the corresponding
representation is irreducible.

Theorem 4 Let G be a finite group and x be an irreducible character of G with corresponding

representation . Then x corresponds to a universal transformer if and only if the following
identity holds:

> Ix(9)* =2|G].

geaG

Proof: The representation ¢,q — 1 has character values |x(g)|> — 1 for all g € G since
tr(pada(9)) = x(9)x(g). Recall that the vector space of class functions on G has a normalized

scalar product given by

(xalxz) = ﬁ > xa(@)xalg™)

geaG

for characters x1, x2 of G. A character x is irreducible iff (x|x) = 1. Computing the latter
scalar product of the character corresponding to p,q — 1 we obtain

1 2 s 1 4 2 2
@Z(Ix(g)l -1)-(x(@P-1) = @le(g)l —@le(g)l +1

gea geG geG

ﬁ S (@)l - 1

geG

On the other hand this scalar product is equal to 1 due to the irreducibility of p,q — 1.
Rearranging terms and clearing denominators yields the claimed statement. [

In the following we present a transformer for a three dimensional system. The minimal
group having a representation ¢ for which @aq — 1 is irreducible is the linear group GL(3, Fz)
of invertible 3 x 3 matrices over the field . This is a simple group of order 168. As generators
of this group we choose the matrices

1 10 1 11
z:=1 010 }),y==( 11 0],
0 01 1 00

where z is an element of order 2 and the order of y is 7. The group GL(3,F;) has a three-
dimensional irreducible representation ¢ over the complex numbers which on the generators
x and y is given by the following assignments:

L[ ) el oot 0
o@)i= | ~Geost) el GeosE) | e)= | - G
—{?cos(?—") C7cos(i—2) —cos({y) ) S
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Table 1. Transformer groups of small sizes

| Group size | Numbers in library | Dimension

24 3 2
48 28, 29, 33 2
72 3, 25 2
96 67, 74, 192 2
120 5 2
144 36, 121, 122, 157 2
168 22 2
168 42 3
192 187, 204, 963 2
216 3, 38 2
216 88 3
240 93, 102, 103, 154 2

Here - is an abbreviation for 0 and (; denotes the primitive 7-th root of unity e?™*/7. The
character of the representation ¢ takes the values

37 _17 17 07 €7+C’?+c’?7 €$+C’?+<—$

on the conjugacy classes of GL(3,F2). Consulting the character table of GL(3,Fz) in the
Atlas [37, p. 3] we find that ¢ is irreducible. The representation p,q — 1 has character values

8,00 —1,1, 1

from which follows that it is also irreducible, again by checking the character table of GL(3,Fs).
Overall we obtain that the representation ¢ of GL(3,Fs) yields a transformer of size 168. Us-
ing the Neubiiser catalogue used in MAGMA and GAP, cf. [38, 39] we performed an exhaustive
search over all groups of smaller sizes which has shown that this indeed is the minimal possible
group size.

In Tabular 1 we summarize the results of this search. Groups of sizes up to 255 have been
considered. The number in the Neubiiser catalogue is given such that for instance the first
row of this table corresponds to the group (in GAP syntax) SmallGroup(24,3) which has
been studied in Example 2. Note that we only give transformer groups which act faithfully.

4.2. Lower bound on the overhead

In the following we derive a lower bound on the time overhead for simulating a Hamiltonian
using an arbitrary transformer. We need some results on majorization and doubly stochastic

matrices (cf. [40] for a summary). Let z = (z1,...,24) and y = (y1,...,Y4) be two d-
dimensional real vectors. We introduce the notation | to denote the components of a vector
rearranged into non-increasing order, so z¥ = (l‘%, .. ,:L'ﬁ), where (:cf > l‘% >...> l‘i). We

say that z is majorized by y and write z < y, if

k k
PIEEDM’E
j=1 j=1
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for k=1,...,d— 1, and with equality when k = d [36].

Let Spec(X) denote the spectrum of the hermitian matrix X, i. e. the vector of eigenvalues.
Ky Fan’s maximum principle gives rise to a useful constraint on the eigenvalues of a sum of
two Hermitian matrices C := A + B, that

Spec(A + B) < Spec(A) + Spec(B) . (16)

This permits us to derive a lower bound on the simulation overhead.
Lemma 3 (Lower bound) A lower bound on the overhead of simulating H by H is given
by the minimal T such that

Spec(H) < 7Spec(H). (17)

Proof: This follows from Definition 1 and inequality (16). O

We now consider the question when this lower bound can be attained. Let H = 2?21 Ai|2) (i
and H = Z?:l 11;]3) (i| where |i) is a basis of eigenvectors. Let 7 be minimal such that 7 < 7.
We set d’' := d — 1. We have (u1,... ,pa) < (TA1,...,7Aq¢) since >, p; = >, A = 0 (the
Hamiltonians are traceless). This is equivalent to the existence of a doubly stochastic matrix
D with D(A,...,2¢-1)T = (u1,... ,a-1)T. By Birkhoff’s theorem we can decompose a

doubly stochastic matrix as a convex sum of permutations, i.e.

D= Zp,,Ua (18)

oED

where U, is the permutation matrix associated to o, i.e. maps the basis vector |7) to |0 (7)),
and and X is a subset of the symmetric group Sy. The d’' x d' doubly stochastic matrices form
a (d'* — 2d' + 1)-dimensional convex set. The extreme points are the permutation matrices.
Carathéodory’s theorem guarantees that a point in a m-dimensional compact convex set
may be expressed as a convex combination of at most m + 1 extremal points of that set.
Therefore every doubly stochastic matrix can be written as a convex combination of at most
d?® —2d +2 = (d — 2)% + 1 permutations.
We view the matrices U, as d X d matrices that fix the basis vector |d). We have

H=r1) p,UlHU, (19)
oceX

The lower bound can be attained in particular if the transformer contains the matrices per-
muting the eigenvectors of H and and the matrix realizing the base change between the
eigenvector basis of H and H.

Let H be the system Hamiltonian. Let o be the cyclic shift, i.e. 0(i) =i+ 1 mod d and
U, the corresponding matrix. Than we can switch off the Hamiltonian

d—1 1
> EUL HU,; = (20)
=0

with complexity at most d provided that we can perform the shift with the transformer. In
this case we can also invert it with complexity and overhead at most d — 1. However, when
the Hamiltonian is not known we need at least d? operations to switch it off.
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5. Simulation of bipartite Hamiltonians

The following theorem shows that all bipartite Hamiltonians can be simulated by any
Hamiltonian (with non-trivial coupling and non-trivial local terms) provided that the set of
available unitary transformations contains a transformer for each of the subsystems. Let
B={o,|a=1,...,d* — 1} be a basis of su(d).

Theorem 5 Let an arbitrary interaction

H::ZJQBUQ®Uﬁ+a®1+1®b
«,
B

be given with a,b € su(d) with a,b# 0. Let Ty and Ty be transformers of the left and the right
subsystem, respectively. Assume that it is possible to implement all unitary transformations
of the form UQV withU € Ty andV € Ty. Then H can be used for simulating any arbitrary
H with H := Zaﬂ Jop0a®03+a®1+1Q®b i.e., there are positive numbers 7;, U; € 71 and
V; € T such that

H=Y 7,U e V)HU;eV;). (21)

Proof: We first consider the case that the local terms are all zero. Write H in the form

H=) A;®B;,
J

where A; and B; are elements of su(d) and all B; are linearly independent and all A; are
nonzero. Then H can be transformed into any interaction of the form C' ® D with arbitrary
C, D € su(d). This can be done by choosing R-linear maps L; and L» on su(d) with L;(4;) =
C, Ly(B1) = D, and Ly(B;) = 0 for j # 1. Since 77 and 73 are universal transformers one
can find positive numbers d; and f; and unitary transformations U; € 71 and V; € T3 such
that

i i

Hence we obtain

Zdifj(UiT ® VJ‘T)H(Ui ®V;))=C®D.

ij

This proves that we can simulate each tensor product operator C ® D. By setting C := ~a30a
and D := og we can simulate each term in eq. (21). Hence it is possible to simulate H. Let
H contain local terms. Starting from H we can simulate the Hamiltonian

H =) Jopoa®0os+d @1+10VY,
of

that coincides with the desired Hamiltonian H except for the local terms. Starting from H
we can simulate the Hamiltonian (& — a’) ® 1 by applying an annihilator on the right and

suitable transformations on the left. Finally, we use a similar scheme for 1 ® (b —b'). O
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Note that this proof also applies if the dimensions of the two subsystems are different.

6. Conclusions

We have shown that there are finite groups of unitary control operations which allow to
simulate an arbitrary Hamiltonian H by another arbitrary H, i.e., a system with Hamiltonian
H can be driven to evolve as if its Hamiltonian were H. This can be accomplished using fast
sequences of control operations interspersing the natural time evolution. We even found
finite groups which allow to solve the following more general control problem: for every
linear trace preserving map L on the set of self-adjoint operators the system can be made
to evolve according to the Hamiltonian L(H) although its true unknown Hamiltonian is H.
We have called such groups transformer groups and showed that a finite group G has this
property if and only if its adjoint action on the set of traceless operators is irreducible. We
have characterized finite groups G with this property using characters of representations of
G on the Hilbert space. This criterion allows to perform an exhaustive search over groups
of small order (up to 255). We found transformer groups for two and three dimensional
quantum systems. It remains an open problem to construct finite transformer groups for
all dimensions. In bipartite systems, every non-trivial interaction can simulate any other
provided that transformer groups on each subsystem can be implemented.
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