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Within the class of all possible universal (covariant) two-particle quantum processes in
arbitrary dimensional Hilbert spaces those universal quantum processes are determined
whose output states optimize the recently proposed entanglement measure of Vidal and
Werner. It is demonstrated that these optimal entanglement processes belong to a one-
parameter family of universal entanglement processes whose output states do not con-
tain any separable components. It is shown that these optimal universal entanglement
processes generate antisymmetric output states and, with the single exception of qubit
systems, they preserve information about the initial input state.
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1. Introduction

One of the main driving forces in the rapidly developing field of quantum information process-
ing is the question whether basic quantum phenomena such as interference and entanglement
can be exploited for practical purposes. In this context it has been realized that the linear
character of quantum theory may impose severe restrictions on the performance of elementary
tasks of quantum information processing. As a consequence it is impossible to copy (or clone)
an arbitrary quantum state perfectly [1].

In view of the significance of entangled states for many aspects of quantum information
processing [2, 3, 4] the natural question arises whether similar restrictions also hold for quan-
tum mechanical entanglement processes. Of particular interest are entanglement processes
which entangle two quantum systems in an optimal way. Though many quantum mechanical
processes are capable of entangling some input states of a quantum system with a known
reference state of a second quantum system, it is not easy to achieve this goal for all pos-
sible input states. This basic difficulty can be realized already in the simple example of a
quantum mechanical controlled-not (CNOT) operation, i. e. CNOT : |+) @ (|[+) + |-)) —
|[F)® |+) + |+) ® |—). This CNOT operation entangles the orthogonal input states |1) of the
first qubit with the second (control) qubit prepared in the reference state (|+) + |—)). Obvi-
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34  Optimal two-particle entanglement by universal quantum processes

ously the two Bell states resulting from these input states are optimally entangled. However,
due to its linearity this quantum process is incapable of entangling the first qubit with the
second one for all possible input states. The input state (][+) + [—)), for example, results
in the factorizable output state (|+) + |—)) ® (|]4+) + |—)). In view of this difficulty it is of
particular interest to investigate universal entanglement processes which are able to entangle
all possible input states of a quantum system with a second one in an optimal way. In this
context entanglement can be considered as being optimal if the resulting two-particle output
state does not contain any separable components.

Universal quantum processes act on all possible (typically pure) input states of a quantum
system in a ‘similar’ way. Consequently, these processes do not specify a preferred direction in
Hilbert space and thus reflect its ‘natural’ symmetry. Therefore, the restrictions imposed on
these processes by the linear character of quantum theory are not only of practical interest but
they also hint at fundamental limits of quantum theory. So far many properties of universal
quantum processes have been analyzed for qubits [5, 6, 7]. For qubits one can show that there
is only one universal entanglement process whose output states do not contain any separable
components. Independent of the input states, this process always produces the anti-symmetric
Bell state as the optimally entangled output state [8]. For many applications in quantum in-
formation processing, such as quantum error correction, universal quantum processes are of
interest which do not only entangle different quantum systems in an optimal way but which
also preserve information about the original input state and redistribute this information be-
tween the entangled quantum systems. Motivated by this need recently Buzek and Hillery
have analyzed quantum processes which entangle two qubits and which also preserve infor-
mation about the initial input state [6]. Though, in the case of qubits, both requirements are
incompatible for universal quantum processes, universal optimal cloning processes manage to
optimize both tasks simultaneously. However, the resulting output states always contain a
separable two-qubit state. From these investigations on qubit systems one may be tempted
to presume that a similar incompatibility between optimal universal entanglement processes
and preservation of information about input states also holds in higher dimensional Hilbert
spaces.

In this paper it is shown that, contrary to this tempting presumption, in Hilbert spaces
of dimensions higher than two optimal universal entanglement processes are possible which
simultaneously also preserve information about the initial input state. For this purpose a
theoretical framework is developed within which all possible bipartite universal quantum
processes can be described. For the sake of simplicity we restrict our discussion to the im-
portant special case that the dimensions of the Hilbert spaces of both quantum systems are
equal. First of all, the class of all possible universal quantum processes is determined which is
compatible with the linear character of quantum mechanics. Secondly, the particular subclass
is determined which produces entangled two-particle output states which do not contain any
separable components. It turns out that for Hilbert spaces with dimensions larger than two
these particular universal entanglement processes form a one-parameter family. It is shown
that the optimal universal quantum processes whose output states optimize the recently pro-
posed entanglement measure of Vidal and Werner always belong to this family [9].

This paper is organized as follows: In Sec. 2 the basic symmetry (or covariance) property
of universal quantum processes is discussed by starting from a simple example. Subsequently
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a general formalism is developed for describing all possible universal quantum processes in
arbitrary dimensional Hilbert spaces. The consequences of covariance and of the linear char-
acter of universal quantum processes are implemented. In Sec. 3 all universal entanglement
processes are determined whose output states do not contain any separable components.
Subsequently the universal quantum processes are determined whose output states optimize

the entanglement measure of Vidal and Werner [9]. Finally basic properties of the resulting
optimally entangled output states are discussed.

2. Universal quantum processes

In this section the symmetry (or covariance) property of universal quantum processes is exem-
plified by considering two qubits. Based on this covariance property and on the requirement
that any quantum process has to be linear with respect to all possible input states the general
structure of universal (or covariant) quantum processes is discussed for the case of two arbi-
trary dimensional quantum systems of equal dimensions. Optimal universal quantum cloning
processes and optimal universal entanglement processes are special cases thereof.

2.1. Universal quantum processes and covariance — an example

Let us consider the following quantum process as an introductory example:
Initially we prepare two distinguishable spin-1/2 quantum systems (qubits) in the state

p1{(m) = p;, (M) ® %1.

The pure input state p;,(m) = |m)(m| of the first quantum system can be described by its
Bloch vector m. This Bloch vector can take an arbitrary position on the Poincare sphere.
The second quantum system is in a completely unpolarized reference state which is assumed
to be fixed once and for all. Selecting an arbitrary pure input state p;,(m) we transfer the
initial state p;(m) into the output state

P;p1(m)P,;

Tr[Pyp1(m)P ] )

p1(m) — ps(m) =

Thereby the projection operator Py = >, |JM)(JM]| projects onto two-particle states with
well defined total angular momentum J. This total angular momentum can assume the
possible values J = 1 or J = 0 so that we can distinguish between two quantum processes. In a
probabilistic way the transformation of Eq.(1) can be achieved by a measurement process with
probability Tr[P sp;(m)P;]. However, one may also think of realizing this transformation
with a probability arbitrarily close to unity by some other means. Choosing the direction of
polarization of the input state as the quantization axis the result of this quantum process is
given either by

p2(m) = p|lJ=1M=1(J=1M=1]
FU—p)lJ =1 M =0y =1 M =0 )

with py = 2/3 or by
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p2(m) =[J =0 M =0)(J =0 M = 0| 3)

depending on whether J = 1 or J = 0. Both quantum processes are universal in the sense that
all input states are treated in a ‘similar’ way. In particular, this implies that the probabilities
entering Eq.(2) are independent of the input state |m). The only direction the output state
depends on is the one of the input state. Thus these quantum processes are symmetric with
respect to unitary transformations U which transform an arbitrary pure one-particle input
state, say |myg), into some other pure one-particle input state, say |m) = U(m)|myg). This
unitary symmetry or covariance of such a universal quantum process is characterized by the
relation

p2(m) = U(m) ® U(m)p(mo)U' (m) @ U' (m) (4)

(compare with Fig.1). Thus the possible output states of a universal quantum process consti-
tute a two-particle representation of the group of unitary one-particle transformations. The
covariance condition of Eq.(4) already describes how these particular quantum processes can
be realized. A covariant quantum process is initialized by preparing the two-particle quantum
system in a particular state, say ps{myg), which is associated with the particular pure input
state [mg). The output state of any other input state, say |m) = U(m)|my), is obtained by
applying to both particles the unitary two-particle operation U(m) ® U(m).

my _ m = Um,
| |
P P
pout(mO) - " pout(m) -

U & Upout(mO)UT & UT

Fig. 1. Pictorial representation of the symmetry (covariance) condition which characterizes uni-
versal quantum processes.

Universal quantum processes in which the step of Eq.(1) can be implemented with a prob-
ability of unity have been investigated in the context of copying (cloning) quantum states.
In particular, it has been demonstrated that optimal quantum cloning can be achieved al-
ways by a universal quantum process. Furthermore, in the case of two qubits the maximum
probability with which an optimal universal quantum cloning process is successful is given
by 2/3 [5]. This latter probability is identical with the probability p; appearing in Eq.(2).
Thus, provided the process of Eq.(1) with J = 1 is implemented with a probability of unity
this process copies an arbitrary input state in an optimal way. However, if we consider the
process projecting onto states with J = 0, we end up in the anti-symmetric Bell state formed
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by both qubits. This cutput state is independent of the input state which we choose. As
a Bell state is maximally entangled this latter type of process is an example of a universal
optimal entanglement process.

Copying quantum states and preparing entangled quantum states are elementary tasks
of quantum information processing. Thereby universal quantum processes fulfilling Eq.(4)
which exhibit the same symmetry as the set of all possible pure one-particle input states are
of special interest. Though much is already known about universal quantum cloning processes
almost nothing is known about universal quantum processes which yield optimally entangled
quantum states, in particular in arbitrary dimensional Hilbert spaces. The main questions
which will be addressed in the following are: Which entangled quantum states result from
universal quantum processes which maximize entanglement? Which limitations are imposed
on the structure of these states by the universality and linearity of these quantum processes?
How do the properties of the resulting optimally entangled quantum states depend on the
dimensionality of the Hilbert spaces involved?

2.2. General structure of universal quantum processes involving two gquantum
systems of equal dimensions

Let us consider the most general universal quantum process of the form

P Pzn(m) & Pref — pout(m)- (5)

In our previous example the fixed reference state p,.; was maximally mixed. In the present
case we leave its form unspecified. The density operator of the pure input state is denoted
pin(m) = |m)(m|. For the sake of simplicity let us assume that the dimensions of the Hilbert
spaces for both quantum systems are equal and of magnitude D > 2. In order to classify all
possible universal quantum processes of the form of Eq.(5) we have to determine the most
general form of output states.

The density operator of an arbitrary input state of a D dimensional quantum system can
always be represented in terms of the generators A;; (i,7 =1, ..., D) of the group SUp, i.e.

pin(m) = %(1 +mij Agj). (6)

(We use the Einstein summation convention in which one has to sum over all indices 4, €
{1, .., D} which appear in an expression twice.) A representation of these generators is given
by the D x D matrices

1
(Aij)*D = 6,6, — 7 disOkt: (7)

These matrices are not hermitian but they fulfill the relation AL‘ = Aj;. Due to the constraint
Zil A;; = 0 only (D? —1) of them are linearly independent so that we may choose mpp = 0
in Eq.(6). For D = 2 these matrices reduce to the well known spherical components of the
Pauli spin matrices, i.e. 2A1; = 0, 2A12 = 0, + 10, and 2Ay; = 0, — io,. Furthermore,
pin(m) = pi,(m)T implies the relations [m;;]* = m;; so that Eq.(6) involves (D? — 1) real-
valued and linearly independent parameters which form the components of a generalized Bloch
vector. For i < j one may choose the real and imaginary parts of m;; as linearly independent
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parameters and for 1 < 4 < D — 1 the diagonal elements m;;. The non-negativity of the
density operator p;,(m) imposes further restrictions on these parameters [10]. However, their
explicit form is not important for our subsequent discussion in which we are interested in
pure input states only. Without loss of generality, the covariance condition (4) implies that
we can restrict ourselves to a pure input state which coincides with one of the basis vectors,
say |1), of the D-dimensional Hilbert space. The associated density operator of the input

state is given by

with m;; = 6;16;1D. According to the covariance condition (4) any output state can be
obtained from the associated output state p,u:(mg = DAj;) by a local, unitary two-particle
transformation.

In terms of the generators of Eq.(7) the most general two-particle output state is repre-
sented by a density operator of the form

1
Pout(mM) = ﬁl ®1+ agjl.)(m)Aij ®1+

O‘g’)(m)l ® Ay + Kijr(m)Ay; @ Ag. (9)

In order to implement the covariance condition (4) and the linearity requirement of quantum
processes it is useful to separate the last term of Eq.(9) into terms which are invariant and
into terms which transform as the generators A;; under arbitrary unitary transformations
of the form U @ U. For this purpose, let us start from the commutation relations of SUp,
namely

[Aijv Amn] = Aab(éjm(saiébn - 6in(5am(5bj)' (10)

These relations imply that the tensor products A;; ® A,; transform under arbitrary trans-
formations of the form U ® U in the same way as A; transforms under transformation of the
form U. Furthermore, the tensor product A;; ® Aj; is an invariant under arbitrary unitary
transformations of the form U @ U. However, note that the combination A;; ® A,;, for exam-
ple, does not transform analogous to Ag;. Using these elementary transformation properties,
the covariance condition (4), and the fact that any quantum operation has to be linear with
respect to its input states the density operator of the two-particle output state has to be of
the form

1

Pout(m) = ﬁl ®1+ agjl.)(m)Aij ®1+
+Oé£]2) (m)l ® Ai]' + CA” & Aji +
Bu(m)A;; @ Aj + Bu(m) Ay ® Ay; (11)
with
ai? = aMPmy;, By = Bmi; (12)

and with C € R being independent of m.
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So far the output state of Eq.(11) represents the most general hermitian operator which
depends linearly on the input state p;,(m) and which fulfills the covariance condition (4).
Accordingly, a particular universal quantum process is characterized by the set of real-valued
parameters C, oV, o(?) and by the complex valued parameter 3. We still have to solve the
more difficult task to restrict the range of these parameters in such a way that poy:(m) of
Eq.(11) represents a non-negative operator. In order to determine this fundamental range
of these parameters we have to investigate the possible eigenvalues of the density operator
pout(m) of Eq.(11). Due to the covariance condition (4) we may restrict this investigation to
a particular pure input state, say p;,(mg = DAq;) = [1)(1]. Using the matrix representations
of Eq.(7) it turns out that the corresponding output state can be represented by a direct sum
of density operators according to

4
Pout(mo = DAyy) = Y pips (13)
i1
with the partial density operators
P1L = |11><11|’
D
S (@® = @)y,
pr = Z{|1J><1J|(2(D 5t 5n
j=2
1 (@® — aW)my,
1) (51
n, ., C+pBm } L C =+ 8*m
|15 (1] = + [j1){Lj|——1},
P2
1 D
) > L,
ji=2
< 1
Py = Z ‘{|ZJ><ZJ|—(D TR
2=1<j
U0 /B S
DTy (D - 2)
s C
|23) (72l — + |52) (53] —}- (14)
Yz P4

These partial density operators are normalized so that Tr(p;) = 1 for ¢ = 1,...,4. The
corresponding partial probabilities entering Eq.(13) are given by

o= (e a®my(1- Sy 01— 24
(B+ 8" )ymu(1 - %)27

p = (D- 1“% + (@™ +a®ymy, (1 - %) -
2C 1.1
D 2(8+ 8" )m11(1 — 5)5}’
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b= (DD -2 2
O~ 2)+ (B+ 8 )mu g,
b= (DD -2, - T T
(@ M) (15)

The normalization of the density operator, i.e. Tr[py:(m)] = 1, implies

P1+p2+p3+ps=1. (16)
From Egs.(14) and (15) one obtains the eigenvalues of pyy(mg = DAq;), namely

A= pr,
Aoz = Z(Dpz_ 0T \/( - ;(2))m11 PrIC+mus
Az = (Dpi 0’
M = (D—lz))ﬁi |C . (17)

Therefore the density operator of Eq.(13) is non-negative only if all probabilities p; and all
eigenvalues \; of Egs.(15) and (17) are non-negative and fulfill Eq.(16). For a(¥) = a(® and
B = B*, for example, these conditions on (ps, p3, ps) form a tetrahedron (compare with Fig.
2). Each point in this convex set defines a unique universal quantum process whose possible
output states can be obtained from Eq.(13) with the help of the covariance condition (4).
The universal quantum cloning process, for example, is represented by point B in this figure
and it is characterized by the particular universal process which maximizes p;. Note that it is
immediately obvious from Fig. 2 that perfect quantum cloning is impossible with a universal
quantum process as py =1 —pa —p3 —ps < 2/(D+1) < 1for D > 2.

Finally, it should be mentioned that for dimensions D > 3 one may choose the probabil-
ities (p1,ps,pa) or (p2,ps,ps), for example, as independent coordinates instead of the three
independent real-valued parameters ((a¥) +a®),C, (8+ 8*)). Inverting Egs.(15) and using
Eq.(16) one obtains the relation between these different coordinates, namely

. 1 P4 P1
B+p" = —D(D_1)+(D_1)(D—2)+(D—l)’
. (D-2) P4 P1 P3
oM +a® = D*D-1) D(D-1) + D(D-1) D(D-1)
o _ p3 P4 (18)

(D-1) (D-1)(D-2)

In order to identify a particular universal quantum process uniquely in addition to these
three probabilities one also has to specify the remaining two independent parameters, namely
(@) — a@) and (8 - 5*).
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Fig. 2. Convex set of points (p2, p3, ps) characterizing all possible universal quantum processes for
oV =a®, 3=08*and D=4.
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3. Universal entanglement processes

In this section it is shown that there is a unique one-parameter family of universal entangle-
ment processes whose resulting output states do not contain any separable components. These
processes produce output states which are anti-symmetric with respect to particle exchange.
It is demonstrated that the universal quantum processes whose output states maximize the
recently proposed entanglement measure of Vidal and Werner are always members of this
one-parameter family [9]. Basic properties of the output states resulting from these optimal
universal entanglement processes are discussed and it is investigated to which degree these
output states preserve information about the input state.

3.1. Universal entanglement processes yielding output states without separable
components

Is it possible to entangle two quantum systems in such a way by a universal quantum process
that the resulting output states do not contain any separable components?

As discussed by Lewenstein and Sanpera one can decompose any quantum state p of a
two-particle system into a separable part, say psep, and an inseparable contribution p;nsep,
ie. p = Apsep + (1 — A)pinsep with 0 < XA < 1 [11]. Thereby a separable state is a convex sum
of product states of the form p4 ® pg where p4 and pp refer to quantum systems A and B
respectively. Though in general this decomposition is not unique the optimal decomposition
with maximal A is unique. Thus, with respect to entanglement those quantum states are of
particular interest whose maximum possible value of A equals zero in any such decomposition
[12, 13].

In order to determine the parameters for the universal quantum processes which produce
this latter class of entangled states let us start from the output state pou:(mg = DAjy)
of Eq.(13). A necessary requirement for this state belonging to this class is the absence of

any admixtures of separable states of the form |jj){(jj| for j = 1,...,D. Thus, necessarily a
universal quantum process producing entangled states without any separable components has
to be characterized by the parameters

D1 = 07 b3 = 0. (19)

It will be demonstrated by the subsequent arguments that this choice of parameters is also
sufficient for the generation of entangled output states without separable components. For
this purpose it has to be proven that for any separable two-particle state |¢) = |¢) ® |x) and
for any positive value of A > 0 the state

P = Pout(mo = DA1)™) — Ay} (¢| (20)

is negative definite. Thereby the state pou:(mg = DA4;)"") fulfills conditions (19). Con-
sequently, the covariance condition (4) and the non-negativity property of density operators
implies that any arbitrary output state pey:(m)(¢™ fulfilling Eqs.(19) cannot contain any
separable components.

For the proof of this latter statement we start from conditions (19) and Eqs.(15), (17) and
(18). According to Egs.(17) and (18) the condition p; = 0 implies Ay = 0. Furthermore,
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from the non-negativity of Ao of Eq.(17) and from Eqs. (18) and (19) we obtain the relations

oM = 4@
g = B,
(ent) 1 = . . . .
ps = mgmmuww—
j=2
115) (1 = 1) (15},
(ent) 1 < {|><|+|><|_
P4 - (D—l)(D—Q) ZZZKj 13,827 Je)
|i5) (il — 172) (il }- (21)

Thus, the parameters of Egs.(19) imply that the resulting output state
powt (mo = DAn) = (1-pa)oi™ & papl™ (22)

is a convex sum of pure two-particle quantum states which are anti-symmetric with respect to
permutations of both quantum systems, i.e. a convex sum of two-particle Slater determinants.
Let us consider now the state p’ of Eq.(20). For an arbitrary state |[¢) = |¢) ® |x) we
can always choose a unitary transformation U in such a way that (1|U|p) and (1|U|x) are
both non-zero. This unitary transformation may be interpreted passively as a change of
basis in the one-particle Hilbert spaces. Applying the same unitary transformation to state
pfﬂtn)(mo = DAjy;) a convex sum of anti-symmetric two-particle states is produced so that
(M|U @ Upl" Ut @ UT|11) = 0. Thus, assuming the existence of a state |¢)) = |¢) ® |x) and
a probability A > 0 implies that for this particular unitary transformation U the diagonal
density matrix element (11|URUp'UT@U|11) = 0—-X(1|U|p)(1|U|x) is negative. Therefore p'
is negative definite for any choice of the states |¢) and |x) and for any A > 0. Correspondingly
a non-zero value of X is not possible in Eq.(20). So we conclude that the two-particle state of
Eq.(22) does not contain any separable component. By covariance the same property applies
to all possible output states. This completes our proof.

3.2. Optimal universal entanglement processes

Which universal quantum processes optimize entanglement according to the recently proposed
entanglement measure of Vidal and Werner [9]7

In order to answer this question let us, first of all, briefly summarize basic aspects of
this entanglement measure. According to Vidal and Werner the negativity N{p) of any two-
particle density operator p, i.e.

N(p) IIZMI, (23)

is a measure of entanglement [9]. Thereby u; are the negative eigenvalues of the partial
transpose p? [14] of p. This entanglement measure is monotonic under local operations and
classical communication and it is convex, i.e.

N(Z pipi) < ZPiN(Pi) (24)
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for density operators p; and for p; > 0 with >, p, =1 [14].
The convexity of this measure can be used to determine the universal entanglement
processes which yield maximally entangled output states. For this purpose it is sufficient to

consider the particular output state of the most general bipartite universal quantum process
given by Eq.(13). The convexity of the entanglement measure N(p) implies the inequality

D + p
N(pout (o)) < (py + ps) N(ELLL T P23

P11+ p3
P2p2 + Papa P2p2 + Papa
+ pa ) N(EEE220) = (py + pg ) N(EE2 20 <
(pz p4) ( pst P2 ) (pz p4) ( Pa+ pa >
p2N(p2) + paN(ps) = VD - 1|C + Bmu| + (D - 2)[C]. (25)

The first equality involved in (25) follows from the fact that p; and p; are diagonal ma-
trices (compare with Eq.(14)) and thus the negativity of any convex sum of these density
matrices vanishes. The second inequality involved in (25) follows from a second application
of the convexity of the entanglement measure N(p). The last equality in (25) follows from
a straightforward evaluation of the entanglement measures of py and of ps on the basis of
Eq.(14). From Egs. (17) and (18) we obtain the additional upper bounds

P4
< 22
cl = (D —1}(D - 2)’
1 2
—a®)D
2 P2 2 (af — ) 2 9
Inserting these latter inequalities into (25) we obtain the relation
P2 P4
N < + 27
(pout(mO)) = 2m (D — 1) ( )

with Zle p; = 1. For arbitrary values of ps the right hand side of inequality (27) is maximal
for p; = p3 = 0. Thus we obtain the final inequality

1 1 1
< + - 28
ST P51 Ty 28)

with 0 < py < 1. For dimensions D < 5 the right hand side of inequality (28) is maximal
for py = 0 which is equivalent to p» = 1. Therefore, according to Eq.(14), in this case
the universal quantum process with po = 1 yields optimally entangled output states which
saturate the upper bound of inequality (28). For dimensions D > 5 the maximum value of
the right hand side of inequality (28) is achieved for py = 1. Thus, in this latter case the
universal quantum process with p, = 1 yields optimally entangled output states saturating
the upper bound of inequality (28). The case of D =5 is special in the sense that universal

N(pout (mO))

quantum processes with arbitrary values 0 < pgy < 1 and with ps = 1 — py yield optimally
entangled output states.

Thus, the optimal universal entanglement processes whose output states maximize the en-
tanglement measure of Vidal and Werner always fulfill the condition p; = ps = 0 for arbitrary
dimensions D [9]. Thus, they are always members of the one-parameter family of entangle-
ment processes which do not yield any separable components and which were discussed in the
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previous subsection. In five dimensional one-particle Hilbert spaces optimal universal entan-
glement processes are special in the sense that they coincide with this previously discussed
one-parameter family of entanglement processes.

3.3. Basic properties of the resulting entangled output states

The parameters

O§p4S17 pI:Oa p3:05 a(l):a(2)7 /8:/8* (29)

characterize all possible universal quantum processes which produce entangled two-particle
output states which do not contain any separable components. One particular process within
this one-parameter family of universal entanglement processes produces optimally entangled
output states. For D < 5 this optimal entanglement process is characterized by the additional
condition ps = 1 and for D > 5 it is characterized by the additional requirement py = 1. The
case D = 5 is special in the sense that all universal entanglement processes of Eq.(29) are
optimal entanglement processes. The output states of the one-parameter family of universal
quantum processes of Eq.(29) are statistical mixtures of anti-symmetric states. Explicitly
they are given by Eq.(14) and by applying the covariance condition (4). In addition, these
state also exhibit other noteworthy properties which will be discussed in the following.

The partial transpose of the output state pc(;:zt)(mo = DAy) of Eq.(22) has always a

negative eigenvalue of magnitude

P4 i (1=p4)*1/2
2(D—1)_{(D—1)2+ D—1 P

Therefore, by covariance the one-parameter family of universal entanglement processes of

A=— (30)

Eq.(29) produces free entangled states [15].
Due to covariance all output states resulting from the same universal optimal entanglement
process have the same von Neumann entropy of magnitude

D-1)Y{D-2 D-1
—( i ) +(1- p4)ln7( )
2p4 1—psy
Thus, for D > 4 the universal entanglement process with ps = 0 produces output states with
the smallest possible von Neumann entropy, namely

S(ps) = paln (31)

Spmin = S(pg = 0) =In(D — 1). (32)

For D < 4 this process of minimal von Neumann entropy is characterized by p; = 1 and the
corresponding minimal entropy is given by
D-1)(D -2

Sy = 1 - ) -0 D) -
For D = 4 both processes, i.e. py = 0 and py = 1, yield the same von Neumann entropy for
the output states. As apparent from Fig. 3, this possibility of a ‘coexistence’ of two universal
entanglement processes with the same von Neumann entropy resembles some of the signatures
of a second order phase transition. Within the one-parameter family of universal entanglement
processes of Eq.(29) the process characterized by ps = (D — 2)/D (or equivalently C =
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—1/[D(D —1)]) gives rise to output states with the largest possible value of the von Neumann
entropy, namely

(D - 2) D(D - 1)
=1 .
p )T
Thus this process generates an output state which is a maximal mixture of all possible (D —
1){D — 2)/2 anti-symmetric two-particle states.

Smaw = S(p4 = (34)

-
ul

Entropy

oo

Fig. 3. Minimal values of the von Neumann entropy of optimal universal entanglement processes
(compare with Eqs.(32) and (33)) as a function of D.

The index of correlation of the possible output states is defined by

IC(p) = S(R1(m)) + S(Rz(m)) — S(pout(m)) (35)

with the reduced density operators of the first and second quantum system

Ry (m) = Tra{pout(m)}, Rz(m) = Tri{pou(m)}. (36)

This index of correlation or mutual entropy serves as a measure for the classical and quantum
correlations between both quantum systems [16]. Due to the covariance condition (4) it is
a property of a particular universal quantum process and is independent of the input state.
For the one-parameter family of universal entanglement processes of Eq.(29) the index of
correlation is given by

4 n 2ps(D — 1)
— +plp—
L+ps " (L+p)(D-2)
From this relation it is apparent that IC(ps) has a local minimum for py = (D — 2)/D.

Thus, the entanglement process with the largest possible von Neumann entropy produces
output states with the smallest possible mutual entropy. Furthermore, the output states

IC(ps) =In (37)
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of the entanglement process with p, = 0 have the largest possible index of correlation, i.e.
IC(py = 0) = 2In2. It is remarkable that this latter index of correlation is independent of
the dimension of the Hilbert spaces D and that this value is equal to the mutual entropy of
a Bell state.

It is also of interest to which extent the entangled output states resulting from the one-
parameter family of universal entanglement processes of Eq.(29) preserve information about
the initial pure input state p;,(m). This information about the input state is characterized by
the generalized Bloch vector m. In the output state of Eq.(11) this information is contained
in the terms proportional to the parameters a(’, a® and 3. The parameters o and o(®

characterize the information about the initial pure input state which is still contained in the
two-particle output state in each subsystem separately, i.e. in the reduced states

1 1
Rl (m) = B + Da(l)miinj, Rz(m) = B + Da(Z)miinj (38)

of the first and second quantum system. The parameter (3 characterizes the information
about the input state which is distributed over both quantum systems. This latter property
is apparent from the fact that this parameter appears in Eq.(11) with tensor products of the
form A;; ® Aj; and Aj; ® Ay;. According to Eqgs.(18) and (29) for a given value of py (with
p1 = ps = 0) these characteristic quantities are given by

(D-2) _ P4
D>(D-1) D(D-1)
1 P4

B8 = po-ntDoym-1

a® 4 a® —

(39)

Thus, the universal entanglement process with py = 0 yields the maximal possible value for
a® = a® | namely

e = (D = 2)/[2D*(D - 1)] (40)

max

and preserves the maximum amount of information about the initial state in each subsystem
separately. It is instructive to compare this maximum value for a%?m with the corresponding
maximal value achievable by an optimal quantum cloning process. This latter optimal value
is given by o)) = (D —2)/[2D%(D —1)]+ 1/[D(D — 1)(D +1)] = (D +2)/[2D*(D +1)] [5].
Thus, for D > 2 o'}) and a3, differ by terms of relative magnitude O(1/D) so that their
difference tends to zero with increasing dimension D of the one-particle Hilbert spaces. This
demonstrates that for D > 2 a universal entanglement process with p; = 0 preserves almost
as much information about the initial quantum state as an optimal universal cloning process
{compare with Fig. 4).

Within the one-parameter family of Eq.(29) the universal entanglement process with py =
(D—2)/D yields oV = a® = 3 = 0 so that all information about the orientation of the initial
quantum state p;,(m) is lost. The resulting output state is independent of the input state
and is a scalar with respect to unitary transformations of the form U ® U and with respect to
permutations between both particles. This particular process is the only one within the one-

parameter family of Eq.(29) which fulfills the additional requirement R;(m) = Ro(m) = 1/D.
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0.8 //

ratio

Fig. 4. Dimensional dependence of the ratio between aﬁ,ﬂm as defined by Eq.(40) and the

1)

corresponding value )’ characterizing the optimal universal cloning process. It is for D = 2
only that in the optimal universal entanglement process all information about any input state is
lost.

Though this property is characteristic for all Bell states it does not hold for the output states
which are generated by the optimal universal entanglement processes discussed in Sec. 3.2.

As discussed in Sec. 3.2 optimal universal entanglement processes are characterized by
pa = 1for D < 5 and by py = 1 for D > 5. The corresponding dimensional dependence of the
entanglement measure N(p) of these optimally entangled output states is depicted in Fig. 5.
It is apparent that for D = 5 this entanglement measure is continuous but not differentiable.
At this particular dimension the optimal universal entanglement processes discussed in Sec.
3.2 coincide with the one-parameter family of entanglement processes of Sec. 3.1 which yield
entangled output states without any separable components.

3.4. Ezxamples

In order to exemplify basic properties of entangled output states resulting from the one-
parameter family of universal entanglement processes of Eq.(29) let us consider some special
cases of low dimensions in more detail.

D = 3: Let us first of all consider a three-dimensional one-particle Hilbert space in which
we choose the basis in such a way that the pure input state is identical with one of the basis
vectors, say |1), i.e. pi(mg = DAy1) =|1)(1]. According to Eqgs.(21) it is also convenient to
introduce the pure, anti-symmetric two-particle states

(i) = %um — i) (41)

with 4,7 € {1,..,D}. Eq.(22) implies that for D = 3 the entangled output states resulting
from the one-parameter family of universal quantum processes of Eq.(29) are convex sums of
the two two-particle states
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Fig. 5. Dimensional dependence of the entanglement measure N{p) of Eq.(28) for the optimal
universal entanglement processes discussed in Sec. 3.2.

P = §{|(12>><<12>| +1(3))((13)]}, AL = [(23))((23)]. (42)

(ent)

out
Neumann entropy vanishes. This state is the uniquely determined anti-symmetric, pure two-
particle state which can be formed by the remaining two orthogonal basis states |2) and |3).
Geometrically, this output state may be viewed as representing the uniquely determined plane
which is orthogonal to the input state |1). This way this entangled output state preserves
information about the input state. The index of correlation of this particular output state as-
sumes the maximum possible value of IC(ps = 1) = 2In2. The optimal universal entanglement
process characterized by ps = 1 produces the mixed output state p2" (m = DA1;) = pi™*.
Its index of correlation also assumes the largest possible value of IC(py = 0) = 2In2. This
optimal entanglement process maximizes the overlaps between the input state |1) and between
the reduced one-particle states Ri(m = DAy} and Re(m = DA;q) of Eqs.(38). Thus, it

preserves information about the initial input state in an optimal way. For universal entan-

For p, = 1 the resulting output state p (mg = DAyy) = Pz(lent) is pure so its von

glement process characterized py = 1/3 (p1 = ps = 0) the resulting output state is given
by

pln)(m = DAL) = (2/3)p5™ + (1/3)p5™ =

%{I(12)><(12)I +[(13))((13)[ + (23))((23)[}- (43)

Its von Neumann entropy assumes the largest possible value of magnitude S(ps = 1/3) = In3.
This output state is a maximally disordered mixture of all possible anti-symmetric two-particle
states which can be constructed from the underlying three-dimensional one-particle Hilbert
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spaces. In this particular universal entanglement process all information about the pure input
state |1) is lost which is reflected by the fact that a(V) = o(?) = 0.

D =4: For D = 4 the one-parameter family of output states of p;,(mg = DAqy) = |1)(1]
is a convex sum of the two mixed states

P70 = L{I2)2)] 4 103)((13)] + 110},
A0 = SHIENE)] + I0)(ED] + BB (44)
The optimal universal entanglement process with p; = 1 yields the mixed output state

pfﬂ;t)(m =DAp) = pg‘e"t) which implies maximal overlaps between the reduced one-particle
states Ry(m = DAy) and Rz(mm = DAy;) of Egs.(38) and the input state. Universal entan-
glement process with py = p2 = 1/2 produce a maximally disordered mixture of all possible
anti-symmetric two particle states, i.e.

P’ (m = DAn) = (1/2)pf™ + (1/2)pf™ =

é{l(12)><(12)| +(13))((13)] + [(14)) ((14)[ +
[(23))((23)] + [(24))((24)] + [(34))((34) [} (45)

In this universal entanglement process all information about the input state is lost.

D = 2: Let us close with some final remarks concerning the special case of qubits
for which some of the considerations of this chapter have to be modified. According to
Egs.(21) in this case p‘(f"t) = 0 and thus disappears from Eq.(22). Consequently only one
universal entanglement process is possible which does not yield any separable components. It

is characterized by p; = p3s = p4 = 0 and by the pure, anti-symmetric output state

pln) (mg = DAL = |(12))((12))- (46)

Thus, in this case the one-parameter family of universal entanglement processes of Eq.(29)
collapses to a single process whose output state is independent of the input states.

4. Conclusions

It has been demonstrated that in Hilbert spaces of dimensions larger than two the linear
character of quantum mechanics is compatible with the existence of optimal universal two-
particle entanglement processes which preserve information about input states. This situation
is completely different from the case of qubits where only one optimal universal two-particle
entanglement process is possible in which all information about any input state is lost. The
presented optimal universal entanglement processes are members of a one-parameter family of
universal quantum processes which yield entangled output states without any separable com-
ponents. Optimal universal entanglement processes involving two five dimensional quantum
systems are exceptional in the sense that they coincide with this latter one-parameter family
of universal entanglement processes. For all other dimensions the optimal universal entangle-
ment process is one particular member of this one-parameter family of quantum processes.
One of the characteristic features of this class of universal entanglement processes is that they
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always yield anti-symmetric output states which, with the single exception of qubit systems,
preserve information about the input state.

The presented investigations indicate that convex sums of anti-symmetric quantum states
resulting from the optimal universal entanglement processes discussed might also play an
important role in universal entanglement processes which involve more than two quantum
systems. Furthermore, entanglement processes which also preserve information about input
states might have interesting applications in various branches of quantum information process-
ing, such as quantum cryptography and quantum error correction. Thus, the presented results
indicate that further exploration of quantum information processing beyond qubits may offer
unexpected and useful surprises.
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