Quantum Information and Computation, Vol. 1, No. 3 (2001) 26-32
© Rinton Press

DECOMPOSING FINITE ABELIAN GROUPS

KEVIN K. H. CHEUNG
Department of Combinatorics and Optimization, University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada

MICHELE MOSCA

Department of Combinatorics and Optimization, University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

Received March 21, 2001
Revised September 20, 2001

This paper describes a quantum algorithm for efficiently decomposing finite Abelian
groups into a product of cyclic groups. Such a decomposition is needed in order to
apply the Abelian hidden subgroup algorithm. Such a decomposition (assuming the
Generalized Riemann Hypothesis) also leads to an efficient algorithm for computing
class numbers (known to be at least as difficult as factoring).

Keywords: Abelian groups, quantum, algorithm

Commaunicated by: R Cleve and J Watrous

1. Introduction

The work by Shor [1] on factoring and finding discrete logarithms over Z can be generalized
to solve the Abelian Hidden Subgroup Problem (see for example [2, 3, 4]). These algorithms
find the hidden subgroup of a function f : G — S, where G = Zy, X -+ Zy;,, for some integers
Ny, N3,...,N;. Any Abelian group G is isomorphic to such a product of cyclic groups.
However, it is not always known how to find such an isomorphism efficiently. Consider for
example the group G = Z};, the multiplicative group of integers modulo N. This is an Abelian
group in which we can compute efficiently. Yet no known classical algorithm can efficiently
find its decomposition into a product of cyclic groups. (By finding a decomposition of G into
a product of cyclic groups, we mean finding an isomorphism between G and a product of
cyclic groups.) However, to apply the well-known quantum algorithm for solving the Abelian
hidden subgroup problem for a function f : G — S, we require a decomposition of G into a
product of cyclic groups. This problem is first pointed out in [4], where they also point out
the remedy. This remedy was later sketched in more detail in [5], and used in the subsequent
generalizations of Watrous [6]. This paper details fully the method sketched in [5].

Consider also the class group of an imaginary quadratic number field. In imaginary
quadratic number fields we can efficiently find unique representatives of each group element
(see Section 5.4.2 of [12]). This group is also Abelian, and finding its decomposition into a
product of finite cyclic groups will give us the size of the group and therefore the class number
of the imaginary quadratic number field. As Watrous [6] points out, assuming the Generalized

26

Kevin K. H. Cheung and Michele Mosca 27

Riemann Hypothesis we can apply the algorithm in this paper and efficiently find these class
numbers (a problem known to be at least as hard as factoring). If we consider real quadratic
number fields then it is not known how to efficiently test the equality of two group elements
{see Section 5.6 of [7] or [8]) and thus we cannot apply these methods.

2. Group Theory Preliminaries

Let G be an Abelian group. We will use multiplicative notation for the group G. Recall that
G is said to be cyclic if there exists a € G, such that G = {a™ | n € Z}. Here, we call a a
generator of G. We call H C G a subgroup of G if H is a group under the operation induced
by G. In this case, we write H < G.

Let a € G. If a™ = e for some n € N, then a is said to have finite order. The smallest
such n is called the order of a, denoted by ord(a). It is easy to see that the elements in
{e,a,a?,...,a" '} form a subgroup. We call this subgroup, denoted by (a), the the cyclic
subgroup generated by a.

If G1, G5 are subgroups of G such that G; N G2 = {e}, the set {ajaz | a1 € G1, a2 € G2},
denoted by G eG5>, is called the (internal) direct product of G1 and G5. Clearly, G1eGy < G.
If there exist subgroups G, ..., G of G such that G = G e - - - ¢ G, we say that G can be
expressed as (or decomposed into) a direct product of Gy, ...,Gy. We call Gy e---0G}, a direct
product representation of G.

Let G be a group and p be a prime number. Let P < G. Then P is called a Sylow
p-subgroup of G if |P| = p® for some o € N such that p® divides |G| but p®*! does not.

We first quote three classical results without proof. The interested reader can refer to a
standard text on group theory (e.g. [9]).

Theorem 1 A finite Abelian group can be expressed as a direct product of its Sylow p-
subgroups.

Theorem 2 Let K be a subgroup of G = Gy, ® - - ¢ Gy, where Gy, is a Sylow p;-subgroup
fori=1,..,1 and py,...,p are distinct primes. Then there exists K, < Gp,, i =1,...,1, such
that K=K, o---¢ K, .

Theorem 3 (Fundamental Theorem of Finite Abelian Groups). Any finite Abelian group can
be expressed as a direct product of cyclic subgroups of prime power order.

Once one has expressed a finite Abelian group G as a direct product of cyclic subgroups

G = {(g1) ®---e{g), then one knows that G is isomorphic to the product of cyclic groups

Zn, X -+ -Zn,, where N; is the order of g;. The element g € G corresponds to the unique
1 T2

I-tuple (z1,z2,...,71)T € Zn, X -+ Zn, satisfying g = g7g5%-+-g;'. We will discuss the
efficiency of establishing and computing this isomorphism at the end of Section 4.

3. Some Technical Results

Lemma 1 Lel g be a prime power, G a finite Abelian group having order dividing g, and
{a1,...,am} a generating set for G. Define the mapping T : Z7' — G by T(Z1,...,Tm) =

28 Decomposing finite abelian groups

Zom

ay' -+ apm. Then 7 is a surjective homomorphism, and thus Z7' /K = Im(1) = G, where K

denotes the kernel of 7.

Proof. Mapping 7 is well-defined since the order of each a; divides ¢. It is surjective since
every element in G can be written in the form a7*---aZ> for some integers z1, ..., T, satislying
that 0 < z; < ¢ for all ¢ = 1,...,m. It is a homomorphism since 7(x +y) = 7(x)7(y) for all

X,y € Z7 0.

A nonsingular integral matrix U is called unimodular if U has determinant +1. Clearly, U
is unimodular if and only if U~! is unimodular. More on unimodular matrices can be found
in [10].

The following operations on a matrix are called elementary (unimodular) column (row)
operations: 1. exchanging two columns (rows); 2. multiplying a column (row) by -1; 3. adding
an integral multiple of one column (row) to another column (row).

For an integral m X n matrix A, size(A) is defined to be mn + Zi,j(l + [logy (| (As5)|+1)]).

Lemma 2 For any integral matriz A, one can find in time polynomial in size(A) using
elementary row and column operations unimodular matrices U and V such that UAV =

[10) 8] where D = Diag(dy,...,dy) with positive integers such that dy|ds|...|dy.

Proof. See [11] O.

For a matrix M, let intcol(M) denote the set of vectors that can be obtained by taking
integral linear combinations of columns of M.

Lemma 3 Let g be a prime power and k a positive integer. Let K be any subgroup of Z’;.
Given any generating set for K, we can in time polynomial in k, logs(q), and the size of the
generating set, find elements y1,...,y; € Z’;, so that Z’;/K =n1+K)® - &y +K).

Proof. (Adapted from Algorithm 4.1.3 in [12].) In this paper, we assume that the elements
of Z’; are column tuples. Clearly, ey, ..., e, generate Z’qc where e; is the ith column of [, the
k x k identity matrix. Hence, e; + K, ..., e, + K generate Z’;/K. Let x = (z1,...,z1)T € ZF.
Note that 2?21 zj(e; + K) = K if and only if x € intcol(M) where M = [gl;|A] with A
being a matrix whose columns generate K. (Here, the entries of A are treated as elements of
Z rather than Z,.)

By Lemma 2, we can find in time polynomial in size(M) (i.e. polynomial in k, log,(q), and

size(A)) unimodular matrices U and V such that U"*MV = 10) 8
matrix with diagonal entries dy, ..., d,, such that dy|da|...|d,,. Since V is unimodular, we see
that (zy,...,zx)" € intcol(M) if and only if (z1, ..., zx)? € intcol(M V). Hence, Z?ﬂ zj(e; +
K) = K if and only if (21, ...,zx)7 € intcol(MV).

where D is a diagonal

Kevin K. H. Cheung and Michele Mosca 29

For each i = 1,...,k, set a; = (Uy;, ..., Ur;)¥. Then,

)=

((L’lUjl + $2Uj2 + -+ wkUjk)(ej + K) =K

k
ij(aj—i—K):K f=+4
j=1

o
Il
-

U(zy, ..., zt)" € intcol(MV)
(€1, ...,zx)" € intcol(U"MV).

g
g

Since UT'MV = [g 8], we see that Z?:l zj(a; + K) = K if and only if d;|z; for

i=1,..m, and x; = 0 for i = m + 1,...,k. Note that we must have m = k. Otherwise,
ay, + K will have infinite order, contradicting the fact that Z’; /K is a finite group.

Note that if d; = 1, then a; + K = K. Let r be the smallest index such that d, > 1.
Set y; = a;1,—1 for ¢ = 1,..,] where [= m — r + 1. Tt is clear that (y; + K),...,(y; + K)
still generate Z’qc /K and y; + K has order d;jy,_1 for ¢ = 1,...,1. Therefore, if 0 < v; <
ord(y; + K), then v1(y; + K) + - - - + v/(y; + K) = K implies that v; = 0 for all . Hence,
ZX/K =(y1+K)® - & (y+ K) O.

Lemma 4 There exists a quantum algorithm that given integers q and k, and a function f
defined on Z’; fulfilling the hidden subgroup promise with respect to some subgroup K (here,
K={se¢ Z’; | f(x) = f(x+s) forallx € Z’; 1), outputs a generating set for K with probability
1 — € in time polynomial in k, log(1/€), log(q), and in time required to evaluate f.

Proof. See, for instance, [4] O.

Theorem 4 Let a be an element of a group G. The order r of a can be found in bounded-error
quantum polynomial time.

Proof. See [13] (or [4]) O.

Using Theorem 4, one can deduce the result by Shor [1].
Theorem 5 Fuactoring can be solved in bounded-error quantum polynomial time.

4. Decomposing Abelian Groups

By Theorem 3, we know that we can decompose a finite Abelian group into a direct
product of cyclic groups of prime power order. This problem was discussed briefly in [5]. We
will make four reasonable assumptions on the group G. These assumptions will be sufficient
for our algorithm to work.

1. We have a unique binary representation for each element of GG, and this representation
has length in O(log(|G|).

2. Using the binary representation, for any a € G, we can efficiently construct a quantum
network for implementing U, : |y) — |ay).

30 Decomposing finite abelian groups

3. We can efficiently find a generating set for G. That is, in time polynomial in log(|G|)
and log(1/¢), we can find elements aj,as,...,ar such that, with probability at least
1 — ¢, the elements generate G.

4. The orders of the generators are of prime power order.

The first assumption is essential for quantum interference to occur, since the several com-
putational paths leading to the same group element will interfere quantumly if and only if
the group element is represented by the same physical state (i.e. string) regardless of which
computational path is taken. So, for example, this algorithm might not work for groups where
we do not know how to test the equality of two group elements.

To meet the third assumption, it suffices to have an upper bound of 2™ on the size of the
groups we work with for some m € O(log|G|) and that we can efficiently sample elements
of G almost uniformly at random. (If we do not have such a bound, we can easily devise a
procedure that tries an increasing sequence of values for m and still has expected running
time in O(poly log|G|)). Let H be a proper subgroup of G. Then there are at least two
cosets of H. If we randomly sample an element z from G, then with probability at least 1/2,
the subgroup spanned by x and H will have size at least twice that of H. Hence, it takes an
expected number of at most (1/(1/2))m = 2m samples to obtain a generating set F for G
and therefore 2m + ¢,/m samples will find a generating set with probability in 1 — ¢° for some

€ (0,1) (by a Chernoff bound.)

We may also assume that the orders of the elements are a prime power. Let a be an
element in F with order rs where (r,s) = 1, r # 1 and s # 1. Note that r and s can be
determined efficiently as a result of Theorem 4 and Theorem 5. By the Euclidean algorithm,
we can find integers a, 3 such that ar + 3s = 1. Thus (a")*(a®)? = a. Hence, replacing
a with o and a® still leaves us with a generating set. We repeat this procedure until each
element in F has prime power order.

In order to satisfy the second assumption, note that if we know the order r of a, we can
I = ¢"~! and therefore efficiently perform the uncomputation needed
to implement U, reversibly.

efficiently compute a~

By Theorem 1, we have G = G, ®--- 8, where p; isa prime foralli =1,...,l and G, is
a Sylow p;-subgroup of G. Let S; be the set of all the elements in F having order a power of
the prime p;. For a € §;, let K, denote the (cyclic) subgroup generated by a. By Theorem 2,
we have K, = K, »---# K, where K,, <G, foralli =1,...,1. Since |K,| is a power of p;,
we must have K, < Gp,. Thus §; C Gp,. Since F generates G, S; generates Gp,. Hence, we
can first find the direct product representation for each of the Sylow p-subgroups of G and
then take the direct product of these subgroups to obtain a direct product representation of
G. We may therefore assume without loss of generality that G has prime power order. (It is
not necessary to do so, but the analysis is simpler, and implementations would require smaller
quantum registers.)

Theorem 6 There is a quantum algorithm with the following properties. Given any finite
Abelian group G of prime power order that satisfies assumptions 1,2,3 and 4, and an € > 0, the
algorithm runs in time polynomial in log(|G|) and log(1/€) and outputs elements g1, ..., € G
such that with probability at least 1 — e, G = (g1) e --- o (g;}.

Kevin K. H. Cheung and Michele Mosca 31

Proof. The algorithm is as follows.

1. Find a generating set {ai,...,ar} of the group G. This can be done efficiently by
assumption 3.

2. Compute the maximum order ¢ = p” of the elements aj,...,ax. This can be done
efficiently by Theorem 4.

3. Dehmne f: L’;” — G by mapping X = (z1, ...,ar:k)T to fix)=ay" ---a," . Apply Lemma 4
to find a generating set for the hidden subgroup K of Z’; as defined by the function f.
This can be done with error probability at most € in time polynomial in log(|G|) and

log(1/e€).

4. Apply Lemma 3 to obtain elements yi,...,y; € Z& /K so that ZF /K = (y; + K)&--- &
(y1 + K). This can be done in deterministic polynomial time.

5. Compute g1 = f(y1),.-,g1 = f(y1). By Lemma 1, G = (g1) ®--- e {g;). This can be
done in deterministic polynomial time.

6. Output the set {g1,...,q1 }-

a.
By Theorem 4, we can find the order N; of g; for j = 1,2,...,[, in bounded-error quantum
polynomial time. The group G is therefore isomorphic to Zy, x - - -Zpy,, with the element

g corresponding to the unique I-tuple (z1,22,...,%;)" satisfying g = g7¢5% - g;"'. We can
efficiently compute g7'g3 - - - g;"* given (z1,z2,... ,2;)", and this suffices for many purposes.
If we wish to map efficiently g = g7*¢5% - -~ g;"* to (z1,22,... ,2;)7, then we can apply Lemma
4 to find the hidden subgroup of the function f : Zf;rl — G that maps (xg,1,...,2;)T to
97" g g

Acknowledgements

The authors thank the anonymous referees for helpful suggestions on improving the exposition
of the paper. We are also very grateful to Edlyn Teske for help with the class group results
and for making other helpful suggestions.

Research of the first author was supported by NSERC PGSB. Research of the second
author was supported by NSERC, MITACS, ORDCF, and PREA.

References

1. P. W Shor (1997), Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J. Comput., 26, pp. 1484-1509.

2. U. Vazirani (1997), UC Berkeley Course CS294-2 Quantum Computation Fall 1997. Lecture notes
last downloaded on June 21, 2001 from http://www.cs.berkeley.edu/"vazirani/qc.html.

3. P. Hgyer (1999), Conjugated operators in gquantum algorithms, Phys. Rev. A, 59, pp. 3280—
3289.

32

4.

Decomposing finite abelian groups

M. Mosca and A. Ekert (1999), The hidden subgroup problem and eigenvalue estimation on
a quantum computer, in C. P. Williams, editor, Proceedings of the 1st NASA International
Conference on Quantum Computing and Quantum Communication, Palm Springs, USA, Lecture
Notes in Computer Science, 1509, pp. 174-188, Springer (Berlin).

M. Mosca (1999), Quantum Computer Algorithms, D. Phil Thesis, University of Oxford.

J. Watrous (2001), Quantum algorithms for solvable groups, Proceedings of the 33rd ACM
Symposium on Theory of Computing, pp. 60-67.

H. Cohen (1993), A Course in Computational Algebraic Number Theory, Springer-Verlag
(Berlin).

M. Jacobson (1999), Subezponential Class Group Computation in Quadratic Orders, Doctoral
Thesis, TU Darmstadt.

J. A. Beachy and W. D. Blair (1990), Abstract algebra with a concrete introduction, Prentice-

Hall In (New]

10.
11.

12.

13.

3\
Hall Inc. (New Jersey)-
A. Schrijver (1986), Theory of Linear and Integer Programming, Wiley and Sons (England).
R. Kannan and A. Bachem (1979), Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matriz, SIAM J. Comput., 8, pp. 499-507.
H. Cohen (1991), Advanced Topics in Computational Number Theory, Springer-Verlag (New
i V0 I Y
IUI‘K}.
D. Boneh and R. J. Lipton (1995), Quantum cryptanalysis of hidden linear functions (extended
abstract), in D. Coppersmith, editor, Advances in Cryptology: CRYPTO 95, Lecture Notes on
Computer Science, 963, pp. 424-437, Springer (Berlin).

