
Journal of Data Intelligence, Vol. 4, No. 1&2 (2023) 149–164
c© Rinton Press

AN INNOVATIVE FRAMEWORK FOR SUPPORTING BIG-
MOVING-OBJECTS TRACKING, ANALYSIS AND MINING

EFFECTIVELY AND EFFICIENTLY

ALFREDO CUZZOCREA

iDEA Lab, University of Calabria
Rende, Italy

alfredo.cuzzocrea@unical.it

CARMINE GALLO

iDEA Lab, University of Calabria

Rende, Italy
carmine.gallo@unical.it

ENZO MUMOLO

DIA Department, University of Trieste

Trieste, Italy
mumolo@units.it

KRISTIJAN LENAC

Faculty of Engineering, University of Rijeka & Center for Artificial Intelligence and Cybersecurity

Rijeka, Croatia

klenac@riteh.hr

Big moving objects arise as a novel class of big data objects in emerging environments.

Here, the main problems are the following: (i) tracking, which represents the baseline

operation for a plethora of higher-level functionalities, such as detection, classification,
and so forth; (ii) analysis, which meaningfully marries with big data analytics scenarios.

In line with these goals, in this paper we propose a novel family of scan matching
algorithms based on registration, which are enhanced by using a genetic pre-alignment

phase based on a novel metrics, fist, and, second, performing a finer alignment using a

deterministic approach.
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Optimization

1. INTRODUCTION

Nowadays, a great deal of interest is growing around the mobile object tracking problem,

especially due to the emerging integration between robotics and big data applications (e.g.,

[35, 36, 37]). Following this trend, several mobile object tracking approaches have recently

appeared in literature, considering different aspects of the target issue, such as coverage, com-

pleteness, effectiveness, efficiency, etc. The category of algorithms that goes under the name of

scan-matching (e.g., [38, 39, 40]) supports mobile objects positioning in indoor environments

based on the acquisition of maps of the environment surrounding the target mobile objects.

Maps are acquired from two successive points in the objects path using a range-scanner sensor

positioned on mobile objects themselves. The first acquisition is called reference scan and the

second actual scan. The actual scan is sometimes also called new scan. By overlapping the
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maps acquired at two successive positions on the path it is possible to estimate the relative

movement of the object between these two positions.

In this paper we describe a family of scan-matching based registration algorithms called

HGLASM-g which perform scan-matching based on a hybrid approach. First, an approximate

pre-alignment of two adjacent maps is performed via a new genetic optimization method called

GLASM-g; then a variant of the Iterative Closest Point (ICP) algorithm is applied to pre-

aligned maps to obtain the final overlap.

In other proposed genetic scan-matching pre-alignment algorithms, the fitness functions

are based on metrics between actual and reference scan points that require to know the

correspondence of point pairs and the translation and rotation between the two scans. How-

ever, when scan acquisitions include noise, correspondence errors may arise. Moreover, also

translation and rotation corrections can lead to errors when they are too large.

In order to overcome such issues, in this paper we propose a novel metric which does

not require neither points pair correspondences nor translations and rotation corrections.

Indeed, our metric is based on lookup tables built around the reference scan points. The

fitness function weights the hits of actual scan points in the lookup table. The genetic pre-

alignment then finds the scan with the highest fitness within a search space of given size. This

guarantees also the maximum robustness towards both the acquisition errors and the Initial

Position Errors (IPE). It is well known that ICP performance depends on the quality of points

pair correspondence and on the accuracy of the starting point estimation. We overcome this

limitation by choosing the initial guess of ICP via genetic pre-alignment, which makes it close

to the true solution. This way, point correspondence, translation and rotation estimations

are performed correctly and, as a consequence, iteration failures are reduced. On the other

hand, even adaptive metaphors, perhaps developed in different contexts (e.g., [46]), can be

exploited to this end.

The algorithms described in this paper form a family in the sense that each algorithm is

characterized by different values of the target search space size. Each size allows us to solve

different registration problems and hence different mobile object tracking scenarios. If the

search space size is small, in fact, the algorithm can recover from small errors only, while, if the

search space is higher, also higher errors can be recovered. However, computation complexity

increases as the search space size gets higher.

A similar hybrid algorithm is described by Martinez et al. in [2]. Therefore, we consider the

latter algorithm in a comparative approach, and we show that main scan-matching features

are improved thanks to the hybrid algorithms proposed in this paper. Furthermore, our

approach is able to recover from greater initial positioning and acquisition errors. The key for

improvement is the definition of a new metric used for computing the fitness function of the

genetic procedure. The proposed target scan-matching algorithm is described for the 2D case,

but it can be used in the 3D case as well. Improvements obtained with our proposed algorithm

are measured both in terms of accuracy and noise robustness. Indeed, the estimation of the

initial position of target mobile object often comprises significant errors. For instance, when

the mobile object is equipped with a legged or wheeled locomotion, and the initial position

is estimated by means of odometric approaches, there may be slippage with respect to the

floor, which entails significant errors in the initial position of the object. As a consequence,

accuracy of algorithms is seriously affected by IPE.
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Fig. 1. Case Study: A Reference Architecture for Supporting Big Data Analytics in Computer

Vision Environments for Security Analysis.

The paper is organized as follows. In Section 2, we report on a relevant case study that

confirms the benefits of our proposed framework, by focusing in the issue of supporting big

data analytics tools in computer vision environments for security analysis. Section 3 provides

an overview on the huge research in the field of scan-matching approaches, by dividing it

into three main areas: ICP, probabilistic and genetic approaches. Here, as regards genetic

approaches, we also provide the principle of the lookup metrics we use in our algorithm. In

Section 4, we briefly describe the problem and introduce basic terminology. Section 5 describes

how evolutionary algorithms and ICP can be used to solve the investigated problem. In Section

6, we introduce the proposed hybrid solution. Section 7 contains a collection of open problems

and future research directions related to the investigated research area. Finally, in Section 8,

concluding remarks and future works are reported.

2. CASE STUDY: BIG DATA ANALYTICS TOOLS IN COMPUTER VISION

ENVIRONMENTS FOR SECURITY ANALYSIS

In this Section, we describe how our proposed framework GLASM-g can be effectively used in

order to support big data analytics in computer vision environments for security analysis, thus

depicting a reference case study. Figure 1 shows the reference architecture of the mentioned

case study, namely a big data analytics architecture devoted to support security in computer

vision environments, particularly oriented to facial recognition. As shown in Figure 1, from

the facial recognition streams, the whole architecture finally aims at devising security rules

via big data analytics. These rule finally define the security policy of the target environment.

The GLASM-g framework can be successfully exploited with the core layer of the refer-

ence architecture, specifically in a Cloud-based execution mode as to improve efficiency and

scalability (see Figure 1).

In more details, looking at Figure 1, in the reference architecture the following layers are

identified:

1. Big Moving Object Layer This layer is the one where the target big moving objects are

located.

2. Cloud-Based Big-Moving-Object Scan-Matching Layer In this layer, the GLASM-g frame-
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work executes in a Cloud-based mode.

3. Big Data Lake Layer This layer contains the reference big data lake of the overall

architecture, implemented on top of a given well-understood computational platform

(e.g., Hadoop).

4. Big Data Analytics Layer In this layer, the reference big data analytics tools, for instance

those based on machine learning, are used to extract actionable knowledge for security

analysis.

5. Security Layer This layer embeds the security rules that are derived from the big data

analytics procedures implemented in the Big Data Analytics Layer.

As discussed in this Section, our proposed framework GLASM-g not only provides signifi-

cant contributions in the context of scan-matching problems over moving objects, but also it

can be effectively and efficiently exploited in the context of a real-life Cloud-based architecture

for security analysis in computer vision environments.

3. RELATED WORK

A large literature is available concerning the scan matching problem. In this Section we briefly

describe some relevant approaches, namely the ICP, the Probabilistic and the Genetic-based

scan matching approaches. The Section concludes with a highlight of Hybrid approaches.

3.1. ICP Scan-Matching Approaches

Since the ICP approach was proposed initially by Besl and McKay in [3], numerous variants of

the original technique have been proposed. The variants mainly concerned the following issues:

Selection of points; Correspondence weighing; Association of data; Rejection of anomalous

pairs of points. The variants modify different characteristics of the original algorithm, for

example its speed, the stability of the solution and the management of local minima, its

robustness to noise or anomalous values and the maximum initial error.

Data acquired by range sensors describe the environment considering two or three dimen-

sions. The environment seen by the sensor in adjacent positions along the path of the mobile

object is described by a sequence of points. Data can be elaborated point by point or using

a suitable transformation of the sequences. The sensors measures the distance of the object

closest to the sensor itself along its current orientation. The orientation of the sensor is peri-

odically changed. The environment map seen by the sensor is represented by a series of points

described by two (distance of the closest point, polar angle) or three parameters (distance

of the closest point to the sensor, polar angle, azimuth angle) depending on the dimension

considered. For example Park and Kee in [4] transformed the maps into the spectral domain,

while Censi et al. used a transformation in the Hough domain, [5, 6]. The advantage of a

comparison between the maps through a transformation of the maps into suitable domains is

that the amount of data compared to a point-to-point comparison is much less and therefore

the computational complexity of the comparison is less than that required by a point to point

comparison. On the other hand, the robustness and accuracy of the comparison worsen as

the level of structure of the environment increases.



Alfredo Cuzzocrea, Carmine Gallo, Enzo Mumolo, and Kristijan Lenac 153

Some of the proposed variants use various reference systems. For example, Lu and Milios

propose in [7] an ICP based on Cartesian coordinate frame called Iterative Dual Correspon-

dence (IDC). The IDC variant evaluates translation with ICP and the rotation with an iter-

ative matching-range-point. Their variant brings to an accurate estimation of the translation

and rotation but its efficiency is lower than that of [5, 1]. Minguez et al. describe in [8] the

MbICP variant. The family of ICP algorithms uses the minimum Euclidean distance crite-

ria to establish the points correspondences and to apply the least squares for estimating the

pose. MbICP adopts a new metric distance, which takes into account both the translation

and rotation error to improve the rotation estimating.

Diosi et al. propose in [9] an ICP variant called Polar Scan Matching based on polar

coordinate frame. Unlike ICP or MbICP, the Polar Scan Matching separately estimates the

robot pose including the rotation estimation and translation estimation at each iteration. The

problem of Polar Scan Matching is that it fails if two consecutive scans in polar coordinate

frame have similar distribution.

Other variants concern the devices used to acquire the maps. Normally these are laser

devices, more rarely acoustic sensors [10, 11] or infrared sensors [12].

In the case of laser sensors, the distance of the robot with the obstacles in the environment

is estimated by sending a laser pulse and measuring the arrival time of the impulse reflected

by the obstacle. The distance to the nearest obstacle is given by the minimum arrival time.

In this way we obtain the map of the room where the mobile object is located, also including

any fixed objects. In the context of locating a mobile object, the range-finder sensors are

positioned on the robot.

3.2. Probabilistic Scan-Matching Approaches

The approaches described so far are essentially variants of the Iterative Closest Point tech-

nique. These techniques have difficulty estimating translation and rotation correctly at the

same time. Another limitation is related to noise management and uncertainty introduced by

the range sensors used. These limitations were one of the reasons that led to the development

of probability-based scan matching approaches. For example, Biber and Strasser in [13, 14]

propose using the Normal Distribution Transform (NDT) to describe data collected with laser

scans. As in ICP approaches there is a reference scan and a new scan and the purpose of the

algorithm is to find the displacement and rotation that allows the two scans to overlap. In

this case, the two-dimensional space is divided into cells of equal size. For each cell, all the

occupied points contained in it are considered, their average q and their covariance matrix

Σ are computed. With these statistical parameters, the probability of each two-dimensional

point x of the actual scan is evaluated, according to a Gaussian bivariate distribution:

p(x) =
e−

(x−q)T Σ−1(x−q)
2√

(2π)2|Σ|
∼ e−

(x−q)T Σ−1(x−q)
2 (1)

In this way, a continuous and differentiable description of the points coming from the

range sensor is obtained, which can be used to minimize cost factors using classic or numerical

methods. The displacement and rotation between two scans correspond to the minimization

of a continuous function defined on the rotation and translation between previous and actual

scans. Biber and Strasser propose the use of Newton’s iterative algorithm to minimize the
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function (1). Newton’s algorithm is particularly suitable for NDT-based approaches because

it requires the calculation of first and second order derivatives that are simply obtainable

with these approaches. In [15] Montesano et al. propose another probabilistic formulation

of the problem of scan matching. The approach is divided into two phases: the probabilistic

calculation of the correspondences and the estimate of the relative displacements between the

two scans. The correspondences between the points of the two scans are evaluated using the

Mahalanobis distance between the points. The estimate of the relative displacement between

the two scans is obtained through an iterative approach based on the least squares criterion.

In [16] Olson presents another probabilistic approach for solving the scan matching problem.

The algorithm proposed by Olson is based on the cross-correlations between two laser scans.

The algorithm maximizes the probability that two scans overlap. To avoid local maxima, the

cross correlation algorithm searches for the maxima in the space of parameters obtained from

additional sensors such as odometric sensors.

Recently the NDT approach has been extended to three dimensions by many authors. For

example Magnusson in [17] describe the 3D-NDT algorithm for navigating an autonomous

vehicle in a mine. In [18] Magnusson et al. compared several recently proposed three-

dimensional scan matching algorithms. The results confirm that the three-dimensional Nor-

mal Distribution Transform algorithm improves the convergence characteristics even with the

increase in initial position errors. Takeuchi and Tsubouchi proposed in [19] an extension of

Biber’s algorithm into a three-dimensional space, dividing the space into voxels and assigning

each voxel a normal probability distribution. The authors experiment with the algorithm in a

vast indoor space. In [20] Ulas and Temeltas introduce an algorithm that extends the 3D-NDT

approach by inserting different layers that depend on how the environment is structured. In

each layer the cells are of different sizes. The size of each individual cell is automatically

determined by the input data. Unlike the Biber and Strassen algorithm, the function to

be minimized is based on the Mahalanobis distance. The probabilistic approaches described

above are based on good initial assumptions.

Su Pang et al. report in [31] a comparison between NDT and ICP under realistic condi-

tions as two prevailing approaches. They conclude that the two scan matching approaches

are similar in terms of accuracy. However, NDT is more robust versus environmental modifi-

cations.

The core concept behind NDT and our idea is very similar: to construct a 2D plane

representation with cells of constant size where the cells contain a probability density of

measurement being close to points of the reference scan. The main difference is that NDT

uses Newtons algorithm to iteratively search for the optimal solution, requiring additional

steps in the preparation of the 2D plane representation, while we use a genetic algorithm

directly with a lookup table.

3.3. Genetic-Based Scan-Matching Approaches

The matching of successive laser scans has been accomplished by several authors using genetic

optimization (GA). The main advantage of GA is that it can explore all the solution space

avoiding local minima and is more robust to initial alignment errors. Its disadvantage is that

its computational complexity is usually high.
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3.3.1. Fitness Definition based on Squared Error Metric

The alignment between the two scans by genetic optimization is obtained by randomly chang-

ing, from one generation to the next, one scan with respect to the other according to the min-

imization of an objective function, i.e. the fitness. The most important issue of this type of

matching is the definition of the fitness to be minimized. The most intuitive fitness definition

is that reported in Equation (2). Yamany et al. [21] and Robertson and Fisher [22] use the

mean squared error objective function. Martinez in [2, 23] introduce the following definition:

Fitness =

N∑
k=1

ej(k)/N (2)

where N is the number of points and ej is the distance between the point k in the reference

and the new scans.

3.3.2. Fitness Definition based on Lookup Metric

However to calculate Squared Error Metric based fitness, it is required to know the corre-

spondences between the points of the two scans. For this reason Lenac et al. [24] propose a

genetic scan matching algorithm based on a binary lookup table based fitness function called

GLASM, which avoids the points pair correspondences. In Figure 2 the idea of the proposed

fitness function is depicted. In short, each reference point is surrounded by squares or circles

(in this case we consider circles of radius radius). The points of the new scan that hit the

circles are counted. Using this concept of scan similarity we do not have to compute point

correspondences.

The lookup table is built using the reference (i.e. previous) scan. The computation of the

fitness function based on the binary lookup table is described in Algorithm 4. As it is shown,

for each point of the new scan first a roto-translation is performed to bring the point in the

same reference frame as the lookup table, followed by a selection of the corresponding lookup

cell. The fitness is then incremented only if the lookup cell is marked with value 1, i.e. there

was at least one point of the reference scan in the vicinity. A detail of the lookup table is

shown in Figure 5, right panel.

Input: B // new scan
Output: fitness
fitness = 0;
for (each point p of B) do

// roto-translation to lookup reference frame
p′ = changereferenceframe(p)
if lookup(p′) = 1 then

fitness+ +;
return fitness;

Fig. 3. Binary Lookup Fitness Computation

Other interesting approaches that are related to our research are [51, 52]. In particular,

[51] proposes a novel GP-based method (GPFD) to extract feature vectors and evolve image
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Fig. 2. Lookup-based laser scan scheme.

descriptors for image registration without supervision. The method designs a set of simple

arithmetic operators and first-order statistics to construct feature descriptors in order to re-

duce noise interference. [52] instead introduces a Particle Swarm Optimization (PSO) sample

consensus algorithm for remote sensing image registration. Different from Random Sample

Consensus (RANSAC) algorithm, the proposed solution directly samples the modal transfor-

mation parameter rather than randomly selecting tentative matches. Thus, the method is

less sensitive to the correct rate than RANSAC, and it has the ability to handle lower correct

rate and more matches. Meanwhile, PSO is utilized to optimize parameter as its efficiency.

3.4. Hybrid Approaches

Several recent works have shown that the combination of different optimization approaches for

estimating the rotation and translation of one scan with respect to the other can increase the

robustness and accuracy in the registration of laser scans. Moreover, Martinez in [2] shown

that the use of the cascade genetic optimization - ICP for estimating the translation and

rotation of the second scan with respect to the first one improves the accuracy of ICP alone.

They call their fitness function as Polar Fitness Function. Luck et al. have shown in [25] that

the cascade Simulated Annealing - ICP leads to a better overlap of the two recordings with

better iteration convergence. The hybrid pre-registration approach described by Lomonosov

et al. in [26] is applicable to arbitrarily oriented surfaces and is composed by genetic search

followed by iterative alignment. In [24] Lenac et al. described a hybrid genetic scan matching

based on binary lookup table. Depending on the search space size dimension, the algorithm

can be used both in local and global navigation applications. The algorithm described in this

paper aims at increasing accuracy and robustness with respect to [24].
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4. BACKGROUND CONCEPTS

We are given two sets of bi-dimensional points A = a1, . . . , aN and B = b1, . . . , bM , where

ai and bi are 2 × 1 column vectors. The two sets A and B are scan descriptions of the

environment as seen by a range sensor put on a mobile object from two points PA and PB .

The first scan represented by the set A is the reference scan while B is the new scan taken

after a movement of the mobile object. If we overlap the two scans, that is by determining the

optimum rotation and translation of the set B wrt the set A, an estimation of the movement

can be obtained. First of all, points correspondences must be estimated between A and B. A

generic correspondence search algorithm takes the points from the two scans, pik , i = 1 . . . N

and pjk , j = 1 . . .M , and establishes a set of k corresponding points pairs (pik , pjk), k =

0 . . .K where 0 ≤ K < M · N . A straightforward and fast algorithm for establishing point

correspondences between two scans simply considers the polar coordinates of the reference

and the actual scan points projected in the same coordinate frame of the reference scan. The

scan is then traversed with increasing angle and points that belong to the same angle step

which are closer than a distance threshold are matched. An example of the correspondence

between the points ai and bi obtained with such ’polar coordinate’ approach is reported in

Figure 4 by the lines connecting the points. This ’polar coordinates’ approach has been used

in [2] in their hybrid two phase genetic + ICP approach for the genetic phase. However the

experiments have shown that using this simple approach in iterative correspondence point

algorithms leads to convergence failures and poor performance.

Fig. 4. An example of point pair correspondences.

5. GENETIC PRE-ALIGNMENT PHASE

Evolutionary Algorithms, such as for example Genetic Algorithms (GA) or Particle Swarm

Optimization (PSO) algorithms are heuristic processes inspired by the natural evolution in

biological systems. Evolutionary optimization algorithms are popular in solving complex or

nonlinear problems such as for example optimization or classification. These algorithms are

characterized by some key concepts, such as the generation of an initial number of solutions,

called the population or swarm of individuals, the calculation of the function to optimize,
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called fitness, and the generation of a new population until the best individual survives.

The procedures for initial creation and generation of the new population are different in

the various versions of the evolutionary algorithms. Since in GA each solution is encoded

in binary notation, GA performs basically discrete optimization. PSO instead represents the

solutions as particles with position and speed encoded as real variables. All the particles form

a swarm, while positions are the real variable to be optimized.

The proposed hybrid algorithm consists in the discrete estimation of translation and ro-

tation by means of an evolutionary algorithm followed by a fine optimization by means of a

deterministic algorithm. In has to be remarked that the discrete variables (x, y, φ) are related

to the discretization of the search space. Sub-optimal values of the variables can be obtained

by discrete optimization algorithms and a finer optimization by continuous optimization al-

gorithms. In this paper we perform discrete optimization with Genetic Algorithms and finer

optimization with Iterative Closest Point algorithms which are very efficient if the starting

point is close to the true value.

6. A NOVEL FAMILY OF ENHANCED HYBRID SCAN MATCHING ALGO-

RITHMS

The pre-alignment step is inspired by the algorithm called Genetic Lookup based Algorithm

for Scan Matching (GLASM) described by Lenac et al. in [24]. The algorithm described in

[24] uses a metric based on a binary lookup table.

In the proposed approach we first improve GLASM by using the 8-bit encoding to store

the probability density of measurements being close to points of reference scan in the lookup

table. We call this improved variant of the existing binary GLASM technique as GLASM-g.

Then, this improved variant of the existing GLASM technique is combined with MbICP [8].

The new scan B, evaluated starting from the odometric estimation of robot movements, is

fed as input to GLASM-g, together with the previous scan, A. The output of GLASM-g

x′, y′, φ′, is then used as starting point of the MbICP algorithm that compares A and B, thus

producing the final output x, y, φ.

Fig. 5. A detail of a lookup table surrounding an isolated point of the reference scan. Left: Radial,

Gradual. Right: Squared, Binary.

In Figure 5 the difference between the two algorithms is shown: in the GLASM-g version

the lookup table is displayed as a gray scale image, while in the GLASM version the lookup

table is seen as a black and white image.
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While in the GLASM lookup table each cell was either 1 or 0 the GLASM-g table can

contain a range of values that model the probability of matching a point using a normal

distribution. In the proposed implementation 256 different values are used requiring 1 byte

of memory per cell.

The computation of the fitness function works as follows. For each point of the new scan

a roto-translation and a discretization are performed to bring the point in the same reference

frame of the lookup table and select the corresponding cell. However, once the cell is selected,

instead of simply incrementing the fitness with a binary value, the fitness is incremented with

a value corresponding to the probability of matching a point that was saved in the lookup

table. A representation of this probability is shown in Figure 5, left panel, with gray levels.

In Algorithm 1 we report the pseudo code of the fitness computation used in GLASM-g.

Algorithm 1 GLASM-g Fitness Computation

Input: B // new scan
Output: fitness
fitness = 0;
for (each point p of B) do

// roto-translation to lookup reference frame
p′ = changereferenceframe(p)
fitness = fitness · lookup(p′);

return fitness;

The fitness function is essential for the proper functioning of genetic optimization algo-

rithms. For each individual and for each execution it is computed only once. Its correct

definition is therefore fundamental also from the point of view of computational complexity,

given that a fitness function that requires simple calculations translates into a fast execution

of the entire algorithm, leading to an exploration of a greater search space with a greater

success ratio.

Fig. 6. Search space size of the algorithms small (A), medium (B), and large (C).

The goal of two-dimensional scan matching algorithms is to obtain the path of a mobile

object by estimating its relative movements during the path. In other words, we can speak of

a space (translationX × translationY , rotation) within which the scan matching algorithm

searches for its estimate.
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The individual algorithms withing the family differ in the search space size and the pa-

rameters selected for the genetic algorithm. Typically, in order to cover a larger search space,

a larger population is used, as well as the number of generations and runs of the genetic

algorithm.

In this paper we selected and studied three different algorithms from within the family

that we simply call small, medium, and large. The search space size and the combination of

genetic parameters of the selected algorithms are depicted in Figure 6 and listed in Table 1.

Table 1. Search space size of the selected algorithms and the corresponding parameters used for

the genetic algorithm

Algorithm Search Space Size Genetic Configuration

(dX, dY, dRot) (pop× gen× runs)

small (A) ±0.3m, ±0.3m,±17.2◦ 20× 6× 1
medium (B) ±1.0m, ±1.0m, ±57.3◦ 100× 10× 1
large (C) ±2.0m, ±2.0m, ±180.0◦ 200× 12× 2

The search space of the small algorithm is sufficient to recover from small initial errors,

while medium and large are able to correct progressively larger errors, at the cost of com-

putational time. The large algorithm is able to recover from arbitrary orientation errors and

large translation errors. The search space is obviously centered on the reference scan.

For the refinement step we selected the MbICP algorithm [8] which determines the cor-

respondences between the points of the current scan and the reference scan considering both

the rotation and the distance between the points. The algorithm has characteristics of accu-

racy and low calculation times. MbICP has better characteristics than other iterative scan

matching algorithms based on point correspondences, for example [27, 28].

7. OPEN PROBLEMS AND FUTURE RESEARCH DIRECTIONS

In this Section, we focus the attention on some open problems and future research directions

related to the more general topics concerning the issue of tracking, analyzing and mining big

moving objects.

Among the most relevant ones, we identify the following main research challenges in the

area:

1. Scalability Issues Systems and frameworks that manage big moving objects usually

face-off scalability issues, i.e. the aptitude of core algorithms to keep spatio-temporal

computational overheads low (or barely low) when the size of input increases. This is

a special feature of approaches that deal with big moving object tracking, analysis and

mining, as highlighted by recent studies (e.g., [51, 52]), and it will play more and more

a majority role in next-generation research.

2. Multidimensional Scan-Matching Scenarios While in our research we investigated two-

dimensional scenarios, multidimensional scenarios for scan-matching problems are, of

course, of great interested at now. This has also been pinpointed by some recent pro-

posals (e.g., [53, 54]). Indeed, actual models and methodologies must be meaningfully
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extended towards the most interesting multidimensional case that, indeed, arise in sev-

eral modern settings like, for instance, drones (e.g., [55]). In future, multidimensional

scan-matching scenarios will become more and more relevant for research experiences

in both the academic and industrial scene.

3. Privacy-Preservation Issues Big moving objects very often are built on top of sensitive

data. To become convinced about this, it suffices to think of the typical computer vision

application scenario represented by facial recognition systems. In this case, innovative

models, methodologies and algorithms proposed in this scientific area must comply with

the annoying issue of supporting privacy-preserving computations, i.e. computations

that preserve the privacy of sensitive data while accomplishing the main big moving

objects tracking, analysis and mining goals (e.g., [56, 57]). The latter one is, again, a

critical future research direction to be considered by forthcoming efforts.

4. Flexible Artificial Intelligence Methodologies As a matter of fact, flexible artificial intelli-

gence methodologies are conquering the scene, for instance those related to the emerging

explainable AI trend (e.g., [58]). In this respect, even the problem of tracking, analysis

and mining big moving objects can significantly take advantages from these method-

ologies, also in agreement with latest studies in the active literature (e.g., [59, 60]).

Therefore, one of the most probing research challenge of the future consists in grafting

flexible artificial intelligence methodologies into big moving object tracking, analysis

and mining problems.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a hybrid algorithm for the problem of scan matching. The

algorithm better solves some scan-matching problems as compared to state-of-the-art algo-

rithms, such as the problem of initial positioning errors and blocking the iterations in local

minima. The proposed algorithm introduces a fitness function based on the look up tables

whose content is used as a weight in the fitness calculation. Values in look up tables are

gradually modified starting from the reference position. The main reason is due to the new

metric adopted that allows to compare not just single points but an entire scan. This permits

to avoid the preliminary steps of point correspondence and the translation and rotation com-

putation, that introduce errors in classical scan matching algorithms. Future works will be

directed towards the extension of the described hybrid algorithms to the 3-D case, and higher

dimensions. Also, we plan to make our comprehensive framework suitable to the emerging big

data trend (e.g., [32, 33, 34, 47, 48, 49]), as to make it able of dealing with specific features

of such innovative settings, like also dictated by some recent studies (e.g., [41, 42, 43, 50]).
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