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False information in the domain of online health related articles is of great concern,
which has been witnessed abundantly in the current pandemic situation of Covid-19.

Recent advancements in the field of Machine Learning and Natural Language Processing
can be leveraged to aid people in distinguishing false information from the truth in the

domain of online health articles. Whilst there has been substantial progress in this space

over the years, research in this area has mainly focused on the sphere of political news.
Health fake news is markedly different from fake news in the political context as health

information should be evaluated against the most recent and reliable medical resources

such as scholarly repositories. However, one of the challenges with such an approach
is the retrieval of the pertinent resources. In this work, we formulate two techniques

for the retrieval of the most relevant authoritative and reliable medical content from

scholarly repositories which can be used to assess veracity of an online health article.
The first technique is an unsupervised method of generating queries from claims which

are extracted from an online health article. We propose a three-step approach for it and

illustrate that our method is able to generate effective queries which can be used for
retrieval of information from medical knowledge databases. The second method involves

a filtering approach for extracting the most relevant information for the claims. We
show how this can be achieved with the help of state of the art transformer models and

illustrate it’s effectiveness over other methods.

Keywords: Query Generation, Health Misinformation, Keyword Extraction, Information
Retrieval, Transformers

1. Introduction

One of the growing problems in today’s world is that of false information. The availability

of such information in the online world is staggeringly high that it is seen as a rising threat

to democracy and the economy of countries [1, 2]. Due to the abundance of fake information

found online, people are even starting to lose faith in governments [1]. One of the main

causes of the heightened impact of false information is the fact that online false information

spreads much faster [3] through exploiting cognitive biases. This is further aided by the rise of

social media [4], which enables people to share unverified facts and opinions in an unregulated

474



Pritam Deka, Anna Jurek-Loughrey and Deepak P. 475

manner.

The majority of work on automated online content verification has been focused on detec-

tion of political fake news and fake reviews [5, 6, 7, 8, 9, 10, 11, 12], while detection of health

misinformation using computational methods is a relatively new area of research. Health

misinformation can be defined as “a health-related claim of fact that is currently false due

to a lack of scientific evidence”[13]. Since more people are connected via the internet, the

exchange of information among people has increased and monitoring the trustworthiness of

the exchanged information becomes difficult. Checking health disinformation has become a

crucial task as people believe any facts they find online as the truth which may lead to serious

consequences. For example, regarding the Covid-19 disease it was reported by The Standard,

UKa that around 700 people died in Iran due to a fake information which claimed that inges-

tion of methanol helps in curing the disease. Another incident which raised concerns across

the world was when the USA president Donald Trump suggested injecting disinfectant to

treat Covid-19 as reported by EuroNews on 24 April, 2020b. Such information being spread

creates a lot of confusion in the society. Health-related information often caters to deep rooted

social as well as personal stigmas, making it sometimes invisible within the public discourse.

Much of medical fake news relates to traditional beliefs that have been prevalent for many

years regarding health while lacking any supporting scientific evidence. These may be ef-

fectively uncovered through contrasting health information against reliable medical sources.

For a layperson, verifying health misinformation is a difficult task as it has to be done by

someone with knowledge about health and medicine; this aspect makes it very distinct from

verification of political fake news. We believe that a very effective strategy to counter health

information would be to first identify the key claim within an article. Following this, the most

relevant and up to date reliable sources of information relevant to the claim may be searched

for supporting or refuting evidence.

Our Contribution. In this work, we first formulate a novel technique towards addressing the

task of generating queries from from health-related articles leveraging keywords/phrases in an

unsupervised way. The queries are designed for usage to retrieve relevant authoritative medical

resources to assess the articles veracity. We propose a three-step method for addressing the

unsupervised query generation task, which is evaluated with a new dataset curated for the

purpose of this study. We then address the task of retrieving the most relevant information

for the claims from a set of documents retrieved using the generated queries. We propose

a retrieval approach for this task which uses a transformer model to retrieve the relevant

information for the claims. We also show that domain specific transformer models are more

effective than generic models through an empirical evaluation using a publicly available dataset

for this specific task. A pictorial representation of the method is shown in Fig 1. All the

models that we have fine-tuned, along with two working applications based on our method,

are publicly available via the repository https://huggingface.co/pritamdeka.

2. Related Work

In this section we briefly summarize literature related to our tasks that are located within the

domain of health misinformation.

astandard.co.uk
bhttps://www.euronews.com/2020/04/24/donald-trump-suggests-injecting-disinfectant-to-treat-covid-19

https://huggingface.co/pritamdeka
standard.co.uk
https://www.euronews.com/2020/04/24/donald-trump-suggests-injecting-disinfectant-to-treat-covid-19
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Fig. 1. Representation of the proposed method

2.1. Health Misinformation

Although the problem of misinformation in health-related content has been known for a while,

using computational methodologies in this field has only started to gain attention in the past

few years.

Recent works such as [14] and [15] explored health news article contents in order to classify

them as reliable and unreliable. In both the works, various linguistic features and statistical

features such as word count are extracted from reliable as well as unreliable news articles.

These features are then used to build machine learning classifiers which can then classify

articles as reliable or unreliable. The difference between the techniques is that [14] used a text

classifying method, fastText [16] as another classifier for the same task. They experimented

with both the classifiers and found that both classifiers performed effectively.

The work proposed in [17], [18] and [19] deals with the detection of misinformation found in

online health forums. In the first two works, the authors use linguistic features extracted from

the comments and titles in these forums along with other features extracted from the users’

profiles. [17] proposes an approach for assessing the credibility of users and medical statements

posted by them in online health forums. The authors model the relation between credible

statements and trustworthiness of users using a probabilistic graphical model. To train a

machine learning model for classifying the statements as credible or not, they used a labelled

subset of statements whose ground-truth labels were derived from an expert medical database.

Similarly, [18] proposes a method for the detection of misinformative comments in online

health forums by applying a Random Forest classifier model with linguistic features and user

network characteristics as the input features. Both the aforementioned works use supervised

methods, however [19] presents an unsupervised method which identifies trustworthy answers
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by non-expert users for health-related questions in online health forums. The authors use

word2vec [20] to compute the embedding vectors for a question and it’s answers given by

various users. Along with a reliability score of the users, the distance between the question

and answer vectors is calculated. The answer having the minimum distance to the question

is considered the most trustworthy answer.

Research has also been carried out to deal with health-related misinformation found in

Twitter. The work by [21] proposes an approach to classify a health-related tweet as a rumor

or not by using various features extracted from tweets such as word count or sentiment along

with models such as Näıve Bayes, Random Forest and Random Decision Tree. A similar

work [22] proposes an approach to detect untrustworthy users in Twitter who are likely to

spread health-related rumors. The authors use sentiment and linguistic features extracted

from tweets and other features obtained from users’ profiles such as ’follows’ relationship

information. These features are then used with a logistic regression model to build a classifier

for trustworthy and untrustworthy users.

It can be noted that majority of the proposed work consider the medical content verifi-

cation as a classification task where various type of features extracted from the content or

relevant metadata are used as input to machine learning models. The common limitation of

those approaches is the fact that they assess the veracity of medical articles independently

from the existing authoritative and reliable medical knowledge, except as conveyed through

the labellings on the articles. Different from the aforementioned works, in [23] the authors

propose a fake medical news detection algorithm, which is based on the principles of evidence-

based medicine. For a textual document containing a medical claim, the algorithm retrieves

a relevant content from the Turning Research Into Practice (TRIP) databasec, which is then

used to verify the claim based on a predefined agreement score. The retrieval process uses col-

lection of medical phrases extracted from the document with the application of the TextRank

[24] algorithm and a supervised binary classification model. Such an evidence-based technique

offers a more principled approach to medical fact checking in comparison to machine learning

based solutions. As discussed by reputed health information providers such as HealthLined

, medical facts should be evaluated in consideration with trustworthy news sources and by

carefully weighing balance of evidence.

2.2. Keyphrase extraction

The goal of keyphrase extraction is to extract certain phrases from a document which are

related to the main idea or topic of the document [25]. Over the years, keyphrase extraction

has become an important task in IR and NLP applications such as document summarization,

opinion mining, and text categorization. According to a popular survey by [25], keyphrase

extraction approaches can be categorized into supervised and unsupervised works.

2.2.1. Supervised approaches

The works that use a supervised approach consider the task as a binary classification problem

or a ranking problem. As a binary classification problem, [26] used a Nave Bayes algorithm to

predict keyphrases from candidate phrases by extracting features from the candidate phrases

chttps://www.tripdatabase.com/
dhttps://www.healthline.com/health-news/learn-to-spot-fake-health-news-with-these-5-tips

https://www.tripdatabase.com/
https://www.healthline.com/health-news/learn-to-spot-fake-health-news-with-these-5-tips
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such as tf-idf and distance in the document of the phrases first appearance. A similar work

by [27] is based on using a decision tree algorithm to classify phrases as keyphrases based on

various features such as number of words in the phrase, first occurrence of the phrase in the

document, and the frequency of stemmed phrase. Another work on classifying keyphrases [28]

used thesaurus knowledge along with tf-idf as features and a boosting algorithm, Adaboost

[29] as the classifier algorithm. The training data was annotated as positive or negative for

keyphrases and non-keyphrases respectively.

One of the early notable research works of the ranking approach by [30] used a pre-

determined domain-specific glossary database in order to score noun phrases based on the

frequency of its occurrence in the document, its composition, and specificity in the domain of

the document. The noun phrases with the highest scores were then selected as the keyphrases.

Recent works have also focused on using neural networks for extracting ranked keyphrases.

[31] used a multi-layer perceptron (MLP) for extracting keyphrases from scientific articles.

Noun phrases were first extracted from a document and then scored based on the phrase

frequency, phrase links to other phrases and tf-idf. The model was then trained using a

MLP and the k-top ranked candidate phrases were then selected as the keyphrases. [32] used

hashtags from tweets to first identify candidate phrases and then used word2vec embeddings

[20] as input to a deep neural network. Every tweet was assigned a score of 2 (perfectly

suitable), 1 (suitable), or 0 (unsuitable) to indicate whether the hashtag of the tweet was a

good keyphrase for it.

2.2.2. Unsupervised approaches

In the domain of unsupervised approaches, the problem of keyphrase extraction is considered

as a ranking problem. Early work includes graph-based approaches such as [24, 33] who

used co-occurrence counts between candidate phrases to compute their relatedness. The

importance of a candidate phrase depends on how related it is to other candidate phrases. The

more related it is, the more important that phrase is and more likely to be a keyphrase. [34]

used a semantic relatedness approach instead of co-occurrence counts to find the relatedness of

candidate phrases. [35] is another graph-based approach where information from all positions

of a words occurrences is incorporated to first score each candidate phrase. After that the

PageRank [36] algorithm is used to rank the candidate phrases according to the score.

Another approach in the unsupervised domain is clustering of the candidate keyphrases

into various topical clusters such that candidate phrases in one cluster should be related

to only to a particular topic. Notable work includes [37] that clusters semantically similar

candidates using Wikipedia and co-occurrence-based statistics. The underlying hypothesis is

that each of these clusters corresponds to a topic covered in the document, and selecting the

candidates close to the centroid of each cluster as keyphrases ensures that the resulting set

of keyphrases covers all the topics of the document. [38] proposed TopicalPageRank, which

runs TextRank [24] multiple times for a document, once for each of its topics induced by a

Latent Dirichlet Allocation [39] so that the main topics of the document are covered by the

extracted keyphrases. The final score of a candidate is computed as the sum of its scores for

each of the topics, weighted by the probability of that topic in that document. [40] clustered

the candidate keyphrases into topics using a Hierarchical Agglomerative Clustering (HAC)

algorithm. After that they apply the TextRank [24] algorithm to assign a significance score
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to each topic. Keyphrases are then generated by selecting a candidate from each of the top

ranked topics.

Recent work also includes the usage of word embeddings for the purpose of unsupervised

keyphrase extraction. [41] used Sent2Vec [97] and Doc2Vec [43] to produce sentence em-

beddings. The candidate phrases and the document is first embedded using the pre-trained

embedding models of both Sent2Vec and Doc2Vec and then the embedding vectors of candi-

date phrases are matched for similarity with the embedding vector of the document by taking

cosine similarity between them. The keyphrases are then ranked according to the cosine

similarity score and the top ranked are selected.

2.3. Query generation

As our work is based on query generation from keywords for effective retrieval of documents

from medical knowledge database, the most relevant work is Boolean query generation for

systematic reviews of biomedical literature. Systematic reviews are used to provide medical

practitioners with advice to assist them with their case studies. These reviews are basi-

cally distilled from the results of an exhaustive search within a corpus of published research

literature such as MEDLINE. To perform these reviews, complex Boolean queries are first

formed to retrieve documents from the corpus which are then triaged by experts to find the

most relevant literature. However, this whole process is done manually which consumes time.

Recently, there have been efforts to automate the manual process of query generation us-

ing computational adaptations of the manual approaches which take into account high-level

concepts and their synonyms in order to generate queries. In [44], the authors propose a

framework to automatically create queries from a given short statement about the topic of

the review. They first form a high-level hierarchy of the query terms from the statement.

This is done by forming a parse tree and then using POS tags to form the hierarchy. The

high-level concepts are then represented by entities from a reference entity repository such as

UMLS. This is then followed by an optional step of expanding queries by including entities

related to the query terms. After that entities are mapped to keywords to form the final

query.

2.4. Evidence based fact-checking

The FEVER[45] dataset has been the de facto standard for evidence based fact-checking when

construed as a cross-domain task. It relies on Wikipedia and fact-checking websites to provide

the evidences. However, approaches for evidence based fact-checking for scientific or health

related claims needs domain specific knowledge and only a few datasets have been released

very recently catering to such claims. These include the SCIFACT[46], COVID-fact[47] and

the HealthVer[48] datasets. Both the COVID-fact and HealthVer datasets deal with Covid-19

related claims and they provide evidences for the claims. The SCIFACT dataset, however,

provides a corpus of PubMed abstracts which contains the evidences for a wider range of health

related claims. There has been various works based on a shared task using the SCIFACT

dataset. These include the work by [49] which uses a longformer[50] model to predict the

veracity labels of the claims as well as identifying the evidence statements from within the

abstracts. [51, 52, 53] use a three-stage approach for their work consisting of (1) document

retrieval, (2) evidence selection, and (3) label prediction using the selected evidences. The
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difference in their work lies on the method of selection of the evidence statements. [51] uses

each sentence independently to select the evidence statements. [52] and [53] encodes the

abstracts and use pooling and self-attention to produce sentence representations used for

evidence selection.

Our work is based on extracting claims from online health articles and then creating

keyword-based queries for further retrieval of information from medical knowledge databases

as a means of fact-checking. We then follow a similar task of retrieving the most relevant

documents as evidences for the extracted claims.

3. Methodology

In the following sub sections we first define the task formulation of query generation as well

as the task formulation for document retrieval and then explain the proposed methods.

3.1. Task formulation

Consider a text article D which is known to contain some medical or health related claim/s.

Let the article D comprise of n sentences; D = [s1, . . . , sn]. Our first task targets unsupervised

identification of the keywords/keyphrases from claims within article D which are then used for

the creation of queries that can be further used to retrieve relevant medical content containing

evidence related to the claim.

[D = [s1, . . . , sn]]
claim−−−−−−→

extraction
{c1, . . . , ck}

keyword/keyphrase−−−−−−−−−−−−→
extraction

{f1, . . . , fk}
query−−−−−−→

generation
{Q}

The output set contains one query which is formed by clustering the keywords/keyphrases

according to their similarity.

The next task focuses on retrieving the relevant documents from the set of retrieved

documents by the query. Given a claim c and a set of documents A = [a1, . . . an], the goal is

to find the most relevant documents for the claim.

[c, A = [a1, . . . , an]]
relevant document−−−−−−−−−−−→

retrieval
[a1, . . . ak], where k < n

Both the tasks are designed to be the intermediate steps of the evidence based disinforma-

tion identification task that determines whether health related claims are true or fake using

the existing authoritative medical resources.

3.2. Proposed Method for query generation

The proposed solution follows a three-step approach for the generation of the queries. We

explain each of those steps in detail in the following subsections..

3.2.1. Identification of the claim sentences:

In the first step we identify the sentence from the article which makes a health-related claim

that can be fact-checked. The pseudo-code for this step is presented in the Algorithm 1.

Here, we use TextRank [24] which is a graph-based ranking algorithm. Each sentence from

the document is considered as a single vertex. Two vertices are connected if there is a

semantic similarity between the two sentences. Each vertex (sentence) is then scored based
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on its “importance within the document. This score allows us to detect those sentences from

the articles which convey the central meaning of the article. In our case the similarity between

two sentences is computed as cosine similarity computed on sentences embeddings calculated

with a pre-trained S-BERT [54] language model (lines 11-19). Weight assigned to each edge

represents the similarity between sentence pairs. Following the construction of the graph

(line 20), the TextRank [24] score, siscore is calculated for each sentence, [s1, s2, s3, . . . sn]

(line 22) which lies between the range [0,1]. In the Toulmin theory of argumentation[55], an

argument’s conclusion is the claim. Based on this, we propose to find the concluding sentences

in an online health article. A conclusion indicator is a word or phrase that indicates that the

statement its attached to is a conclusion. Although an exhaustive list of conclusion indicator

words doesn’t exist, we use the indicator words provided by [56] for the conclusion indicators

(e.g., concluded, concludes, in sum). Taking this under consideration, for each sentence we

assign a score, siindicator
based on the presence of indicator words in the sentences with 1 if

indicator words are present and 0 otherwise (lines 2-10). The TextRank [24] and the indicator

scores for each sentence are added and the sentences are ranked according to the decreasing

final scores (lines 21-24).

sifinal score
= siindicator

+ siscore

As the output we obtain ranked sentences from the health articles in a descending order

based on the final score calculated for each sentence. This allows us to identify the key

sentences that defines the subject matter of the article. In our experimental evaluation that

will be described in a later section, we observed that the key claims made by the document

are always among the sentences obtained on the top of the list.

3.2.2. Extraction of the keywords/keyphrases from the claim sentences:

In the second step we extract keywords/keyphrases from the claim sentences in order to create

the queries. The pseudo-code for this step is presented in Algorithm 2. For this, the top k

ranked sentences are used to extract the keywords/keyphrases. The value for k is chosen to be

either 3 or 10% of the length of the article, whichever is greater. Based on the experimental

results of the first step, we find that many articles miss out claim related sentences if k is too

small but at the same time we find that a large value of k extracts non-relevant sentences.

Following the definition by [25], we first identify named entities from the top k sentences

which will be used as the candidate keys (lines 1-3). From these candidate keys, the most

significant ones will be used as keywords/keyphrases.

Since we are dealing with health articles, we want to extract the specific entities rather

than noun phrases or nouns. For this we use scispaCy[57] which was developed specifically

for the processing of clinical, biomedical and scientific text. After the entities are extracted,

we follow a similar method as the first step to get the most significant entities as the key-

words/keyphrases. We use a pre-trained S-BERT model to generate the embedding vectors

for the entities and the k sentences (lines 4-5). Note that in the previous step we calculated

the embedding vectors for individual sentences, however, in this step we calculate the embed-

ding vector for all k sentences taken together. This is done as we want to extract entities

which are the most relevant as measured across sentences. In other words, we consider the

top k sentences as the summary of the article (common application of the TextRank [24]

algorithm). We then calculate the cosine similarity between each entity vector and the vector
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Algorithm 1 Claim extraction

Input: A list of sentences, S = [s1, s2, s3 . . . sn]
Output: A reordered list of sentences S′ from S

1: W = [w1, w2, . . . wm] be the list of conclusion indicator words
2: for i← 1, n do
3: for j ← 1,m do
4: if wj ∈ si then
5: siindicator score ← 1
6: else
7: siindicator score ← 0
8: end if
9: end for

10: end for
11: Load the S-BERT pre-trained model
12: for i← 1, n do
13: vi ← get S −BERT vector(si)
14: end for
15: for i← 1, n do
16: for j ← i + 1, n do
17: X ← cosine(vi, vj)
18: end for
19: end for
20: G← networkx graph from array(X), get the graph from the array X using networkx library
21: for i← 1, n do
22: siscore ← TextRank(G), getting the TextRank scores for si
23: sifinal score ← siindicator score + siscore
24: end for
25: Sort si ∈ S in descending order of final score

of the k top sentences (lines 6-9). The entities are then ranked according to the decreasing

order of similarity score. In order to determine the number of the top ranked entities which

should be selected as the keywords/keyphrases, we define the similarity threshold as the root

mean square (RMS) or quadratic mean (QM) of all the positive similarity values as follows:

RMS =

√∑n
i=1(xi)2

n

where xi is the set of positive similarity values and n is the total number of positive similarity

values. We use RMS rather than arithmetic mean (AM) as RMS ≥ AM [58, 59] which

implies that there would be a less number of similarity values above RMS in comparison

to AM . This makes RMS a more selective measure. As the keywords/keyphrases will be

used for generating queries, the choice of keywords/keyphrases should be precise and relevant

to the health article. We first calculate the RMS of the similarity scores and then select

those similarity scores which are greater than the RMS value (lines 11-15). We then get the

corresponding entities for these scores which form the list of keywords/keyphrases (line 16).

3.2.3. Query generation from the keywords/keyphrases:

In the third step of our approach, we first group similar keywords/keyphrases within clusters
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Algorithm 2 Keyword extraction

Input: List of k sentences, S′ = [s′1, s
′
2, s
′
3 . . . s

′
k]

Output: A list of keywords/keyphrases, K

1: for all sentences s′ in S′ do
2: extract the entities, E = [e1, e2, e3 . . . en]
3: end for
4: Load the S-BERT pre-trained model
5: D ← get S −BERT vector(S′)
6: for all entities e in E do
7: c← get S −BERT vector(e)
8: similarities← cosine(c,D)
9: end for

10: X ← root mean square(similarities)
11: for all s in similarities do
12: if s > X then
13: Get the corresponding entity e and store them in a list
14: end if
15: end for
16: The final list of entities from above are the keywords/keyphrases

and then create queries using the clustered keywords/keyphrases. The overview of the query

generation process is shown in Algorithm 3.

For clustering, we use the concept of medical entity linking (MEL). MEL basically means

the mapping of medical terms to a well defined vocabulary, usually some knowledge graph. A

well defined knowledge graph in the medical domain specifically for the MEL task is UMLS

which is short for Unified Medical Language System. UMLS brings together many health

and biomedical vocabularies and provides a mapping structure among these vocabularies. It

may be viewed as a comprehensive thesaurus or ontology of biomedical concepts. The idea

behind using UMLS for our task is to make sure that similar keyphrases are grouped together

in clusters. For this we use a pre-trained model on UMLS knowledge graph, SapBERT[60]

which utilizes a BERT[61] model to help align entities to their synonyms using the UMLS

knowledge graph (line 1-4). Based on the generated embeddings, cosine similarity metric

is used to group similar keywords into clusters (lines 5-10). We use the k-means clustering

algorithm for the purpose. To define the value of k we use the Silhouette coefficient score (line

11). The silhouette value is a measure of how similar an object is to its own cluster compared

to other clusters. The formula is as follows:

Silhouette coeff =
(x− y)

max(x, y)

where x is the mean intra-cluster distance of all instances within a cluster and y is the mean

distance to the instances of the next closest cluster. The silhouette coefficient should be

within [-1,1] with negative values meaning the samples might be wrongly clustered and near

to +1 means the clusters the sample is far away from the neighboring clusters. A value of 0

indicates that the sample is on or very close to the decision boundary between two neighboring

clusters. We vary the range of k for the k-means algorithm and calculate the silhouette score

for each value of k. We then take the value of k where the silhouette score is the maximum
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Algorithm 3 Query generation

Input: List of p keywords/keyphrases, K′ = [k′1, k
′
2, k
′
3 . . . k

′
p]

Output: A Boolean query, Q

1: Load the SapBERT pre-trained model
2: for i← 1 to p do
3: ai ← get SapBERT vector(k′)
4: end for
5: for i← 1 to p do
6: for j ← i + 1 to p do
7: sim← cosine(ai, aj)
8: clusters← k means clustering(sim)
9: end for

10: end for
11: k ← max silhouette score(clusters)
12: for all c in clusters do
13: for i← 1 to k do
14: for j ← i + 1 to k do
15: q ← ((ci1 OR ci2 . . . OR cin) AND (cj1 OR cj2 . . . OR cjm)), where n and m are the

number of elements in clusters i and j respectively
16: end for
17: end for
18: end for
19: Q← (q1 OR q2 OR . . . OR qN ) where N is the total number of q

[62]. In this way we get the optimum value of clusters for each article. The point of clustering

semantically similar keywords is to create queries using Boolean operators which will be used

to search relevant medical knowledge from a database. The OR operator is used to join terms

in one cluster and the AND operator is used to join two clusters[63]. However, if there are

more than two clusters then we use a combination of two clusters at a time and then create

the queries for each combination (lines 12-18). This is done as it was found that joining more

than two clusters by AND to form a query led to very selective and meaningless queries. This

is because of the fact there may not be documents which contain terms from all the clusters,

as a result of which no document is retrieved. In order to avoid it, we take two clusters at a

time. After that we join all the queries by OR to get a single query (line 19) . For example,

if there are 4 clusters, using a combination of 2 clusters at a time for the 4 clusters, we get 6

combinations in total, which gives us 6 queries. We then join all the queries using OR to get

the single query.

3.3. Proposed approach for relevant document retrieval

The generated queries can be used for retrieving the documents from medical databases such

as PubMed; this is based on a yes/no assessment of each document’s membership in the result

set, given the query is boolean. However, in order to retrieve the specific documents relevant

to the specific claims, the documents need to be scored in such a way that the most relevant

ones are filtered. This can be achieved by calculating a retrieval score, λ() using similarities

learned in an embedding space.

λ(c, a) = sim(δ(c), δ(a))
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where sim() can be a cosine or dot product similarity and δ() is the embedding method.

Based on this, we first embed the claim and documents in the same vector space using an

S-BERT model and then use cosine similarity to determine the most similar documents to

the claims. The pseudo code is shown in Algorithm 5

Algorithm 4 Relevant document retrieval

Input: List of k claims, C = [c1, c2, c3 . . . ck] and a list of documents D = [d1, d2, d3 . . . dn]
Output: A ranked list of documents for each claim

1: Load the S-BERT model
2: B ← get S −BERT vector(D)
3: for all claims c in C do
4: a← get S −BERT vector(c)
5: similarities← cosine(a,B)
6: Sort D in descending order of similarities
7: end for

Hypothesizing that domain specific BERT models will perform better at retrieving the

PubMed documents, we opted to experiment with such models. It has already been estab-

lished that fine-tuning BERT models for specific tasks leads to better performance[54]. Based

on this we use MS-MARCO[64], a standard dataset for retrieval tasks, as an off-the-shelf

dataset for our fine-tuning purpose. We used the PubMedBert[65] modele as our base BERT

model and fine-tuned it using the MS-MARCO dataset with a MarginMSE loss[66] using a bi-

encoder architecture[54]. We also experimented with other domain specific BERT models but

PubMedBert yielded the best results which is why we used it for the rest of our experiments.

For the fine-tuning process, we used a triplet training environment where the positives

used are included in the MS-MARCO dataset and the negatives are taken from the training

data available on the Huggingface Transformers[67] S-BERT repositoryf. Sentence embeddings

are computed independently for the queries, positives and the negatives. A dot product

similarity (denoted by sim) is computed between the (query, positives) and (query, negatives).

Training is done by forming triplets from the query, positive and negatives. The objective is

to minimize the mean square error loss between A = |sim(Query, Pos) − sim(Query,Neg)|
and B = |gold sim(Query, Pos)− gold sim(Query,Neg)|.

L(A,B) =
1

|A|
∑

aεA,bεB

(a− b)2

Here A is computed by using the PubMedBert model and B is the gold standard scores.

4. Experiment and results

We describe the details of the experiments done for each of the steps involved in the proposed

method and analyse the results in the following sub-sections.

4.1. Creation of gold standard dataset

ehttps://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
fhttps://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives/resolve/main/

msmarco-hard-negatives.jsonl.gz

https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives/resolve/main/msmarco-hard-negatives.jsonl.gz
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives/resolve/main/msmarco-hard-negatives.jsonl.gz
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Since there was no available dataset for the specific task we address, we curated our own

dataset using medical articles available from the website www.naturalnews.com to check

the efficiency of the proposed technique. We collected various health articles from this website

pertaining to topics such as cancer, coronavirus, influenza, Alzheimer’s. In total we collected

88 articles, each with a valid heading. The headings were used in the annotation of the

dataset that will be described shortly. However, our proposed method does not assume the

existence of a heading hence it is applicable to any online post (e.g. social media post). Each

sentence within each article is manually annotated with 0 indicating a non-claim sentence

and 1 indicating a relevant claim sentence. The annotation is done based on how relevant

that particular sentence is to the heading of the article (i.e., relevance to the key claim).

Furthermore, for each article, the list of phrases directly relevant to the claim was manually

extracted from its heading.

4.2. Identification of claim sentences

In the first step of the approach, we use a pre-trained model of S-BERT[54],

roberta-large-nli-stsb-mean-tokens as it has the highest semantic textual similarity

(STS) performance score mentioned in [54]. For generating the graph in the same step we

use the python library networkxg. Also for generating the TextRank [24] scores, we use the

pagerank [36] function from the same library. The ranked sentences from the first step of the

approach are evaluated with nDCG values using the binary sentence relevance scores (Ref:

Sec ) as labels. We calculate the overall nDCG value for the whole article and nDCG@k

where k ∈ {1, 3, 5, 7} denotes the position. As baselines we implement a few methods which

range from using bag of words implementation using tf-idf [68], word embedding vectors using

GloVe [69], sentence embedding vectors using Facebook’s Infersent[70] and Google’s Universal

Sentence Encoder(USE)[71]. We experiment using both the conclusion indicator words and

without using the indicator words shown in Fig 3 and Fig 2 respectively.

We can see from the figure that USE[71] has a nearly similar performance as S-BERT[54].

This can be attributed to the fact that both these models are based on the transformer

architecture[72] and captures the context of text. Interestingly, the bag of words model

performs better than the Infersent[70] model. This can be attributed to the fact that our

dataset is smaller and domain specific. Since Infersent[70] uses pre-trained word embedding

vectors which are not domain specific, the performance is lower than the bag of words model.

We can see from the Fig 3 that introducing the indicator words improves the results which

indicates that indicator words helps in the identification of the claim sentences.

We also evaluate the performance on another dataset taken from the work by [73]. Al-

though the dataset pertains to the biomedical literature domain, we decided to use it as

online health related information contains biomedical terms. The dataset has 1,500 scientific

abstracts from the biomedical domain with each sentence annotated by experts indicating

whether the sentence presents a scientific claim. The dataset however has some abstracts

with no claim sentence. We filter out such abstracts for evaluation purposes. The final eval-

uation dataset consists of 1344 abstracts with each abstract having at least one sentence

annotated as a claim. We use the same experimental setup mentioned above and the results

using both indicator words and without it are shown below in Fig 5 and Fig 4 respectively.

ghttps://github.com/networkx/networkx

https://github.com/networkx/networkx
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Fig. 2. nDCG comparison without conclusion indicators
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Fig. 3. nDCG comparison with conclusion indicators

It can be seen that adding indicator words improve the nDCG scores which shows that such

words are helpful in identifying claim sentences in an unsupervised setting. It is interesting

to note from the results that the GloVe embeddings performed better than USE and scores

slightly less than S-BERT which shows that it is a strong baseline for such work.

4.3. Keyword extraction

In the second step, we use the following S-BERT [54] pre-trained model,

distilroberta-base-paraphrase-v1 for generating the embeddings. We use the following

scispaCy model en core sci lghfor entity extraction. For demonstrational purposes, we show

a snapshot of the heading and the various keywords/keyphrases extracted for the respective

articles in Table 1.

To evaluate the extracted keywords/keyphrases, we compare them against the keywords/

keyphrases manually extracted from the headings of the articles. It should be noted that the

manually extracted keywords/keyphrases from the headings are used just for evaluation pur-

poses, the heading membership of keywords/keyphrases is not a part of the keyword/keyphrase

extraction process. As baseline, we use a few state of the art unsupervised keyword/keyphrase

extraction models which includes graph-based approaches like TextRank[24], TopicRank[40],

hhttps://allenai.github.io/scispacy/

https://allenai.github.io/scispacy/
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Fig. 4. nDCG comparison without conclusion indicators for the dataset from [73]
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Fig. 5. nDCG comparison with conclusion indicators for the dataset from [73]

SingleRank[74], PositionRank[35] and MultipartiteRank[75]. For implementation of these

models, we use the python toolkit by [76]. Since the baseline models require a value of k,

where k is the number of keywords/keyphrases to be extracted, we experiment using different

values of k. We calculate the average precision, recall and f-measure obtained by the methods

across all the articles [77]. We do not consider keywords/keyphrases which may be semanti-

cally similar in meaning to the heading keywords/keyphrases. The results are presented in

Table 2.

We can observe from the table that there is an increase in the value of each metrics

when using our approach. It can be observed from the table that as the value of k increases,

precision values get lower and recall values get higher. This is due to the fact that the number

of keywords/keyphrases extracted from the headings of most of the articles lie between 2 or

3. So when k increases beyond these numbers, the precision values drop even for the most

accurate ranking.

We also use another dataset from [78] in order to evaluate the key phrases extraction

method that we have proposed. The dataset consists of 3048 biomedical abstracts from

PubMed with author annotated keywords/keyphrases. Precision, recall and f-measure were

calculated in the similar way by taking different values of k. The results are shown in Table

3. It can be seen from the table that the method we proposed performs better than the other
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Table 1. Extracted keywords/keyphrases from respective articles

Heading Extracted Keywords/Keyphrases
For the ladies: eating walnuts can help
halt breast cancer

’walnut’, ’mammary gland cancer’, ’breast cancers’,
’walnut consumption’, ’breast tumors’

Green tea, zinc proving to be better than
hydroxychloroquine at fighting
coronavirus infections

’zinc’, ’polyphenol’, ’epigallocatechin gallate’,
’coronavirus’, ’asian countries’,
’antiviral nutrients’, ’green tea’

Homeland security scientist confirms that
natural sunlight kills coronavirus

’natural sunlight’, ’uvc light’, ’viruses’,
’ultraviolet uv rays’,’coronavirus’, ’wuhan coronavirus’

Table 2. Comparison of our method with baselines for our dataset

k=5 k=10 k=15 k=20

MultipartiteRank[75]
P 0.19 0.12 0.10 0.09
R 0.39 0.50 0.59 0.62
F1 0.25 0.19 0.17 0.16

PositionRank[35]
P 0.19 0.14 0.11 0.10
R 0.42 0.57 0.63 0.66
F1 0.26 0.22 0.18 0.16

SingleRank[74]
P 0.17 0.14 0.10 0.09
R 0.35 0.59 0.61 0.62
F1 0.22 0.22 0.18 0.15

TextRank[24]
P 0.10 0.10 0.09 0.08
R 0.23 0.42 0.54 0.61
F1 0.13 0.16 0.15 0.15

TopicRank[40]
P 0.16 0.10 0.08 0.07
R 0.33 0.41 0.43 0.44
F1 0.21 0.16 0.13 0.12

Our method
P 0.24 0.16 0.12 0.10
R 0.52 0.68 0.72 0.73
F1 0.33 0.25 0.20 0.17

baselines.

Table 3. Comparison of different keyword/keyphrase extracting algorithm with our method using

dataset from [78]

k=10 k=15 k=20 k=25 k=30

MultipartiteRank[75]
P 0.25 0.22 0.20 0.18 0.17
R 0.20 0.26 0.30 0.34 0.37
F1 0.22 0.22 0.23 0.23 0.23

PositionRank[35]
P 0.18 0.17 0.17 0.16 0.16
R 0.15 0.21 0.27 0.31 0.36
F1 0.16 0.19 0.21 0.21 0.22

SingleRank[74]
P 0.14 0.15 0.15 0.16 0.16
R 0.12 0.19 0.25 0.30 0.35
F1 0.13 0.16 0.19 0.21 0.22

TextRank[24]
P 0.12 0.12 0.13 0.13 0.13
R 0.10 0.15 0.20 0.25 0.29
F1 0.11 0.13 0.16 0.17 0.18

TopicRank[40]
P 0.25 0.22 0.20 0.18 0.17
R 0.19 0.25 0.29 0.32 0.35
F1 0.21 0.23 0.23 0.23 0.23

Our method
P 0.27 0.25 0.23 0.21 0.20
R 0.20 0.28 0.34 0.39 0.43
F1 0.23 0.26 0.27 0.27 0.27

4.4. Query generation from keywords
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In this step, for clustering keywords/keyphrases based on similarity, we use the pre-trained

model of SapBERT[60], cambridgeltl/SapBERT-from-PubMedBERT-fulltext from the Hug-

gingface Transformers library[67] to generate the embeddings of keywords/keyphrases. We

use the k-means clustering function from the sklearn libraryi. To define the value of k we use

the Silhouette coefficient score which is available in sklearnj.

For evaluation of the queries, we need some results that can be regarded as desirable.

It is intuitive to think that documents generated from headings of articles are likely to be

relevant; thus, the titles of retrieved documents (we will use title to refer to these hereon)

based on queries generated from the article headings (called heading queries hereon) forms a

benchmark to compare the results of our keyword queries against. While this evaluation can

potentially be critiqued from obvious directions, we use this as a best effort evaluation, given

that we do not have labelled data pertinent to this specific task. We use a python library

Biopythonkwhich provides access to the EntrezlAPI of NCBI for searching and retrieving

titles from the PubMed databases. The Entrez function Efetch has a sort parameter which

sorts the retrieved titles according to the given option. For our purpose we have used the

“relevance” option which retrieves the most relevant titles for a query.

4.4.1. Evaluation measures and their comparative motivations

For evaluating the keyword queries, we calculate the precision and recall for all the articles

based on the heading queries. The heading queries are taken as the gold-standard and ti-

tles retrieved by them are used as the gold-standard results. We retrieve the top m titles

using the heading queries and top n titles using the queries generated by the extracted key-

words/keyphrases where m = 1, 2, 3 and n = 3, 5, 10. The precision and recall is calculated

based on the presence of the gold standard results within the range of n. It was found that

few of the articles did not retrieve any titles for the heading query. This is because of the

terms present in the query are not indexed in PubMed which is why no title is retrieved when

the query is passed. For evaluation purposes those articles are not taken into consideration.

The results are shown in Table 4.

It was also found that there are a few articles whose heading terms were broad and vague

whereas the article body talked about a specific topic which is part of the broad heading

term but not the same. For example, an article had the heading terms as “Vitamin A”

and “skin cancer”. But the article body talked specifically about “squamous cell carcinoma”

which is a certain type of skin cancer. This is why the title retrieved by the heading query

is not retrieved by the keyword query within the top positions. It maybe retrieved at lower

positions. There are also articles whose heading query terms are similar to the keyword query

terms but not exactly the same. Due to these reasons, another method of evaluation of the

queries was considered. We compute the cosine similarity between the documents retrieved

by the heading queries and the keyword queries and based on the cosine similarity values,

we calculate the average precision and recall along with the f-score across all the articles;

this way, identifying similar but non-identical content will not be penalized. The pseudo-

i https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
jhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
khttps://biopython.org/docs/1.75/api/Bio.Entrez.html
l http://www.ncbi.nlm.nih.gov/Entrez/

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://biopython.org/docs/1.75/api/Bio.Entrez.html
http://www.ncbi.nlm.nih.gov/Entrez/
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code is provided in Algorithm 5. The precision and recall is calculated based on the cosine

similarity threshold value, since measures such as precision and recall call for discretization.

For precision, we first check how many keyword query documents have cosine similarity greater

than the threshold with the heading query documents (line 1 to 6). We then check how many

of these have a lesser similarity value than the threshold (lines 7 to 12). Based on these, the

precision, recall and f-score is calculated (line 13-14).

Algorithm 5 Calculating Precision, Recall and F-score considering the semantic similarity
between the documents retrieved by heading queries and keyword queries

Input: List of keyword query documents: Q = [q1, q2, q3 . . . qn], List of heading query documents:
H = [h1, h2, h3 . . . hm], similarity threshold: t
Output: Precision, recall and f-score for threshold value

1: relevant = 0
2: for all hi in H do
3: if there exist qj ∈ Q such that s(qj , hi) > t then
4: relevant + +
5: end if
6: end for
7: irrelevant = 0
8: for all qj in Q do
9: if there does not exist hi such that s(qj , hi) > t then

10: irrelevant + +
11: end if
12: end for
13: precision = relevant

relevant+irrelevant
, recall = relevant

m

f score = 2∗precision∗recall
precision+recall

In order to check for the similarity between the documents retrieved by the heading

query/queries and the keyword queries, we calculate the cosine similarity between their sen-

tence embedding vectors computed using S-BERT [54]. However, a threshold needs to be

determined for the cosine similarity above which documents may be considered similar. For

calculating the threshold of cosine similarity, we use the BIOSSES dataset [79]. The dataset

contains 100 pairs of sentences annotated by 5 annotators. We take the average score of the

annotators and according to the definition of the scores, we choose those above 2 as relevant

pairs and below 2 as non-relevant pairs. We then use sentence embeddings to calculate the

cosine similarity between each pair. After that, for each threshold value from 0.1 to 0.9, we

add the relevant pairs above the threshold value with the non-relevant pairs below threshold

value and divide it by 100 (total number of sentence pairs). We then choose the value where

we get the maximum as the threshold value. Following the method, we get 0.5 as the threshold

value for cosine similarity. Taking this as the reference point, we perform a few experiments

whose results are shown in Table 5 and Table 6.

We first show the average precision, recall and f-score values for threshold value 0.5 across

different values of m and n for three different S-BERT pre-trained models along with three

fine-tuned biomedical language models, BioBERT [80], BlueBERT [81] and BiomedRoBERTa

[82]. Recently a surge of language models for the biomedical domain has been seen [83].

However, it’s been found that BERT models do not perform well for specific tasks without
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fine-tuning [54]. Therefore, in order to use such models for generating sentence embeddings,

we fine-tune them using the S-BERT framework. We use the SNLI [84], the MultiNLI [85]

and the STS-b [86] datasets for fine-tuning which is done according to the documentationmof

S-BERT. We also find the average position value for the first occurrence of the title having

similarity value greater than the threshold across all articles. For this experiment also, we

find it for various values of m and n. The analysis indicates the improved accuracy of retrieval

achieved by the fine-tuned BioBert.

4.4.2. Analysis of the results

From Table 4, we can see that as we increase the value of m, the recall decreases for the same

value of n. However, as we increase the value of n, the recall increases. This is due to the

fact that the more titles are retrieved by the keyword queries, the chances of getting the gold

standard results within those titles also increases. But this also leads to a decrease in the

precision as can be seen from the table.

Table 4. Average precision and recall for titles retrieved by keyword queries (n=3, 5, 10)

Max titles
retrieved
by keyword
query (n)

Top 1 title
retrieved
by heading
query (m=1)

Top 2 titles
retrieved
by heading
query (m=2)

Top 3 titles
retrieved
by heading
query (m=3)

Avg
P

Avg
R

Avg
P

Avg
R

Avg
P

Avg
R

n=3 0.109 0.329 0.164 0.265 0.185 0.215
n=5 0.073 0.367 0.116 0.310 0.137 0.257
n=10 0.048 0.481 0.078 0.411 0.093 0.346

In order to consider titles which has a semantic similarity with the gold standard results,

we first find the cosine similarity threshold value. Based on the experiment with the cosine

similarity threshold value, we can see from Table 5 that the average precision value increases

as we increase the value of m for each n. We can also see that the average recall increases as

the value of n increases. This shows that relevant titles are retrieved by the keyword queries

within the various positions of n. Out of the three pre-trained models stsb-roberta-large

gave the best results and out of the fine-tuned models, the BioBERT model gave the best

results. If we compare the f-scores for all the models, it can be seen that the fine-tuned

BioBERT model gives the best result. This finding is in line with the recent work [83] which

found that BioBERT performs better with biomedical tasks. For our next experiment we

compare the stsb-roberta-large as well as the fine-tuned BioBERT model.

From the Table 6 we can see that the average position increases as we increase the value

of n which is due to the fact for some articles the relevant title is found in a lower position

(high value of n means low position). Also, we find the percentage of articles that has the

first occurrence of relevant title at the first position. It can be seen as we increase the value of

m the percentage decreases. The increase in average precision and decrease in the percentage

shows that relevant titles are retrieved but in positions other than the first position. Also

it can be seen that the fine-tuned BioBERT gives better results than the pre-trained model

as the average position can be seen at higher positions (lower value). This shows that the

mhttps://www.sbert.net/docs/training/overview.html

https://www.sbert.net/docs/training/overview.html
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Table 5. Average precision, recall and f-1 score for cosine similarity threshold value 0.5 for different

models

Models
Max title
retrieved by
heading query

Max doc
retrieved by
keyword
query(n=3)

Max title
retrieved by
keyword
query(n=5)

Max title
retrieved by
keyword
query(n=10)

P R F-1 P R F-1 P R F-1
stsb-
roberta-
large

m=1 0.53 0.83 0.64 0.43 0.84 0.57 0.27 0.91 0.41
m=2 0.68 0.81 0.74 0.59 0.86 0.64 0.44 0.90 0.56
m=3 0.75 0.79 0.77 0.68 0.85 0.75 0.54 0.90 0.67

paraphrase-
distilroberta-
base-v2

m=1 0.48 0.75 0.58 0.37 0.80 0.50 0.23 0.82 0.36
m=2 0.59 0.70 0.64 0.47 0.72 0.57 0.34 0.75 0.47
m=3 0.65 0.67 0.66 0.54 0.71 0.61 0.42 0.75 0.54

paraphrase-
mpnet-
base-v2

m=1 0.51 0.77 0.61 0.43 0.82 0.56 0.28 0.84 0.42
m=2 0.64 0.77 0.69 0.55 0.78 0.64 0.40 0.81 0.53
m=3 0.71 0.74 0.72 0.64 0.76 0.69 0.52 0.81 0.63

Fine-
tuned-
Biobert

m=1 0.63 0.86 0.73 0.52 0.87 0.65 0.35 0.88 0.50
m=2 0.75 0.85 0.79 0.65 0.85 0.74 0.50 0.86 0.63
m=3 0.79 0.82 0.80 0.70 0.82 0.76 0.57 0.85 0.68

Fine-
tuned-
Bluebert

m=1 0.55 0.81 0.65 0.48 0.83 0.60 0.30 0.84 0.44
m=2 0.69 0.80 0.74 0.58 0.82 0.68 0.46 0.85 0.59
m=3 0.76 0.79 0.77 0.66 0.80 0.72 0.53 0.84 0.65

Fine-
tuned-
BiomedRoberta

m=1 0.45 0.77 0.57 0.33 0.82 0.47 0.21 0.83 0.33
m=2 0.56 0.67 0.61 0.45 0.74 0.56 0.39 0.78 0.52
m=3 0.63 0.64 0.63 0.53 0.71 0.60 0.40 0.77 0.53

fine-tuned model is more suitable for our data than the pre-trained model.

4.5. Retrieving relevant documents

As annotating health/medical information retrieved from PubMed requires domain expertise,

we use the SCIFACT[46] dataset for evaluation of the relevant documents retrieval results.

The dataset consists of a train file, a test file and a validation file. Since the test file is used

for a shared task and does not contain annotations, we decided to use the validation file as the

test file. It consists of 300 claims and the train file consists of 809 claims. The dataset also has

around 5200 documents as a corpus file from where relevant documents are to be retrieved.

For each claim there is at least one document annotated as relevant from the corpus. For the

Table 6. Position details of first occurrence of titles greater than threshold

Maximum
titles
retrieved by
heading query

Maximum
titles
retrieved by
keyword query

Average Position of
first occurrence of
document greater
than threshold

% of articles having
the first occurrence
of document at the
1st position

stsb-
roberta-
large

fine-
tuned-
BioBERT

stsb-
roberta-
large

fine-
tuned-
BioBERT

m=1
n=3 1.01 0.98 69.2 % 73.1 %
n=5 1.03 1.00 70.5 % 74.3 %
n=10 1.46 1.07 70.5 % 74.3 %

m=2
n=3 1.04 1.04 62.6 % 68.0 %
n=5 1.24 1.08 63.3 % 66.7 %
n=10 1.54 1.22 63.3 % 66.7 %

m=3
n=3 1.04 1.01 60.0 % 65.0 %
n=5 1.28 1.07 60.2 % 63.0 %
n=10 1.66 1.26 60.2 % 63.0 %
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retrieval purpose, cosine similarity is first computed between each claim and the documents

present and a ranked list of documents are produced for each claim based on the similarity

score. For the purpose of evaluation of our experiments, we used the BEIR[87] framework to

calculate recall@k values where k = 3, 5, 10 are the retrieved results for each claim.

4.5.1. Baselines used

We compared several baseline models with our model which are hereby explained. DPR[88] is

a bi-encoder trained with a single BM25 hard negative and in-batch negatives. The publicly

available multi-DPR modelnowhich has been trained on four QA datasets: NQ [89], TriviaQA

[90], WebQuestions [91] and CuratedTREC [92] is used for the experimental results compar-

ison. ANCE [93] is another bi-encoder constructing hard negatives from an Approximate

Nearest Neighbor (ANN) index of the corpus, which in parallel updates to select hard neg-

ative training instances during fine-tuning of the model. We use the S-BERT ANCE model

available in Huggingfacep for our experiments. USE-QAq is a universal sentence encoder[71]

model fine-tuned on the SQuAD[94] dataset. Paragraph-Joint[95] uses the BioSentVec[96]

model for the retrieval purpose. BioSentVec is a sent2vec[97] model which is trained over

PubMed abstracts. It is a 700 dimensional model which is used to compute sentence embed-

dings for biomedical data. The SPLADE v2[98] modelr is a DistilberT-base[99] model which

is fine-tuned over the MS-MARCO dataset. A publicly available cross-encoder models is then

used to retrieve hard negatives from the dataset which are added to the original dataset. The

fine-tuned Distilbert model is again further tuned over this new dataset using MarginMSE

loss[66]. The final model is the SPLADE v2 model. The TCT[100] model is a dense retrieval

model which is based on the ColBERT[101] model. The ColBERT model is a BERT model

where both query and document are encoded independently. Every query embedding inter-

acts with all document embeddings by computing maximum similarity (e.g., cosine), and the

scalar outputs of these operators are summed across query terms. This enables ColBERT

to retrieve top-k results directly from a large corpus. The TAS-B model[102] is knowledge

distilled model where the student model is a Distilbert model which uses Balanced Topic

Aware Sampling (TAS-Balanced) to compose dense retrieval training batches. The sampling

technique compose batches based on queries clustered in topics and then select passage pairs

so as to balance pairwise teacher score margins where the teacher model used is a ColBERT

model as well as a concatenated BERT model. We use the sentence-transformer TAS-Btmodel

for our experiments. The BM25[103] model used in the experiments is the Okapi BM25[104]

model implemented with the Python package https://pypi.org/project/rank-bm25/. The

BM25+CE model is a re-ranker model which first uses Okapi BM25[104] to retrieve the first

100 documents and after that a cross-encoder model is used to rank those 100 documents. The

cross-encoder model used is a fine-tuned sentence-transformer ELECTRA[105] base modelu .

nhttps://huggingface.co/facebook/dpr-question_encoder-multiset-base
ohttps://huggingface.co/facebook/dpr-ctx_encoder-multiset-base
phttps://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
qhttps://tfhub.dev/google/universal-sentence-encoder-qa/3
rhttps://github.com/naver/splade/tree/main/weights/distilsplade_max
shttps://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
thttps://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
uhttps://huggingface.co/cross-encoder/ms-marco-electra-base

https://pypi.org/project/rank-bm25/
https://huggingface.co/facebook/dpr-question_encoder-multiset-base
https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base
https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
https://tfhub.dev/google/universal-sentence-encoder-qa/3
https://github.com/naver/splade/tree/main/weights/distilsplade_max
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
https://huggingface.co/cross-encoder/ms-marco-electra-base
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4.5.2. Experimental results and analysis

We first experimented in a zero-shot evaluation setting wherein all the models are used as it

is without any further fine-tuning over the SCIFACT dataset. Table 7 shows the zero-shot

evaluation results of our bi-encoder model, S-PubMedBertv compared with the other models.

Table 7. Zero-shot evaluation results

Model recall@3 recall@5 recall@10
S-PubMedBert (our model) 0.693 0.756 0.819
ANCE[93] 0.512 0.561 0.633
DPR[88] 0.264 0.292 0.370
USE-QA[71] 0.324 0.365 0.418
Paragraph-Joint (BioSentVec)[95] 0.560 0.665 0.750
TCT-Colbert[100] 0.486 0.534 0.601
Distilbert-TAS-B[102] 0.554 0.614 0.689
BM25+CE 0.626 0.664 0.706
SPLADE v2[98] 0.701 0.734 0.791
BM25 [103] 0.500 0.556 0.625

We can see that the results for some of the models are close to each other, therefore, for

analysing the results in a better way, a statistical test was conducted. Since we are comparing

different models, the Friedman test[106] is used for the statistical significance test. The null

hypothesis is that all models perform similarly. If the null hypothesis is rejected from the

previous test, the Nemenyi test[107] is performed to find the statistically significant methods.

We conduct the tests for all the recall@k values and the p-values of all models are plotted

as heatmaps. We find that the null hypothesis is rejected in all the cases as the models have

differences in performance.
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Fig. 6. Heatmap for recall@3 of zero shot evaluation results

For recall@3: The pair-wise p-values from the Nemenyi test are shown in Fig 6. From

the figure we can see that DPR and USE-QA have statistically similar results and are less

significant than the other methods. We can also see that BM25+CE and BM25 are statistically

vhttps://huggingface.co/pritamdeka/S-PubMedBert-MS-MARCO

https://huggingface.co/pritamdeka/S-PubMedBert-MS-MARCO
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(a) Heatmap for recall@5 (b) Heatmap for recall@10

Fig. 7. Heatmap of Nemenyi test for zero shot evaluation methods

different and from the Table 7 we can see that re-ranking proves to be a better option than

just using BM25. It can also be seen that SPLADE performs better than S-PubMedBert at

recall@3. Overall, S-PubMedBert’s improved performance is seen to be statistically significant

over the majority of methods, and that SPLADE’s improvements over S-PubMedBert are not

statistically significant.

For recall@5: From Fig 7(a) it can be seen that the pair-wise p-value results are similar

to recall@3. In this case however, it can be seen that S-PubMedBert performs better than

SPLADE which is also apparent from Table 7.

For recall@10: From Fig 7(b), it can be seen that the pair-wise p-value results are similar

to that of recall@5. Although the recall values increase at higher positions, statistically there

is not much change in the significance results for the methods except for TCT where it is less

significant than recall@3 and recall@5.

Overall from the above results, it can be seen that S-PubMedbert and SPLADE perform

better than the other methods. DPR and USE-QA have the lowest significance statistically.

Also, the BM25+CE model performs better than BM25 which shows that re-ranking BM25

results with a cross-encoder model improves the recall value results.

We also experimented in a setting where we fine-tuned our model over the SCIFACT

dataset. For comparison we used several models that were used in the zero-shot comparison.

However, some models could not be fine-tuned which is why we did not use those models for

the experiment. For fine-tuning, we used triplets where the positive passage was taken from

the dataset itself and the negative passages were mined using BM25. For each pair of (query,

positive passage) maximum 10 negatives were mined. After that the model was trained using

the triplets with a multiple negatives ranking loss function[108] using the S-BERT framework.

The fine-tuned model was then evaluated accordingly. All the models which were compared

were fine-tuned in the same way as our model.

From Table 8, it can be seen that our fine-tuned model performs better than the other

fine-tuned models. However, to find the statistically significant models, a test was conducted

similar to the above.

For recall@3: We got statistically significant result difference between ANCE and S-
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Table 8. Fine-tuned model evaluation results

Model recall@3 recall@5 recall@10
Fine-tuned S-PubMedBERT 0.870 0.910 0.943
Fine-tuned ANCE 0.731 0.755 0.787
Fine-tuned DPR 0.651 0.678 0.735
Fine-tuned TCT-Colbert 0.742 0.764 0.791
Fine-tuned Distibert-TAS-B 0.755 0.771 0.795
Fine-tuned SPLADE-v2 0.739 0.755 0.771

PubMedBert, DPR and S-PubMedBert, SPLADE and S-PubMedBert, TCT-Colbert and

S-Pubmedbert and TAS-B and S-Pubmedbert. The p-values of S-PubMedBert compared

with the other models are all <0.05. Based on the results it can be seen that S-PubMedBert

performs better than the other models for recall@3 as shown in Fig 8.
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Fig. 8. Heatmap for recall@3

For recall@5: Based on the Nemenyi test, the S-Pubmedbert model was again found to

be performing the best. The p-values of S-PubMedBert compared with the other models are

all < 0.05. Based on the results we can see that S-PubMedBert performs better than the

other models for recall@5 which can be seen from Fig 9(a).

For recall@10: Based on the Nemenyi test, the p-values of S-PubMedBert compared with

the other models are all < 0.05. Therefore, from the results we can see that S-PubMedBert

performs better than the other models for recall@10 as seen in Fig 9(b).

Based on the above results of the Nemenyi test we can conclude that the fine-tuned S-

PubMedBertw model over SCIFACT is statistically better than the rest of the fine-tuned

models over the same dataset.

From the overall results, it can be seen when using domain specific embeddings, i.e S-

PubMedbert, the fine-tuned results show statistical significance than the fine-tuned models

using general embeddings. Using a domain specific model yields a much better performance

for scientific claim document retrieval task than using a general purpose model which confirms

our hypothesis.

whttps://huggingface.co/pritamdeka/S-PubMedBert-MS-MARCO-SCIFACT

https://huggingface.co/pritamdeka/S-PubMedBert-MS-MARCO-SCIFACT
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(a) Heatmap for recall@5 (b) Heatmap for recall@10

Fig. 9. Heatmap of Nemenyi test for fine-tuned models

5. Key Findings

Given that we have covered a number of different tasks, techniques and evaluations, we

summarize our key findings to convey the bigger picture succinctly.

1. Indicator words play an important role for finding claim sentences in online health

related content.

2. Domain specific named entities are better suited as candidate keys than noun phrases/nouns

for keyword/keyphrase extraction from biomedical text.

3. Fine-tuned BioBERT using S-BERT performed better than pre-trained generic S-BERT

models for biomedical sentence similarity tasks which is in line with the findings by [83].

4. Fine-tuned PubMedBert model performed better in retrieving relevant information

which shows that for health/biomedical text retrieval tasks, domain specific transformer

models performs better than generic models when fine-tuned over the same data.

5. Based on the above points, we also find that training a biomedical domain specific

model with a standard generic dataset for a domain specific task yields better results

than training a generic model for the same task using the same dataset.

6. Conclusion and future work

We have proposed a method for creating Boolean queries for the purpose of document retrieval

in an unsupervised way, and filtering the results from the result sets of such boolean queries

in a claim-specific manner. The experiments and results show that using indicator words

along with sentence embeddings, claim related sentences can be extracted from health articles

in an unsupervised way. We also showed how medical/health related keywords/keyphrases

can be extracted from text and then create queries from it without any supervision using

Boolean operators. Our method of keyword/keyphrase extraction performed better than

the available keyword/keyphrase extraction algorithms for health/medical related text. We
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also showed how fine-tuning domain specific transformer models leads to higher efficiency in

domain specific tasks. We then show how relevant documents can be retrieved for the claims

from the documents which are retrieved using the queries using a dense retrieval approach.

Based on extensive experiments and statistical analysis, we show the efficiency of our approach

over various baseline approaches using a publicly available dataset.

In future, we plan to use the fine-tuned PubMedBert model to extract evidence statements

from the retrieved abstracts. We then plan to use these evidence statements to help refute or

support the claims. We also plan to explore more datasets in this field and see how well the

model generalises over different datasets in similar domains.
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