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Stock markets trading has risen as a critical challenge for artificial intelligence research.
The way stock markets are moving and changing pushes researchers to find more so-

phisticated algorithms and strategies to anticipate the market movement and changes.

From the artificial intelligence perspective, such environments require artificial agents
to coordinate and transfer their best experience through different generations of agents.

However, the existing agents are trained using hand-crafted expert features and expert

capabilities. Notwithstanding these refinements, no previous single system has come near
to dominating the trading environment. We address the algorithmic trading problem

utilising an evolutive learning method. Precisely, we train a multi-agent reinforcement
learning algorithm that uses only self trades generated by different generations of agents.

The evolution-based genetic algorithm operates as an evolutive environment that con-

tinually adapts the agent’s internal strategies and tactics. Also, it pushes the system
forward to generate creative behaviours for the next generations. Additionally, a deep

recurrent neural network drives the mutation mechanism through the attention that
dynamically encodes the memory mutation size. The winner, which is the last agent,
achieved promising performances and surpassed traditional and intelligent baselines.

Keywords: Deep reinforcement learning, Partially observable Markov decision process,

Knowledge uncertainty, Financial data, Trading system, Financial engineering

1. Introduction

Stock markets elicit information from a continuous, unpredicted, and complicated real-world

environment. Automated trading, also named agent trading, is one of the recent influential

subfields in finance, which can be observed as the strategies that automatically execute se-

quential trading decisions. Generally, the goal is to execute profitable actions that maximize
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the returns and reduce risk simultaneously. It is a developed method to submit many trading

orders to an exchange [1]. Automated trading surpasses human traders on many levels, such

as the stability of trades, less affection by emotional factors, and more creative and adapta-

tive behaviour. Hence, it becomes an essential point in modern finance theory. The trading

is undertaken in a continuous double auction between sellers and buyers in most financial

markets. The trader, both human and algorithm, endeavours to sell at a high cost and buy

low. Hence, the learned behaviour needs to satisfy some criteria, such as selecting when to

go long and when to go short. Besides, as the market signals change almost randomly, the

target prices and actions continuously adapt. The exchange information such as volume and

prices are real-time shifting variables; thus, it shifts the targeted price.

If the agent can predict the stock market trend, it can draw powerful and profitable rules,

including decisive actions and less risky positions. However, the ability to predict the market

trend converges to zero, considering the stock market dynamicity and instability. The agent

acts in an uncertain sequential decision-making environment. Therefore, modelling the price

and return connection by estimating a probability distribution is impossible. Consequently,

such an environment requires a rule-based policy rather than a price prediction model [2].

This policy inputs the price prediction and outputs the decision that maximizes the return.

Several proposals try to examine the automated trading problem. The robust approaches

are based on Reinforcement Learning (RL) [1, 3]. The RL agents can learn precise and

correct parameters by simply interacting with the environment. Furthermore, the agent can

efficiently adapt and expect environmental changes. RL shows encouraging performances in

the financial industry [1, 2, 3]. Deep reinforcement learning (DRL) tries to maximize returns

and decrease the risk in financial trading simultaneously.

The DRL [4, 5] process, highlighted in figure 1, is formed as follows: at each time step,

the agent inputs the current state and submits an action. The environment emits the cor-

responding reward and the next state based on the selected action. The agent selects the

action to execute based on its policy. The policy’s goal is to maximize the cumulative re-

ward over time. The reward is essentially each trade’s profit. In the current problem, the

trader is the agent who selects when and how to execute trades in the environment. The

environment details and features are continually shifting where the agent has limited control

over most changes. Besides, the environment states are partially observable, where the agent

can consult only a derivation of the actual state. Hence, sequential dynamic decision-making

under uncertainty is more challenging. Therefore, the agent is forced to analyze unknown

trajectories and execute accurate real-time decisions simultaneously.

The agent tries to learn the proper, optimal, and practical action. The market environment

includes various agents, both algorithms and humans. The agent can execute three separate

actions A = {Sell, Buy, Hold}. Each state St encodes the past prices of all transactions

received until the time t. The reward R is each transaction’s profit. Practically, the dilemma

is to learn a policy that maximizes the accumulative reward.

The training process pushes the agent to explore the environment for synthesized expe-

riences. The agent is obliged to select the profitable action based on imperfect information.

Moreover, the causes and effects are not immediate, where early actions are not pay off for a

long time. Therefore, the agent has to resonate about long-term planning, stabilize long- and

short-term purposes, and adapt to unexpected circumstances. However, mastering the trading
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0
Fig. 1. The Deep Reinforcement Learning Framework

industry requires breakthroughs in diverse stages. First, the financial data is non-stationary,

with low signals and nonlinear patterns. Next, the states’ details are partially observable.

However, decisive actions demand building inferences based on incomplete features. Some

actions have a lesser impact on the environment, while others strategically affect the trad-

ing strategy. The action space contains three actions yielding to distinctive states’ contexts;

therefore, the agent must resonate about a long time horizons issue. Financial markets are

complex dynamic environments holding multiple active agents. Hence, each action affects the

observation series differently and continuously. Consequently, the system has to consider the

high-dimensional continuous observation space. Finally, the reward sparsity is highlighted by

the time lag connecting actions and their rewards.

Given these challenges, deep reinforcement learning-based trading has risen as a tremen-

dous challenge for researchers. This work integrates the DQL and evolutive genetic algorithms

to improve further agents’ ability to explore these obstacles and generate a solid rule-based

policy.

This paper is an extended version of our conference paper [6]. Precisely, we have extended

the training data size, added two new critical events in the evaluation stage, and increase the

number of generations to seven instead of only six. This paper combines new and existing

general-purpose methods for artificial neural networks (ANN), deep reinforcement learning,

transfer learning, and multi-agent learning to address the theoretic challenges and complexity

of stock markets. The proposed system starts by creating an evolutive continuous training

environment, where different agents collaborate, transfer knowledge, and trade against one

another. The evolutive environment consists of a bench of generations containing different

agents. Each version of the agent, both original or mutated, learns from several datasets

to push the agents to overcome varying risk levels and encourage diversity in the evolutive

environment. The created environment provides distinctive competitors to trade against and

to develop agents’ internal rewards and hyperparameters through the learning process.

In the first generation, the agents start entirely random with no experience. It scales the

ladder of experience level until it masters the task. After terminating the learning phase, these

agents are evaluated to select the stronger ones for mutation. The selection phase chooses

the strongest agents in terms of internal reward. The agents’ exhibit transfer learning in each

generation, employing experiences learned under particular constraints to handle a never-

before-seen one. The agent uses the deep Q-Learning (DQL) algorithm to update the policy

parameters, reinforcing actions that happen exactly before positive reward. The final agent

has collected an intense representation of the world states and has synthesized experience
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good strategies. In the next generation, the selected agents are mutated. The mutation phase

creates all possible combinations between the available agents. The proposed system mutates

agents based on a dynamic experience size parametrized by a neural network that receives all

agents’ parents from the beginning as inputs and selects the mutation size as outputs.

The remainder of this paper is arranged into sections. In Section , the related works of

this word are reviewed. In Section , the necessary preliminaries and the basic concepts are

introduced. The partially observable Markov decision process, deep Q-Learning, and genetic

algorithm are introduced. In Section , the contribution ideas and parts are explained. Section

combines the results of the proposed approach, which is confirmed through comparative stud-

ies. Moreover, discussions are reviewed and covered in the same section. Section summarises

this work and displays the proposals for future ones.

2. Related Work

Stock markets are dynamic environments containing many active agents. These agents are

affected by each other behaviour and by outside information such as news. This generates

a behaviour with substantial noise and randomness that is highly challenging to predict [7].

Hence, several algorithms and studies have concentrated on the financial industry [1, 2, 3]. On

the one hand, we have proposed in our previous work [1] a new rule-based policy approach by

which we train deep reinforcement learning agents for automated financial trading. Precisely,

we have created a continuous virtual environment where we have trained different versions of

agents. On the other hand, we have introduced a new DRL method based on an encourage-

ment window [2]. The advantage function consisted of the discounted sum of rewards and the

baseline estimate. Interestingly, our introduced encouragement window is based entirely on

the past rewards fitting a dense synthesized knowledge rather than noisy and unclear signals.

This proposal has extensively increased actions’ quality by adjusting the action choice versus

states’ uncertainty.

Strassburg et al.[8] apply the genetic algorithm to optimize the technical trading rules.

Zhang et al. [9] improve the recurrent reinforcement learning through a genetic algorithm

to enhance the trading results. Their system uses the advantage of GA’s capacity to select

an optimal combination of fundamental, technical, and volatility indicators to develop out-

of-sample performance. Youngmin et al.[10] develop a hybrid trading system for determining

trading rules utilizing rough set analysis and a genetic algorithm (GA). In other words, they

have used a novel rule discovery mechanism based on GA to solve optimization problems.

Chang et al.[11] Combine GA and Markov decision process (MDP) to introduce a new an-

alytical framework for trading. They have tried to make timing decisions by utilizing the

prediction features and real-time analysis capabilities of the MDP. The parallel search capa-

bilities of GA are employed to identify the profitable investment strategy.

Eilers et al. [12] introduce a decision support method that employs RL to enhance the prof-

its of the direct seasonality plan. Cumming et al. [13] propose an RL algorithm for dynamic

trading that estimates the value function of different states using the least-squares temporal

difference. Deng et al. [14] develop a framework-based DRL to process the financial signal

and trade online. They utilize bilevel optimization (BO) to structure the training procedure.

Then, the online gradient descend (OGD) technique solves the optimization structure with

fast convergence. Deng et al. [15] expand the theory of the policy search by employing DRL.
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Table 1. Summary of Related Work on deep learning, RL, and DRL in financial trading.

Paper Dataset Period Technique
Eilers et al. [12] DAX, S&P 500 2000-2012 ANN
Deng et al. [14] China Stock Index Future (IF) 2013-2014 BO + OGD
Deng et al. [15] SZSE 2014-2015 FDDR, DMLP+RL
Jiang et al. [16] 80 tradable cryptocurrency - CNN+RNN+LSTM
Di Persio et al. [17] Google - RNN, LSTM, GRU
Lu et al. [18] GBP/USD 2017 RL + LSTM + NES
Serrano et al. [19] Derivative market/ Bond - RL, DMLP, GA
Chen et al. [20] Taiwan TAIFEX 2017 RL agent + CNN
Li et al. [21] APPL, IBM, PG, S&P500,

ES, IF
2008-2018 DQN + A3C + LSTM

Azhikodan et al. [22] NASDAQ-GE, NASDAQ-
GOOGL

- NN + RCNN

Jeong and Kim [23] SP&500, KOSPI, Eu-
roStoxx50, HSI

19872017 DQL + DNN

Lei et al. [3] S&P 500 1999-2018 TFJ + DRL
Park et al. [24] US-ETF, KOR-IDX 2010-2017 DQL
Hirchoua et al. [1] SP&500, Facebook, Baba,

Google, Gold, SFix, Apple,
BTC

1960-2019 DRL - PPO

Hirchoua et al. [6] Facebook, Baba, Google,
Gold

2002-2020 DRL - DDQN

Ours SP&500, Facebook, Baba,
Google, Gold, SFix, Apple,
BTC

1960-2019 DRL - DDQN

In addition to the RL methods, the authors consider the Fuzzy Deep Direct RL (FDDR) and

Deep Multilayer Perceptron (DMLP).

Di Persio et al. [17] have done a comparative study over a primary Recurrent Neural

Network, a Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM) to point out

the most reliable variant. The results show that the Long Short Term Memory has surpassed

the other variants by 72% accuracy. Jiang et al. [16] consider the problem of portfolio

management. They have trained a neural network via online stochastic batch learning. This

mechanism is proper for online and pre-trade training. Serrano et al. [19] introduce an asset

banker algorithmic trading based on reinforcement learning. It generates the trading signal

by employing a neural network alongside the genetic algorithm and RL. Chen et al. [20]

consider an RL agent with a convolutional neural network (CNN) policy.

Jeong et al. [23] attempt to define the appropriate actions sequence alongside the number

of shares for each particular action. Precisely, they merge a DQL with a policy form con-

taining two components for learning the two requested outputs (actions and the number of

shares). Azhikodan et al. [22] confirm that DRL-based methods are competent in recogniz-

ing the patterns of stock markets. They perform a deep deterministic policy gradient and a

deep recurrent CNN for the opinion mining. Li et al. [21] develop a DRL trading agent to

autonomously execute actions via an adjusted DQN and actor-critic (A3C) approach. Lei et

al. [3] introduce a time-driven feature-aware integrated DRL model (TFJ-DRL) to enhance

the action choice and the signal presentation. Lu et al. [18] use deep RNN, long-short term

memory, and Natural Evolution Strategies (NES).

Recent works considering the same problem are highlighted in Table 1.
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3. Preliminaries

This section presents the essential preliminaries about the partially observable Markov deci-

sion process and the double deep Q-learning network (DDQN) algorithm.

3.1. Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) [25] presented in definition 1,

is a generalization of a Markov Decision Process (MDP). The POMDP can model various

dynamic real-world decision processes. It attempts to provide a policy that fulfils different

tasks. A POMDP framework models environment with imperfect information. In other words,

it models the agent decision process that does not observe the underlying state completely.

The MDP that includes discrete states with imperfect information needs to resonate

against the observations, probabilities, and the underlying MDP to control the states’ proba-

bility distribution. The POMDP model aims to maximize the system’s reward while analyzing

states’ uncertainty and complexity. The sequential optimal actions produce the targeted op-

timal policy.

Definition 1 A POMDP models the agent decision process and its interaction with the en-

vironment. Preciselly, a POMDP is a 7-tuple < S,A, T,R,Ω, O, γ >, where:

• S is the space of states,

• A is the space of actions,

• T is the conditional transition probabilities T (s|s, a) for the state transition s→ s,

• R : S ×A→ R: is the reward function,

• Ω is the space of observations,

• O is the conditional observation probabilities O(o|s, a),

• γ ∈ [0,1] is the discount factor.

The space of state S = {s0, s1, s2, . . .} defines the agent’s world. Note that the transition

among states confides only in the current state information. Precisely, the states are Marko-

vian (Equation (2)), enabling the agent to focus only on the current state. This Markov

property makes POMDPs tractable. In the context of the current problem, the action space

involves three actions A = {Sell, Buy, Hold}. Every action hits two directions. On the

one hand, it impacts the environment progression in terms of new states. On the other hand,

the agent collects the next observation when considering a couple of states and actions. The

at signifies the action executed in time move t.

After the agent executes an action, the environment emits the following observation sam-

pled from the observation space Ω = {o0, o1, o2, . . .}. Simultaneously, after executing an

action a in a state s, the transition function highlights the probability of hitting the state s′.

Precisely, this function T (s′|s, a) holds the action’s effects as a probability distribution.

T (s|s, a) = Pr(s′|s, a), (1)
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where Pr(s′|s, a) reflects the environment probability of hitting s′ from s through executing

the action a. Given this, the Markov property is represented as: ∀s ∈ S, ∀a ∈ A,

Pr(st+1|s0, a0, s1, a1, ..., st, at) = Pr(st+1|st, at), (2)

where t indicates the time in which the encoded state has been hit.

The observation function O highlights the probability of receiving the observation o upon

hitting the state s′ after executing the action a.

O(s′, a, o) = Pr(o|s′, a) (3)

In order to learn the optimal strategy that maximizes the accumulated reward R(s, a, s′),

the agent formalizes a reward function based on actions and states. More formally, the agent

selects sequences of actions that maximize the expected future reward:

E
[ ∞∑
t=0

γtR(st, at)

]
(4)

3.2. Deep Q-Learning Network

The Q-learning [26] seeks to learn a greedy deterministic policy. Precisely, given the current

state, it tries to execute the optimal action. Q-learning attempts to construct a policy that

maximizes the accumulated reward. It encodes a function to determine the state-action

combination: Q : S× A→ R, More formally,

Q(st, at) = R(st, at) + γmax
a

(Q(st+1, a)) (5)

The agent executes the action at at state stm and receives the reward R(st, at). The

action-value function represented by Q(st, at) is the result of choosing the action at at the

state st.

The resulted experience in terms of {st, at, Rt, st+1} is saved in the reply buffer to train

different agents. IN other words, the stored Q-values for all possible combinations of state s

and action a. However, as the limitation of computation resources, we only store the last N

experiences in practice.

The resulted experience in terms of {st, at, Rt, st+1} is saved in the reply buffer to train

different agents. In other words, the agents learn through the stored Q-values of different

combinations of states and actions. Practically, the previous experiences are kept due to the

limitation of resources.

Mnih et al. [27] scales the DRL to complex sequential decision-making problems. Deep

Q-network (DQN) is an enhanced variant of the Q-learning, where a deep network estimates

the Q-function Qθ(s, a), and θ is the model’s parameters. The objective the function of the

DQN algorithm is:

min
θ

J(θ) = min
θ

(yt −Qθ(st, at))2, (6)

where yt is calculated as the following:

yt =

{
rt, if episode ends at t+ 1
rt + γmaxaQθ(st+1, a

′), otherwise
(7)
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Different components {st, at, Rt, st+1} are randomly sampled from the replay buffer. The

second equation of the Equation 7 is formulated as the following:

yDQLt = rt+1 + γQθ(st+1, argmaxaQθ(st+1, a)), (8)

Generally, the DQL adopts the following Bellman equation:

Q(s, a) = Q(s, a) + α [R(s, a) + γmaxQ(s′, a′)−Q(s, a) ], (9)

where Q(s, a) represents the Q value, γ is the discount rate, and α is the learning rate. Based

on the new state s′ and all possible actions from this state onward, the maxQ(s′, a′) is the

maximum expected future reward.

The DQL algorithm is a significant milestone in DRL, although various limitations influ-

ence its performance in the trading environment. Principally, extensive states space causes it

intractable to learn and estimate the Q value.

3.3. Genetic Algorithms

Genetic algorithms (GAs) are a sub-field of evolutionary computation. They imitate natural

selection alongside biological evolution principles to generate diverse solutions. GAs can

optimize complex problems in an evolutive manner. Based on historical experiences, GAs

enable the agents to explore the environment accurately, even if they start by a random

configuration.

Generally, GA starts with a random population of agents. A predefined fitness function

then evaluates agents in each population. Two agents are elected as parents based on the

fitness function to reproduce one or more children. These new offspring agents are produced

by utilizing a recombination driver, such as mutation and crossover. This process is iterated

continuously until finding the best solution or reaching a predefined generations number. The

essential pseudo-code of a GA is as follows:

1. Generate an opening random population of agents.

2. Estimate the fitness of the agents.

3. Generations = 0.

4. While convergence constraints are not met do:

(a) Elect two agents as parents for reproduction.

(b) Generate new offspring agents utilizing mutation and crossover drivers.

(c) Evaluate the fitness of the newly produced agents.

(d) Adopt the best new agents instead of weak ones.

(e) Generations = Generations + 1

5. End While

6. return the Optimal Population.
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In the next section, we introduce the proposed approach and explain the training process

in detail.

4. Evolutive Deep Reinforcement Learning Based Trading Agents

To address the theoretic challenges and complexity of stock markets, we combine new and

existing general-purpose methods for neural networks, deep reinforcement learning, transfer

learning, and multi-agent learning. The proposed system consists of two main stages. We

have created an evolutive continuous training environment, with diverse agents collaborating,

transferring knowledge, and trading against one another, akin to the specialists’ process. The

evolutive environment consists of a bench of generations. Each generation contains a collection

of different agents. Diverse datasets have dynamically been injected into different generations

by branching from the existing ones; each version of the agent, both original or mutated, then

learns from these new datasets. We have inserted several risky datasets to push the agents to

overcome varying risk levels and encourage diversity in the created environment.

Figure 2 underlines the evolutive continuous environment training generations of evolutive

agents collectively. It delivers distinctive enemies to trade against and develop agents’ intrinsic

rewards and hyperparameters through the learning process. Each circle denotes an agent in

the generation, and the final one describes the strength agent’s policy. The policy neural

network points to taking action and receiving the reward associated with this action executed

in the environment.

In the first generation, the agents initiate entirely random having no experience of the

environment and trade. It scales the ladder of experience level until it masters the task.

After terminating the learning phase, these agents are evaluated to select the stronger ones

for mutation. The selection phase determines the most robust internal reward/profit agents.

The agents display transfer learning in each generation, employing experiences learned under

particular constraints to handle a never-before-seen one. The agents from the next generations

are challenged with new risky datasets. Each agent controls its behavior, notwithstanding

never observing the new data. The agent employs the DQL algorithm to update the policy

parameters and reinforce actions that happen exactly before a positive reward. The final agent

has composed an intense representation of the world states and has synthesized experience

and good strategies.

In the next generation, the selected agents are mutated. The mutation phase creates all

possible combinations of selected agents. It mutates two agents simultaneously, admitting

that the mutation of more than two agents is presented in the constructed combinations.

The proposed system mutates agents based on a dynamic experience size. In other words,

the memory size mutation is described by a neural network that receives all agents’ parents

from the beginning as inputs and selects the mutation size as outputs. Besides, the proposed

system allows the strongest agent from the previous generation to cross directly to the next

generation. This behavior guarantees that the most potent agent can always be selected

against weak ones, which gives the system the required flexibility to handle the decreasing

or exceptional performances. In other words, the system keeps the most substantial DNA to

anticipate the heavy changes in data and agents’ behaviors. Each new generation selects 50%

of the last percentage. Precisely, the first generation selects 50% of agents for mutation; the

second determines 25%, the third 12.25%.
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Fig. 2. The evolutive continuous training environment.

This evolution of training mechanism pushes the agents’ training and policy enhancement

purposes further, creating a method that continually and stably explores the immense environ-

ment states. Hence, it guarantees that each enhanced version through generations performs

strongly against the environment uncertainty and crosses previous variants. As the evolution

proceeds and new variants of agents are mutated, new counter-strategies appear and conquer

the earlier ones. Some distinct agents deliver a strategy slightly an adjustment of a previous

one; others discover drastically new policies. The unsafe tactics have been rejected as training

proceeded, leading to stabler strategies.

Algorithm 1 Evolutive training process

1: First Generation: Generate a population of agents / traders using DQL;
Population = {A1, A2, A3 . . .}

2: repeat
3: Train the population;
4: Select the half of the last percentage of agents following the maximum reward;
5: Identify the strongest agent As;
6: Generated the childs {C1, C2, C3 . . .} by crossing/mutating their parents;
7: Update the population:

Population = {As}+ {C1, C2, C3 . . .}
8: Pass to the next generation;
9: until Convergence constrains

The proposed system mixes the power of reinforcement learning, deep learning, big data,

and the advantage of genetic algorithms to find the optimal solution. Algorithm 1 highlights

the evolutive training process. It starts by training a population of agents using a data set.

This corresponds to the creation phase of the initial population. Next, the selection phase

chooses the best agents. The higher the reward provided by an agent, the better the agent.

Furthermore, the crossing phase merges two agents to produce only one. It forms a new agent
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that has part of his parents’ history and, therefore, part of all parents’ history. For each

generation, we repeat the process of selection and crossing using different datasets to push

the training process further. The process ends if the generation size is reached or ends up

with only one agent.

5. Results and Discussion

This section tests and proves the validity of the proposal. Furthermore, it demonstrates the

proposal’s advantages over a complete analysis.

5.1. Performance Rating Measures

The system performances are evaluated using different measures. The Sharpe ratio (Sp) [28]

measures the excess return of a portfolio related to the risk-free rate divided by its standard

deviation. It evaluates the performance of an investment considering the risk taken. The ratio

corresponds to the average return above the risk-free rate, divided by the asset or portfolio

of assets volatility. The following expression gives it:

Sp =
E(Rpi − rfi)

σp
(10)

where Rpi is the return on the portfolio at the time i. The risk-free rate, corresponding to

the return on a portfolio of investments with guaranteed capital, is denoted by rfi, and the

standard deviation of the portfolio’s return (thus referring to its volatility) is given by σp.

The Sharpe measure takes into account the total risk of returns. More recently, the

Sortino ratio [29], which is a choice reward-risk evaluation measure, is proposed to consider

the asymmetry in returns and not just the market risk. Given the return of the portfo-

lio Rpi at the time i, the minimum acceptable return MAR, and the Downside risk (DR)√
E(Min(Rpi −MAR), 0)2), the Sortino ratio of a portfolio is defined as follow:

SORp =
E(Rpi −MAR)√

E(Min(Rpi −MAR), 0)2)
(11)

The max drawdown (MDD) indicates the risk of a portfolio chosen according to a particular

strategy. The MDD measures the most significant decline in the value of a portfolio. It

corresponds to the maximum historical loss incurred by an investor who has bought at the

highest and sold at the lowest during a given period.

From the perspective of the performance of hedge funds, it is more convenient to use the

maximum possible loss from high to low as an alternative risk indicator. Given different

non-normal distributions, the latter is positively/negatively skewed when the most extreme

returns extend towards its right/left tail. The following expression is used to measure the

degree of skewness, taking r̄ as the mean: Considering different non-normal distributions, if

there are more extreme returns spreading to the right/left tail of a distribution, it is posi-

tively/negatively skewed. The degree of skewness is measured using the following formula,

where r̄ is the mean:

Skewness =
∑(

(Rpi − r̄)
σp

)3

× 1

n
(12)
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Table 2. The parameter settings.

Parameter value
Generations size 6
Generation 1 size 20
State Length 30
Number Of Episodes 25
Discount (γ) 0.99
Learning rate 0.001

Table 3. The strongest agent in each generation.

Performance Indicator Gen 1 Gen 2 Gen3 Gen 4 Gen 5 Gen 6 Gen 7
Profit & Loss 21 274 24 458 24 033 29 286 106 021 168 611 175 846
Annualized Return 9.56% 10.47 10.98% 4.48% 3.01% 5.63% 25.36%
Annualized Volatility 22.75% 22.77% 12.37% 12.01% 15.33% 12.19% 38.52%
Sharpe Ratio 0.463 0.51 0.936 0.417 0.208 0.488 1.037
Sortino Ratio 0.683 0.796 1.11 0.557 0.272 0.56 1.663
Maximum Drawdown 22.67% 24.92% 10.10% 66.97% 20.78% 19.34% 13.68%
Max Drawdown Duration 121 Days 83 9 Days 237 Days 27 Days 65 Days 47 Days
Profitability 69.23% 100.00% 40% 41.18% 39.33% 52.94% 80%
Ratio Average Profit/Loss 1.123 inf 13.167 2.113 1.798 1.62 2.818
Skewness 0.645 0.882 - 0.567 -0.289 -0.371 -0.619 0.228

Automated trading has been attracting much attention. However, we need a substantial

measure to evaluate the system improvement across the generation of agents. In the following

subsection, we show and discuss the system performances.

5.2. Experimental Results

In order to demonstrate the proposed approach’s applicability, we have used the closing prices

of 8 stocks for evaluation. Contrary to our conference paper [6] where we have considered

only 4 stocks, in this paper we consider 504 training dataset with 8 evaluation stock data

as we have done in our previous work [1]. Figure 3 shows the used data. Also, Table 2

summarizes the environment parameters. On the one hand, the proposed system is evaluated

in terms of Profit & Loss, Annualized Return, Annualized Volatility, Sharpe Ratio, Sortino

Ratio, Maximum Drawdown, Profitability, Ratio Average Profit/Loss, and Skewness. Table 3

highlights the evolution of the strongest agents over generations. The last agent shows strong

behavior, mastering every stock and generating a huge profit. We have followed the strongest

agents through generations and observed their behavior. Interestingly, the mutation size

neural network has progressively improved the mutation mechanism, balancing the mutation

size and the amount of transferred knowledge.

We have used divers datasets to train each generation. Precisely, the facebook, Gold,

SFix, Apple, SP&500, Baba, BTCUSDT, and Google datasets are used. The last agent is

tested against the Facebook dataset to demonstrate its performance and the enforcement of

the transferred learning mechanism. Table 4 illustrates the last agent’s achievements. It

outperforms all strongest agents from the past generations in all used metrics.

Table 5 compares the highlighted results form our paper [1]. It compares our agent with
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Fig. 3. Real prices of the 4 stocks.

Table 4. The final agent performances.

Performance Indicator The Last Agent
Profit & Loss 191 951
Annualized Return 13.50%
Annualized Volatility 25.51%
Sharpe Ratio 0.783
Sortino Ratio 1.202
Maximum Drawdown 44.76%
Max Drawdown Duration 266 Days
Profitability 85.71 %
Ratio Average Profit/Loss 3.933
Skewness 0.357
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Table 5. The last agent against four price prediction models, seasonality events detection [12], and

deep recurrent Q-network [30], on S&P 500 stock.

System Profit
Gradient Boosting Model 351.54
K-Nearest Neighbor 202.95
Support Vector Machines 210.22
Random Forest 225.15
Huang, Chien Yi [30] 257.19
Eilers et al. [12] 133.99
Ours 572.60

Fig. 4. Interesting Times performances.

Eilers et al. [12] and Huang [30] systems. Moreover, it describes how the price prediction

models are limited in trading stock markets. Our agent makes the best profit compared to the

other systems. The proposed system concentrates more on improving its behavior through

transfer learning, rather than worrying more about seasoning events [12].

Compared to the methods mentioned above, the final agent generates more reliable and

precise performances. Nevertheless, according to the earlier experiments, these systems main-

tain several shortcomings generating huge losses. The fundamental purpose of our system is

to concentrate on the size of transferred learning. Practically, based on the neural network

output, the mutation size is identified for every generation to balance the merged knowledge

size through evolution.

The final agent has faced a list of historical six events that significantly have impacted

markets. Precisely, we have considered the US downgrade and European Debt Crisis 2011,

April and October 2014, Market down-turn (fall) in August/Sept 2015, new normal, and

flash crash. Figure 4 shows the final agent performances. It produces a significant profit in
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different events and fails with relatively small losses. Interestingly, The agent has learned

from the April 14 event to master the October 14 fall event. Precisely, the model had beaten

the October 14 fall by experiencing the April 14 fall, where the agent has shown relatively

weak performances. In April 14 crisis, the benchmark has recovered for the first time on

April 07 and for the second time on April 11. In the first recovery, the agent has stabilized

its returns before the drawdown on April 09. The model stability highlights this behaviour

compared to the start of the crisis. On the other hand, the market has started recovering on

October 16, while the model has experienced a slight shift in its returns, becoming positively

stable to avoid the April 2014 scenario. The agents that have encountered April 2014 have

transferred their experience to the next episodes. The transferred knowledge has helped beat

the October 2014 market crisis with higher gains.

6. Conclusion

In this article, we have addressed the algorithmic trading problem employing an evolutive-

based generations learning method. The algorithm integrates existing and novel general-

purpose techniques for deep reinforcement learning as a general mechanism driving agents and

neural networks representing the agents’ policies. Besides, the algorithm incorporates transfer

and multi-agent learning to handle stock markets’ theoretical issues and complexity. The

evolution-based genetic algorithm has functioned as an evolutive bloc that constantly adjusted

the agent’s tactics and pushed the system forward to train new innovative behaviour for the

following generations. Besides, a deep recurrent neural network has guided the mutation

procedure via the attention mechanism that dynamically points out the memory mutation

size. The final agent has achieved favourable performances and exceeded traditional and

intelligent baselines.

In future research, the proposed model will be extended to use proximal policy optimization

and trust region policy optimization instead of DQL. Moreover, we will inject a curiosity

mechanism to add an extra index and improve the policy.
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