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Johannes Kepler University Linz

Altenbergerstraße 69, 4040 Linz, Austria
josef.kueng@jku.at

FRANCK MORVAN

IRIT Toulouse

Route de Narbonne 118, 31062 Toulouse Cedex, France
franck.morvan@irit.fr

The problem of ontology matching consists of finding the semantic correspondences be-
tween two ontologies that, although belonging to the same domain, have been developed

separately. Ontology matching methods are of great importance today since they allow

us to find the pivot points from which an automatic data integration process can be
established. Unlike the most recent developments based on deep learning, this study

presents our research efforts on the development of novel methods for ontology matching

that are accurate and interpretable at the same time. For this purpose, we rely on a sym-
bolic regression model (implemented via genetic programming) that has been specifically

trained to find the mathematical expression that can solve the ground truth provided by
experts accurately. Moreover, our approach offers the possibility of being understood by
a human operator and helping the processor to consume as little energy as possible. The

experimental evaluation results that we have achieved using several benchmark datasets
seem to show that our approach could be promising.

Keywords: Information Integration, Ontology Matching, Large Ontologies, Semantic
Similarity Measures

aThis paper is an extended version of: Jorge Martinez-Gil, Shaoyi Yin, Josef Küng, Franck Morvan: Matching
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1. Introduction

Ontology matching is a field for finding semantic correspondences between ontologies belong-

ing to the same domain but developed separately. Despite its importance in many computer-

related disciplines, several problems are currently associated with systems for automatically

matching ontologies. For example, the existing matching systems do not allow the discovery

of complex correspondences or the fact that most of the existing semantic similarity measures

to discover similar entities across ontologies cannot be aggregated easily.

In recent years, it has been an explosion in the number of new techniques and tools for

ontology matching aiming to fill these gaps to overcome these problems. These techniques

and tools have been a leap in quality compared to the state-of-the-art [1, 2] because they

have solved many issues related to accuracy, recall, aggregation, speed of computation, etc.

However, there are still some open issues to solve the problem almost definitively. In this

paper, we address one of these open issues: interpretability, i.e., the potential ability of a

human operator to understand a matching model that has been derived analytically using

some computational learning technique.

Biomedical ontology matching, sometimes also called biomedical ontology alignment, con-

sists of finding the semantic correspondences between entities belonging to two ontologies

from the biomedical domain developed independently by different experts. One of the main

characteristics of this domain is that biomedical ontologies are usually considered large when

most state-of-the-art approaches are merely applicable for small-scale ontologies. This usually

means that the effectiveness of the existing approaches decreases for large ontologies. This

makes our challenge slightly different from the usual one, matching many small ontologies

(called holistic matching). For example, it is not very efficient to use structural information

since it provides little information concerning such a large model. Furthermore, there is an

additional problem when determining these approaches because reference correspondences are

unknown in advance, so domain experts must assess samples of the mappings proposed and

returned results.

Due to the decentralized nature of biomedical research, the problem is that there usually

exist multiple ontologies from overlapped application domains or even within the same do-

main. In order to establish interoperability between biomedical applications that use different

but related ontologies, ontology matching has been proposed as an effective way of handling

the semantic heterogeneity problem [3]. It is typically valuable for some data management ap-

plications, such as information integration, merging, and distributed query processing. Some

ontology matching techniques based on machine learning have recently obtained remarkable

results in the biomedical domain. However, the problem is that machine learning methods

rely heavily on the availability of high-quality labeled data.

Moreover, if we look exclusively at the latest computational techniques based on deep

learning (DL), we find another problem: the solutions from this field often behave like black

boxes that users find difficult to understand and trust. The reason is that solutions based

on deep neural networks can accept input and provide an output but often do not allow

the human operator to understand what happened inside the model before arriving at that

output, since there are hundreds if not thousands of nodes and connections between them.

This is a severely limiting factor that hinders the development of novel methods and tools for

ontology alignment in the biomedical field.
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Today, many biomedical applications require matching large biomedical ontologies, so we

have focused on addressing this challenge using highly interpretable matching methods based

on symbolic regression (via genetic programming). In this way, the significant contributions

of this work can be summarized in the following way:

1. The present study extends our previous work on the matching of very large ontologies

within the biomedical domain [4]. So that,

• We propose a method to automatically match large biomedical ontologies based

on the concept of symbolic regression intended to facilitate the interpretability of

the resulting matching models.

• We empirically evaluate this new method using popular benchmark datasets in

the biomedical domain and offer a comparison with the most prominent ontology

matching tools.

2. We emphasize the importance of interpretability and obtaining interpretable models in

the biomedical domain today.

3. We bring to the table new results in which the models obtained are analyzed in detail,

including a performance analysis.

The rest of this work is structured as follows: Section 2 describes the state-of-the-art

regarding ontology matching in the biomedical field. We extend our previous work [4] by

deepening aspects related to program synthesis and how this approach is able to improve the

interpretability of the models. Section 3 presents our technical contribution including exam-

ples in the use of symbolic regression for building aggregation functions. Section 4 extends

previous work by describing the benchmark datasets in this biomedical domain, presents the

results we have achieved after performing several experiments, and compares our results with

other prominent approaches. Please note that we extend our previous work [4] with a con-

vergence analysis for our solution. Finally, we remark on the strengths and weaknesses of our

proposal and discuss the future work.

2. State-of-the-art

We review below some of the most significant works in the field of biomedical ontology match-

ing, as well as key aspects for solving the issue of semantic interoperability in the biomedical

domain and the importance that program synthesis for symbolic regression has played in

recent times in a number of proposed solutions.

2.1. Ontology matching and semantic interoperability

One of the earliest studies to formalize this problem was [5], which addressed how ontology

matching systems may be created through a trade-off between precision and recall. These

authors were the first to propose that instead of using a matching algorithm, machine learning

models should be used to generate the most efficient and effective ensemble of matchers.

From this seminal work, the study turned to the proposal of machine learning methods to

aggregate the fundamental matchers, with GAOM [6] and GOAL [7, 8] being the first studies
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being able to construct the ensemble using genetic algorithms. The fundamental notion was

that it might optimize the precision, recall, or combination of the two, for example a harmonic

mean called f-measure. In [9], a survey on ontology matching was presented with emphasis

on the aggregation methods used by the different proposals existing to date, as well as the

significant differences between the techniques for matcher combination, matcher self-tuning,

and meta-matching.

There is a large body of literature on methods and tools to address the problem of ontology

matching. For example, using high-quality semantic similarity measures [10]. From the

classical Latent Semantic Analysis techniques, which prevailed for decades [11], to the most

innovative techniques based on word embeddings [12], through the dictionary-based techniques

that yielded the best results during the early and mid-2000s [13, 14]. Today, DL is able to

obtain the best results [15]. However, these methods are not so good in situations where the

interpretability of the solution also plays an important role.

It is important to remark that dealing with large ontologies is a problem that entails a

higher complexity than usual. The many homonyms and relationships that only apply in

narrow subject domains will lead to many incorrect matches. For general use cases, meth-

ods based on embeddings can yield better results. Nowadays, one of the most well-known

approaches using embeddings is that of Kolyvakis et al. [16]. The authors propose that on-

tological term vectors based on information derived from textual corpora and other resources

be used to solve the problem. Wu et al. have also lately used Siamese networks to outperform

the state-of-the-art in specific instances [17]. Both approaches, however, are based on DL.

This implies that they have significant interpretability issues.

In order to overcome this problem, there is work that relies on the use of fuzzy logics;

specifically Mamdani models [18], to build solutions that can have some meaning for the

users who use them. In particular, fuzzy systems based on Mamdani’s postulates are quite

interpretable since they operate on the basis of simple rules. However, these techniques still

require some specialization and mastery of fuzzy logics, which is not necessarily the case for

granted among domain experts from most of applied disciplines.

2.2. Semantic interoperability in the biomedical domain

The biological field is one of the domains where the effective and efficient use of ontologies

and other knowledge models can significantly impact. Biomedical ontologies are a rich source

of information that can help developers create applications for biomedical data annotation,

knowledge discovery, decision making, data interoperability, and so on. In this scenario,

mappings between the entities corresponding to each ontology are critical for interoperability

between data sources. However, heterogeneity is a critical issue which makes the task of

finding semantic correspondences difficult. To overcome this problem, several solutions have

been already proposed [19, 20, 21, 18, 22, 23, 24].

Regarding the input models to be used, some biomedical ontologies such as the National

Cancer Institute Thesaurus (NCI) [25], the SNOMED ontology [26], and the Foundational

Model of Anatomy (FMA) [27] to determine the quality of new solutions in this context. Most

solutions try to work with as many features as possible. These features include terminological,

structural, extensional (instances of a given concept), and external resources. Therefore, the

quality of the results has been restricted to small scenarios [28].
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There have been several attempts to establish the biomedical ontology alignment challenge

as a binary classification problem, i.e., a classifier could be trained with a sample of positive

and negative examples provided by that user to identify the cases once it is put into production

correctly. However, the results cannot yet be considered optimal. In recent times, DL-based

solutions seem to have succeeded in overcoming almost all traditional limitations, including

outstanding performance in terms of accuracy in a wide range of scenarios [16, 17]. This

is due to a large number of homonyms and associations that only apply to specific subject

domains, which will result in a large number of false matches. It is widely assumed that

embedding-based matching will produce better results in most applications. However, there

are still some gaps, such as the interpretability of the resulting model to be addressed. We

address this problem below.

2.3. Symbolic Regression via Program Synthesis

Program synthesis is a machine learning technique that searches the space of all programs to

find the model that best fits a given dataset. To date, this line of research has been little

explored in the field of ontology matching. However, we believe that it possesses a number of

characteristics that make it a promising line of research that can bring significant results to the

table. We are interested in a particular case of program synthesis where we perform symbolic

regression by aggregating ontology matchers of high accuracy through genetic programming,

a technique that makes the models evolve under a scheme similar to the evolution of living

beings by trying to mimic some cross-over, selection and mutation operations.

As is the case with neural networks, this technique is used to discover solutions to problems

people do not know how to address, but unlike networks of a neural nature, the model presents

high degrees of interpretability since a person with basic knowledge can understand it. The

reason is that the resulting model is expressed in mathematical language and can be easily

understood by a person with basic notions of mathematics.

This work presents a symbolic mathematical expression to identify the relationship be-

tween defined input and output variables. The use of mathematical expressions allows for

great flexibility. In our case, the output is the ontology matching score associated with a

pair of entities, while the input variables are values coming from highly interpretable basic

matching algorithms already proposed in the literature. In this way, the search space of

candidate expressions is enormous. Therefore, it is a much more difficult task than other

kinds of regression, such as linear or polynomial regression. The great advantage is that the

learned model is a mathematical equation that can be examined and interpreted in the given

situation. That resulting equation is chosen to fit the input data and explain the resulting

model’s functional explanation.

3. Matching Ontologies Using Symbolic Regression

One of the most well-known applications of semantic technologies in general, and ontologies

in particular, is the domain of life sciences. Ontologies are models representing regulated

terminologies that allow people and machines to understand the meaning of data legibly.

In this way, one of the primary goals of biomedical ontologies is to express classes of items

relevant to the ontology’s development context, which almost always consists of a complex

reality full of details and nuances. However, in addition to the names associated with these
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classes, the relationships between the various classes are also meaningful. Let us see some

definitions of our approach.

3.1. Definitions and problem formulation

In the following, we formulate some necessary definitions to follow our contribution. These

definitions belong to the domain of semantic similarity measurement since this is the branch

of research that we are considering in this work.

Definition 1 (Similarity Function). A similarity function sf is a function sf : µ1×µ2 7→ R

that associates the similarity of two input pieces of information µ1 and µ2 to a similarity score

sc ∈ ℜ in the range [0, 1].

So that a score of 0 stands for absolute inequality and 1 for equality of the pieces of informa-

tion µ1 and µ2 being compared.

Definition 2 (Ontology Matching). An ontology matching om is a function om : O1 ×
O2

sm→ A that associates two input ontologies O1 and O2 to an alignment A using a similarity

function sf.

Definition 3 (Ontology Alignment). An ontology alignment oa is a set {t,MD}, whereby
t is a set of tuples in the form {(id, e, e′, n,R)}, being id a unique identifier, e and e′ are en-

tities belonging to two different ontologies, R is the relation of correspondence between these

entities, and n is a real number between 0 and 1 that representing the plausibility that R may

be true. The entities that can be related are the classes or the relationships of the ontologies.

Furthermore, MD is some metadata related to the process for statistical purposes.

Definition 4 (Alignment Evaluation). An alignment evaluation ae is a function ae :

A × AR 7→ precision ∈ ℜ ∈ [0, 1] × recall ∈ ℜ ∈ [0, 1] that associates an alignment A and a

reference AR to two real numbers stating the precision, recall of A in relation to AR.

Definition 5 (Meta-Matching Function). A Meta-Matching Function mmf is a function

mmf : SC 7→ ℜ that defines how previously calculated similarity score sci ∈ SC. The result is

an optimized similarity score sco ∈ ℜ. We call optimized similarity score to the best possible

similarity score.

In our case, the meta-matching function will be built using symbolic regression via ge-

netic programming. Genetic programming uses evolutionary strategies to search for one good

model from a vast space of solutions representing all the mathematical expressions dealing

with the input data. Evolutionary strategies are computational algorithms that work under

the assumption of combining two good solutions to create a superior solution. Evolutionary

strategies are helpful because they do not use a straightforward optimization approach, al-

lowing for a wide range of outcomes. Furthermore, the resulting model frequently comes up

with innovative solutions that provide new insights into the problem.
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3.2. Symbolic Regression

Symbolic regression is a kind of mathematical analysis in which the model that best fits a

given input dataset is found by searching the entire space of all conceivable mathematical

expressions. Symbolic regression has already been utilized to solve specific function identifi-

cation problems in the past. This is primarily owing to the concept of Abstract Syntax Tree

(AST), which allows identifying the underlying function from previously solved samples.

Furthermore, the resulting model could be immediately exportable in the form of a pro-

gram into most of programming languages, making it easier for a human operator to compre-

hend and transfer to other situations of a similar nature, as we have already shown in [29].

This AST can evolve thanks to an underlying evolutionary strategy.

There are several possibilities to implement such an evolution, but at the end, the defini-

tive result can be calculated by evaluating each node and then performing the parent node

operation on the child nodes. Figure 1 shows an AST capable of automatically aggregating

three QA methods (m1, m2, and m3). This AST can evolve thanks to the genetic algorithm

we referred to before, as explained in [30].

SUM

MAX

MUL

m1 0.72

m3

SQRT

MUL

m2 0.79

Fig. 1. Example of AST for representing the mathematical expression f(m1, m2, m3) =

max((m1*0.72), m3) + sqrt (m2 * 0.79))

Our goal is for AST to evolve to find a mathematical expression that perfectly fits the

input-output pairs provided as a training dataset to use that expression over a test dataset.

One of the additional advantages of symbolic regression models is that they also allow us to

optimize the precedence of operators, which gives even more computing power to the model.

Also, not letting the AST grow too much helps us avoid over-fitting problems. This is mainly

because simple models behave better in terms of generalization of solutions.

To do that, we aim to aggregate existing matching methods strategically. Aggregation

methods are widely used in many disciplines and are often used in production environments,

as they allow to avoid the risk of generating completely erroneous results by using highly

accurate methods, e.g., [31, 32, 33]. In rare cases where all the methods might simultaneously

make the same mistake, the aggregation methods lose their effectiveness. Nevertheless, that

is a risk that is not expected to happen often. In any case, this risk will be subjected to an

empirical evaluation in the following sections.
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3.3. Role of the intepretability

The area of eXplainable Artificial Intelligence (XAI) [34] has significantly developed in recent

years due to the high interest of both academia and industry for solutions that are not only

accurate but can also be understood by the people who handle them [35]. This area has grown

so much that in some situations a few hundredths more accuracy does not justify the use of

black box models that no one can understand how they work.

In this sense, it can be stated that XAI has a double objective: on the one hand, it

seeks to obtain models that are easy to understand but still have high success rates when

it comes to acquiring new knowledge. On the other hand, the aim is to make people more

capable of understanding how the models they are working with work to act accordingly when

appropriate.

In the literature, several terms or expressions are used to refer to this phenomenon, e.g.,

interpretability, explainability, transparency, accountability, understandability, etc. Each has

different nuances. In this work, we focus exclusively on the notion of interpretability, that

is the capability of finding a way of representing knowledge that allows the user to fully

understand the models to work with.

Currently, there are several models and computational approaches that seek this goal.

However, they try to do it in different ways. For example, decision trees attempt to model

a flow diagram with decisions acting as steering nodes. Fuzzy logics uses linguistic terms

that resemble human language to model and deal with uncertainty. The approach we propose

here is based on symbolic regression since we assume that expressing the model in a fully

functional form has several advantages concerning its simplicity.

Using other models, such as fuzzy logics, also leads to more interpretable models, as shown

in [18]. However, many issues inherent to such models must be studied: their structure,

readability, the number of terms involved, the number and length of the rules that implement

them, etc. By operating with symbolic regression, we can reduce the problem to a mere

question of complexity.

Last but not least, we know that there are three levels of model interpretability: Application-

level (only an expert can understand the model), User level (anyone should be able to un-

derstand the model), Functional level (the model is expressed as a function). Our approach

is the first, to the best of our knowledge, to reach the functional level [36] since anyone with

basic mathematical studies can understand it, especially if it is taken into account that we

will choose a set of mathematical operators that are very basic.

4. Experimental evaluation

This section presents the empirical study to which we have subjected our approach. We

have divided the section into the following subsections: We first describe the nature of the

datasets we are working with. Secondly, we explain the metrics used to assess the results

obtained. Third, we report the configuration we have used to obtain the results. Fourth, we

provide the raw results obtained by our approach and rigorous comparison with state-of-the-

art. Fifth, we perform a convergence study of each of the experiments considered in this work.

Finally, we describe how our approach can properly model a trade-off between accuracy and

interpretability. Furthermore, finally, we discuss the highlights of the whole empirical study.
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4.1. Datasets

The datasets used in ontology matching are generally based on large-scale open-source data

sources. In this work, we have focused on ontology from the biomedical domain as already

reported by Kolyvakis et al. [16]. We consider here:

• The foundational Model of Anatomy (FMA) represents the phenotypic structure of the

human body [27]. Its goal is to create a conceptual framework of the actual items and

regions of the human body.

• The Adult Mouse Anatomical Dictionary (MA) represents the anatomy of an adult

mouse [37]. The MA ontology is represented as a graph whose edges represent the

relations between the different entities of the mouse.

• The NCI Thesaurus (NCI) represents standard terminology for cancer [25]. We work

here with its anatomy subdomain, since it describes occurring human biological struc-

tures, and compounds.

• The SNOMED ontology (SNOMED) represents medical nomenclature to be used in

clinical reports [26]. It is considered as standard for the electronic exchange of clinical

health information in the context of information systems.

Table 1 shows some examples of semantic correspondences between the ontologies we are

working with. As can be seen, there are several differentiated cases, from very similar text

strings to totally different ones (although with the same semantic content), including those

with similar tokens but in a different order.

FMA NCI Correspondence
crown of tooth corona dentis True

pericardial artery pericardiac artery True
peritoneal fluid peritoneal effusion True

pulmonary surfactant lung surfactant True
liver parenchyma hepatic tissue True

skull bone human cranium True
Table 1. Some examples of semantic correspondences between the FMA and NCI ontologies

The number of positive samples is one of the features in this scenario. Because experts

typically only provide positive correspondences between ontologies, this is the case. Nega-

tive cases are all ones that are not positive; thus, there is no purpose in mentioning them.

However, because most regression ensembles presuppose the processing of balanced datasets,

this oversupply of positive samples makes the learning process challenging (datasets with a

similar number of positive and negative samples). In practice, the number of identical entities

between two biomedical ontologies is many orders of magnitude lower than the total number

of conceivable combinations.

In addition, it should be noted that there are many correspondences between the biomed-

ical ontologies that are almost similar as we have already seen. This is very common in daily

tasks, whereby everybody uses the exactly lexicography.
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4.2. Evaluation criteria

To evaluate the results of our empirical study, we will use the classical criteria of an informa-

tion retrieval problem, as do most studies in this context. For this, we will use the traditional

metrics based on precision, recall, and f-measure. In the context of ontology matching, pre-

cision indicates the the fraction of retrieved mappings (or semantic correspondences) that

are relevant to the scenario. The recall is the fraction of the relevant mappings (or semantic

correspondences) that are successfully retrieved. F-measure combines precision and recall is

the harmonic mean of precision and recall.

In the literature, it is widely assumed that accuracy can be optimized at the expense of

recall and vice versa. For this reason, it is convenient to report the two measures together.

The f-measure is also interesting, although it cannot model deviations from the metrics on

which it is based.

4.3. Empirical study

To assess the performance of our approach concerning the state-of-the-art, we also analyzed

some of the best proposals in this context. This list is based on the compiled list made by [17].

In fact, we collect most of existing solutions and all the variants based on DL, in addition

to the following solutions: AML [19], DOME [22], FCAMapKG [24], LogMapBio[20], and

POMAP++ [21].

Table 2 shows the results for the MA-NCI that contains 1489 positives from 9 million

possible correspondences. Please note that the ground truth for this experiment is based on

the work of Bodenreider et al. [38].

Method precision recall f-measure Interpretability
OM-TD (TF-IDF) 0.900 0.648 0.785 No
OM-TD (LSTM) 0.968 0.704 0.815 No
OM-TD (TBERT) 0.977 0.702 0.817 No

OM (LSTM + SGAT) 0.975 0.717 0.826 No
OM (TBERT + GraphSAGE) 0.954 0.529 0.681 No

OM (TBERT + TransE) 0.890 0.502 0.642 No
OM (DAEOM) 0.981 0.748 0.849 No

DOME 0.993 0.615 0.760 No
AML 0.950 0.936 0.943 Application Level

FCAMapKG 0.996 0.631 0.772 Application Level
LogMapBio 0.872 0.925 0.898 Application Level
POMAP++ 0.919 0.877 0.897 Application Level

Our approach 0.962 0.873 0.916 Functional Level
Table 2. Results obtained for the MA-NCI

Table 3 shows the results for the benchmark FMA-NCI. The ground truth for this exper-

iment is based on the UMLS Metathesaurus [39] and it contains 2504 positive cases from 24

million possible correspondences.

Table 4 shows the results for the FMA-SNOMED benchmark dataset. Once again, the

ground truth for this experiment is based on the UMLS Metathesaurus [39]. It has 7774

positives from 136 million possible correspondences.
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Method precision recall f-measure Interpretability
OM-TD (TF-IDF) 0.969 0.734 0.835 No
OM-TD (LSTM) 0.958 0.871 0.912 No
OM-TD (TBERT) 0.966 0.878 0.920 No

OM (LSTM + SGAT) 0.971 0.879 0.923 No
OM (TBERT + GraphSAGE) 0.981 0.738 0.843 No

OM (TBERT + TransE) 0.961 0.558 0.706 No
OM (DAEOM) 0.989 0.888 0.936 No

DOME 0.985 0.764 0.861 No
AML 0.958 0.910 0.933 Application Level

FCAMapKG 0.967 0.817 0.886 Application Level
LogMapBio 0.919 0.912 0.915 Application Level
POMAP++ 0.979 0.814 0.889 Application Level

Our approach 0.907 0.848 0.878 Functional Level
Table 3. Results obtained for the FMA-NCI

Method precision recall f-measure Interpretability
OM-TD (TF-IDF) 0.941 0.613 0.742 No
OM-TD (LSTM) 0.972 0.687 0.805 No
OM-TD (TBERT) 0.977 0.715 0.826 No

OM (LSTM + SGAT) 0.981 0.732 0.838 No
OM (TBERT + GraphSAGE) 0.913 0.677 0.777 No

OM (TBERT + TransE) 0.722 0.506 0.595 No
OM (DAEOM) 0.990 0.791 0.879 No

DOME 0.988 0.198 0.330 No
AML 0.923 0.762 0.835 Application Level

FCAMapKG 0.973 0.222 0.362 Application Level
LogMapBio 0.931 0.703 0.801 Application Level
POMAP++ 0.906 0.260 0.404 Application Level

Our approach 0.907 0.770 0.832 Functional Level
Table 4. Results obtained for the FMA-SNOMED

4.4. Convergence Analysis

We present an analysis of the convergence when training our solution. To do that, we look

for the Pareto non-dominated solution front that solves the problem in the best way, i.e.

maximizes the f-measure, and how it evolves along the time. Figure 2a depicts the training

that was carried out in order to maximize the f-measure of the solution for the MA-NCI

challenge.

Because we are using stochastic methods, the results shown are an average of 20 indepen-

dent experiments from which we depict the worst case (red), the median case (black), and

the best case (blue).

Figure 2b depicts the evolutionary process it took to correctly set up our technique to solve

the FMA-NCI challenge. As in the preceding scenario, the plotted results are the outcome of

20 independent experiments in which we show again the minimum, median, and maximum

values obtained. Figure 2c shows how convergence has occurred when working on the FMA-

SNOMED experiment. The plots have the same characteristics as the previous ones.
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Fig. 2. Fitness evolution for the various experiments that have been carried out. The three plots
represent how the f-measure improves over time. The red, black, and blue colors represent the

worst, median and best cases respectively

4.5. Modeling trade-off between accuracy and interpretability

As a demonstration of what is possible in our solution but not possible to do with other

approaches, we model a trade-off between accuracy and interpretability. Since both are con-

sidered orthogonal objectives, we can formulate the problem as a bi-objective optimization. In

such a problem, we look for the Pareto non-dominated solution front that solves the problem

in the best way (e.g., maximum f-measure and interpretability simultaneously).

In our specific case, interpretability is given by a smaller number of items in the resulting

AST (and thus the equation). By non-dominated solutions, we mean solutions that can no

longer improve one of the two objectives except at the expense of the other. All the solution

fronts have been obtained with the multi-objective NSGA-II [40] algorithm which is considered

a reference in the field of optimization.

Figure 3a shows us the Pareto front of non-dominated solutions obtained when solving the

MA-NCI challenge using our approach. Figure 3b shows us the Pareto front of non-dominated

solutions obtained when solving the FMA-NCI challenge using symbolic regression. Last, but

not least, Figure 3c shows us the Pareto front of non-dominated solutions obtained when

solving the FMA-SNOMED challenge using our proposed technique.
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Fig. 3. a) Pareto front of non-dominated points obtained when solving the MA-NCI dataset, b)

Pareto front of non-dominated points obtained when solving the FMA-NCI dataset, c) Pareto
front of non-dominated points obtained when solving the FMA-SNOMED dataset

These experiments make it possible to appreciate some degree of novelty of our solution

compared to existing approaches to represent a trade-off between accuracy and interpretabil-

ity. This means that human operators can have a set of options in front of them at all times,

allowing them to choose the configuration that best matches the problem at hand. This is

the first time (if we exclude our previous work [4]) this option has been made available to the

human operator in this domain. The reason for this is that, whereas matching approaches

have provided users with a trade-off between precision and recall, we are unaware of any

existing methodology to represent a trade-off between f-measure and interpretability.

5. Conclusions and Future Work

In this work, we have seen how multiple biomedical ontologies are often created for different

applications for the same knowledge domain. The starting point for creating a biomedical

ontology is diverse, and the developed ontologies also vary in coverage, granularity, naming

characteristics, and structure. As result, these ontologies are highly heterogeneous and bring

problems of interoperability.
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In order to make full use of the knowledge of different ontological models, it is usually a

good idea to integrate them. An essential step for integration is to match the entities in other

ontologies that refer to the same real entity.

We have also seen that, when computational methods for big data and data analysis are

essential players in biomedical research, the need for people to trust the data-driven systems

they use for their daily operations is crucial. However, in recent times, the field of ontology

matching, particularly biomedical ontology matching, has been involved in a race to improve

accuracy over and over again. This issue has caused little attention to the interpretability of

the increasingly accurate solutions.

We have also shown, when it comes to matching biomedical ontologies, our novel method

based on the concept of symbolic regression is able to generate acceptable results from both

the accuracy and the interpretability perspectives. Moreover, new matcher combinations can

be tested based on the results. Even though only a few have been chosen, our method allows

us to aggregate any matcher without degrading the overall performance. This way, it may

simplify biological data sharing and integration across heterogeneous sources and considerably

accelerate biomedical data repositories applications.

Future work, aside from looking for ways to improve accuracy, interpretability, and model

good mixes of both measures, also needs to design novel solutions tailored to users’ preferences.

It is widely assumed that more research in this area is required before the idea of replicat-

ing the human operator when dealing with problems related to the automatic matching of

biomedical ontologies becomes a reality. Furthermore, regarding program synthesis, although

there is literature around the synthesis of code capable of solving operating problems such as

classification or regression the attempt to encode background knowledge to further bias the

synthesis process has not been explored much yet. We think it may be a promising direc-

tion because it can combine at the same time the accuracy of symbolic regression with the

expertise and knowledge provided by domain experts from the biomedical field.
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