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Crowdsourcing is widely utilized for collecting labeled examples to train supervised ma-

chine learning models, but the labels obtained from workers are considerably noisier than

those from expert annotators. To address the noisy label issue, most researchers adopt
the repeated labeling strategy, where multiple (redundant) labels are collected for each

example and then aggregated. Although this improves the annotation quality, it de-
creases the amount of training data when the budget for crowdsourcing is limited, which

is a negative factor in terms of the accuracy of the machine learning model to be trained.

This paper empirically examines the extent to which repeated labeling contributes to the
accuracy of machine learning models for image classification, named entity recognition

and sentiment analysis under various conditions of budget and worker quality. We ex-

perimentally examined four hypotheses related to the effect of budget, worker quality,
task difficulty, and redundancy on crowdsourcing. The results on image classification

and named entity recognition supported all four hypotheses and suggested that repeated

labeling almost always has a negative impact on machine learning when it comes to accu-
racy. Somewhat surprisingly, the results on sentiment analysis using pretrained models

did not support the hypothesis which shows the possibility of remaining utilization of

multiple-labeling.
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1. Introduction

Supervised machine learning requires the use of annotated examples, but obtaining labels

annotated by experts can be both expensive and time-consuming. Thanks to crowdsourcing

platforms such as Amazon’s Mechanical Turk a, crowdsourcing has become an easy and cost-

effective way to collect annotations because crowdsourced labels are cheap and fast. Labels

from crowd workers often contain mistakes, but supervised models perform well enough with

these non-expert labels [1], and extensive research has been conducted on how to increase the

efficiency of noisy labels. The most popular approach is to collect multiple labels on each task

and then aggregate them.

In supervised machine learning, ground-truth labels are used as the training data, but even

widely used datasets such as CIFAR10 [2] and MNIST [3] include some uncertain labels [4, 5].

ahttps://www.mturk.com

301



302 Effect of Label Redundancy in Crowdsourcing for Training Machine Learning Models

Fig. 1. The trade-off between label quality and quantity.

This means that the only difference between supervised machine learning using ground-truth

labels and crowdsourced labels is the ratio of the uncertain labels.

It is also obvious that aggregating redundant labels decreases the size of the dataset. The

amount of training data and the accuracy of labels both affect supervised machine learning.

As shown in Fig. 1, the label quality and quantity trade-off seems to be debatable, and it’s

not clear if multiple labeling is always effective when designing machine learning.

In this study, we examine how label redundancy affects the supervised model. Working

from the assumption that there are cases where taking a single label per task and increasing

the amount of training data will result in a higher performance than redundant labeling, we

came up with the following four hypotheses. We made 4 hypotheses.

1. When the budget for crowdsourcing is small, taking redundant labels decreases the

performance of the classifier.

2. When the worker quality is high, taking redundant labels decreases the performance of

the classifier.

3. When the task is easy for the classifier, taking redundant labels decreases the perfor-

mance of the classifier.

4. The optimal amount of redundancy depends on the budget, the worker quality, and the

task complexity.

The first hypothesis is that the benefit of redundancy increases as the budget becomes

larger. As the amount of training data increases, the amount of improvement in the predic-

tion accuracy of the classifier due to the increase in the amount of training data decreases.

Therefore, we predict that the benefit of redundancy will increase as the budget increases.

This first hypothesis is motivated by the fact that the accuracy of machine learning models

tends to saturate when the amount of training data is increased. Fig. 2 shows the experimental

results of the change in prediction accuracy when the amount of training data given to the

classifier was varied. The details of the data we used are provided in Table 1. In the figure, the

vertical axis is the macro F1 value of the prediction results for the test data of the classifier,

and the horizontal axis is the number of training data. The results for each dataset are shown.
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Table 1. Datasets used in supervised learning experiment

Name Task Number of labels Pre-training

MNIST Image classification 10 No
CIFAR10 Image classification 10 No
CIFAR100 Image classification 100 No

CoNLL-2003 NER 9 No
BC5CDR NER 5 No

IMDB Sentiment analysis 2 Yes

We found that in most cases, when the number of training data exceeded a certain level, the

amount of increase in the prediction accuracy suddenly decreased.

The second hypothesis is that the benefit of multiple labeling increases when the accuracy

of the crowd workers is low. When the accuracy of the crowd worker is low, the increase in

accuracy from taking multiple labels is larger than when the accuracy is high. Therefore,

we predict that the benefit of multiple labeling will increase when the accuracy of the crowd

workers is low.

The third hypothesis is that the benefit of multiple labeling is greater when the task is easy

for classifier. We define the classification for a small number of labels or classification using

pretrained model as easy and assume that when the task complexity is low or the model is

already proficient with the task, a small amount of training data will be sufficient for training.

Therefore, we predict that the benefit of multiple labeling will increase when the task is easy.

The fourth hypothesis is that the optimal redundancy varies depending on the budget,

the accuracy of the crowd workers, and the task complexity. Hypotheses 1–3 are based on

the idea that the benefit of redundancy will vary depending on the budget, the accuracy of

the crowd workers, and the complexity of the task. Therefore, we predict that the optimal

redundancy level will vary depending on each condition.

This paper explores whether repeated labeling is effective or not through experiments on

image classification, named entity recognition, and sentiment analysisb.

2. Related Work

There has been extensive research on correcting noisy annotations by aggregating redundant

labels. These studies can be broadly divided into two problem settings: estimating true labels

from crowdsourced responses, and improving the quality of the supervised model.

The majority of methods for the first problem setting are extensions of Dawid and Skenes’

model [7], also known as the EM algorithm, which models the reliability of each worker and

the true label estimation. Its many extensions include works by Simpson et al. [8] and

Nguyen et al. [9], who applied the EM algorithm to named entity recognition (NER) tasks.

Since EM algorithm [7] was originally designed for the integration of physician diagnoses, the

tasks are modeled as independent from each other. However, words in a sentence are not

independent from each other, and modeling the dependency is thus required in NER. For this

reason, Simpson et al. [8] extended the EM algorithm to express the dependency between the

preceding and the following word. While their model was successful, the increased number of

bThis paper is an extended version of [6] with revisions for explaining additional experimental results, and
detailed descriptions for the proposed method.
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Fig. 2. Learning curves under different training models.

parameters resulted in the risk of overfitting and thus required additional labels. Nguyen et

al. [9] pointed out that in crowdsourcing, most workers give only a few answers, which makes

the estimation of a worker confusion matrix difficult. According to their study, models for

solving this problem (such as the community-based Bayesian label aggregation model [10],

which assumes that crowd workers can be grouped into a few different types and workers in

each type represent similar confusion matrices) are effective in terms of the problem of only

gaining a few labels from each worker, but they still require a high amount of labels since the

probability distribution parameters need to be optimized. Therefore, they extended Dawid

and Skenes’ model for estimating worker ability to situations where the number of responses

per worker is small by collapsing the confusion matrix to a confusion vector. In contrast,

our work focuses on examining how redundancy affects classifier quality, so we do not look

into each method. As we aim to compare the difference of the redundancy effect on image

classification tasks , NER tasks, and sentiment analysis tasks, methods for specific situations

are unsuitable for our experiments.

Our paper focuses on the second problem setting, which involves only the quality of the

model and not the labels. The challenge of excluding noisy labels by predicting worker quality

and aggregating redundant labels also appears in the second problem setting, but researchers
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Fig. 3. Macro F-1 score of test data under different accuracy levels of training data.

[4, 5] have pointed out that there is also a chance of ground-truth data containing imperfect

samples, meaning that the only difference between ground-truth labels and crowdsourced

labels is the ratio of wrong labels.

Khetan et al. [11] extended Dawid and Skenes’ EM algorithm [7] by using the prediction

results of the classifier to estimate the worker’s ability, thus making it possible to weigh the

worker’s answer without taking multiple labels. They examined the change in the perfor-

mance of the classifier when 1) the classifier was given a small amount of training data with

high accuracy by taking multiple labels and 2) the classifier was given a large amount of

training data with low accuracy. Their results showed that the performance of the classifier

without multiple labeling was higher than that with high redundancy. Although their work

demonstrated that there are at least some cases where multiple labeling is not the best way

to construct a training dataset, their experiments did not explore the effect of budget nor

pretrained models, and were conducted only on image classification. In contrast, we set bud-

get as an experimental variable and examined the effects on image classification tasks, NER

tasks, and sentiment analysis tasks.

As for multiple-labeling and sentiment analysis, Sinha et als [12] work extended Dawid

and Skenes’ model [7] to allow faster convergence. As our work focuses on the effect of the

pretrained model, we do not examine the speed.

3. Experiment setting

As stated in section 1, we came up with four hypotheses and examine them through experi-

ments using synthetic data. In the experiments, we created synthetic workers and used them

to generate crowdsourced labels. The synthetic crowdsourced data is fed to the classifier as

training data. The redundancy that maximizes the performance evaluated by the macro F1

value of the test data is determined as the best redundancy for each experimental condition.

The following three variables are defined in the experiments.

• Budget size
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• Worker accuracy

• Task difficulty

The size of the training data is set as the budget divided by the redundancy, i.e., when

the redundancy is 1, the size of the budget is the size of the training dataset. We set three

values for the budget: the maximum value of the number of training data, 1
2 of the maximum

value, and 1
10 of the maximum value. The accuracy of a worker’s response is determined

by a confusion matrix representing the worker’s ability. The diagonal component of the

confusion matrix represents the probability of the worker answering the correct label, and we

can manipulate the accuracy of the synthetically sourced dataset by setting the value of the

confusion matrix according to each experimental condition. By changing the amount of the

diagonal component of the confusion matrix, we investigate the worker accuracy’s effect on

the optimal redundancy level.

We also conduct experiments with different tasks and different datasets to investigate the

effect of task difficulty. Six datasets are used: three for the image classification task, two for

the NER task, and one for sentiment analysis task.

The redundancy is a value that indicates the number of workers allocated to the same task.

The budget divided by the redundancy is the size of the training dataset. In each experimental

condition, we vary the redundancy level to 1, 5, 20, and 50 for the image classification and

NER tasks and to 1, 5, 10, and 20 for the sentiment analysis tasks, and investigate the effect

on the macro F1 value of the test dataset.

The size of the training data instances indicates the number of training data fed to the

classifier. In the image classification task, a set of an image and a label is considered one data

instance, and in the NER and sentiment analysis tasks, a sentence is considered one dataset.

The following two methods are used in aggregating worker’s answers for image classification

and NER.

• Simple majority voting

• Weighted majority voting

In sentiment analysis, we only used simple majority voting since the experiment was

focused on the effect of redundancy when using pretrained models and we did not want to

make the experiment too complex. In simple majority voting, each worker’s vote is treated

equally, and the worker’s answers are aggregated by majority voting. In weighted majority

voting, the worker’s answers are weighted according to the worker’s accuracy level estimated

by Dawid and Skenes’ model [7], and then the majority vote is taken to aggregate the worker’s

answers. Each worker’s accuracy level is provided by the confusion matrix.

The experiments are carried out in the following steps.

1. The number of training data is determined by the dataset, budget size, and redundancy.

2. Create the synthetic data for each worker. Details are described in this section.

3. Aggregate the synthetic data of workers by simple majority vote or weighted majority

vote to create a training dataset.



Ayame Shimizu and Kei Wakabayashi 307

4. Feed the training dataset to the classifier and train it.

5. Run the classifier trained in step 4 on the test dataset and determine the macro F1

score.

Our experiments deal with an image classification task, NER task, and sentiment analysis

task. The datasets we use are shown in Table 1. In the image classification task, we used

the MNIST dataset [3], which is a dataset of handwritten images and labels of numbers 0–9,

the CIFAR10 dataset [2], an image dataset for object recognition classified into ten classes,

and the CIFAR100 dataset [2], an image dataset for object recognition classified into 100

classes. In the NER task, we use the Conll-2003 dataset [13], which defines the names of

persons, places, organizations, etc. extracted from news articles as entities, and the BC5CDR

dataset [14], which defines pharmacological terms as entities. In the sentiment analysis task,

we use the IMDB dataset [15], which is a movie review dataset used for binary sentiment

classification.

We build an independent machine learning model for each task. For the image recognition,

we use the convolutional network model from PyTorch Tutorials c. For NER, we use a model

using Bi-LTSM CRF [16] and predict the labels for each word. The prediction results are

checked for each entity, and the correct answer is obtained when the entire entity is extracted.

In sentiment analysis, we use a model pretrained by BERT [17]. BERT consists of pretrained

deep bidirectional representations from unlabeled text and can be fine-tuned for many natural

language tasks by training an additional output layer. In the image classification task and

sentiment analysis task, a confusion matrix is created from a probability distribution. The

simulation workers are created as follows. First, we create a confusion matrix for the number

of simulated workers that represents the response capability of the workers. The answers

of the simulated workers are generated from the confusion matrix and the true answers of

the task. We take samples from the beta distribution and set W to be the list of simulation

workers to ensure that the average accuracy of the workers’ responses matches the determined

experimental condition α. We set Cw to be the response accuracy of worker w ∈W . Then, we

sample the number of labels from the beta distribution for each worker so that the sampled

value is the average of the diagonal components of the confusion matrix for each worker.

For the beta distribution Sxa−1(1− x)b−1 (where S is a normalization constant and a, b are

parameters), the value of parameter b is fixed at b = 10, and parameter a is set so that the

expected value of the distribution α becomes the average of the response accuracy of the

workers determined by the experimental conditions from Eq. (1).

a =
αb

1− α
(1)

K is the number of labels in a task. For each worker w ∈W and each label 1 ≤ i ≤ K, we

generate a sample cwi from the beta distribution described above, and let each be the value of

each diagonal component of the simulation worker’s confusion matrix. The off-diagonal values

of the confusion matrix are sampled from the uniform distribution on [0, 1] and normalized

so that the sum becomes 1− cwi .

chttps://pytorch.org/tutorials/beginner/blitz/neural networks tutorial.html
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In the NER task, a confusion matrix is created based on the actual responses of the

workers. The frequency of occurrence differs greatly depending on the label. In particular,

O-tags, which indicate that the label is not an entity, account for more than half of the

correct answers in most cases. Therefore, a decrease in the accuracy of an O-tag answer has

an extremely large impact on the overall answer, and should not be treated equally with the

values of other labels in the confusion matrix. In NER, entities are labeled by two types of

tags: B-tags, which represent the starting position of the named entity, and I-tags, which

follow B-tags. It is natural to assume that the answer-ability of B-tags and I-tags in each

named entity of a worker has dependence on each other. For these reasons, we believe that

in named entity extraction, it is inappropriate to create a confusion matrix of simulation

workers by obtaining samples from a specific distribution, as is done in image classification.

Therefore, we create a confusion matrix representing the worker’s answering ability from the

actual worker’s answers.

4. Results

Figs. 4, 5, and 6 show the experimental results. Fig. 4 shows the results of the simple

majority voting experiment, and Fig. 5 shows the results of the weighted majority voting

experiment. For Figs. 4 and 5, the rows indicate the dataset, and the columns indicate the

accuracy of the workers’ responses.

Fig. 6 shows results of experiment using pretrained models. In Fig. 6, the columns

indicate the accuracy of the workers’ responses. The horizontal axis of each graph shows the

degree of redundancy and the vertical axis shows the macro F1 value in the test dataset.

For each experimental condition, ten experiments were conducted independently. The solid

line indicates the mean value of the results, and the colored area indicates the maximum and

minimum values of the experimental data.

Comparing Figs. 4 and 5, we can see that the overall results of each dataset were quite

similar. Under experiments not using pretrained models, the slope of the graph increased as

the budget decreased. This shows that when the budget is small, the benefit of redundancy

is small, and when the budget is large, the benefit of redundancy is relatively large. This

supports Hypothesis 1, which states that the benefits of redundancy increase as the budget

increases.

Also, under conditions not using pretrained models, the slope of the graph increased as the

accuracy of the worker’s response increased. This indicates that the benefits of redundancy

are greater when the response accuracy of the worker is low and relatively smaller when the

response accuracy of the worker is high. This supports Hypothesis 2, which states that the

benefit of redundancy increases when the response accuracy of the worker is low.

In the experiment using CIFAR100, regardless of the size of the budget or the accuracy of

the worker’s response, results in redundancy level 1, which means not taking multiple labels

had the highest scores, and the slope of the graph became smaller as the redundancy level

increased under all conditions. The higher the accuracy of the worker’s response, the larger

the slope of the graph, and the smaller the benefit of reducing the redundancy level.

In the experiment using CIFAR10, regardless of the size of the budget or the accuracy of

the worker’s response, results in redundancy level 1, meaning not taking multiple labels had

the highest scores. In results with the worker response of accuracy 0.3 and the budget size of
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50,000 or 25,000, the descent of the macro F1 value was nearly constant when the redundancy

level increased. In the results with the worker response accuracy of 0.9 and the budget size

of 50000 or 25000, the slope was steep when the redundancy changed from 1 to 5 but became

gentle as the redundancy became bigger. When the redundancy level increased, the macro F1

value decreased. This indicates that the benefit of reducing the redundancy level decreases

as the accuracy of the worker’s response increases.

In experiments using MNIST, regardless of the size of the budget or the accuracy of the

worker’s response, results in redundancy level 1, meaning not taking multiple labels had the

highest scores. In the results with budget sizes of 60,000 or 30,000, the descent of the macro

F1 value was nearly constant when the redundancy level increased. In the results with the

budget size of 6000, the slope was steep when the redundancy changed from 1 to 5, but

became gentle as the redundancy became bigger. The slope of the graph was extremely small

when the accuracy of the worker’s response was 0.3 and the size of the budget was 60000,

which means that the benefit of redundancy in improving the accuracy of the training dataset

and the disadvantage of reducing the data amount is close to being balanced.

In the experiment using the Conll-2003 dataset, the results in redundancy level 1 had the

highest scores, except for when the worker response accuracy was 0.3 and the budget size was

4500. In the results with the worker response accuracy of 0.9 or 0.6, the drop in the macro

F1 value when the redundancy level increased was largest when the redundancy level was

changed from 1 to 5, and as the redundancy level increased, the amount of decrease of the

macro F1 value became smaller. In the results with the worker response accuracy of 0.3 and

the budget size 4500, the macro F1 value decreased when the redundancy level was changed

from 1 to 5, and then slightly increased as the redundancy level increased. This result is

discussed in more detail in section 5.

In the experiment using the BC5CDR dataset, regardless of the size of the budget or

the accuracy of the worker’s response, results in redundancy level 1 had the highest scores.

The drop in the macro F1 value when the redundancy level increased was largest when the

redundancy level changed from 1 to 5, and the slope was steepest among all experimental

conditions. As in the other experimental results, the slope became gentle as the redundancy

level increased.

For the NER task, there were no significant differences in the Conll-2003 and BC5CDR

datasets. For the image classification tasks, the slope of the graph was highest for the CI-

FAR100 dataset and lowest for MNIST. CIFAR100 classifies 100 colored images and MNIST

classifies ten black and white images, meaning CIFAR100 is the most difficult task for the

classifier and MNIST the least difficult. This indicates that the higher the difficulty of the

task for the classifier, the larger the slope of the graph becomes. These results show that

Hypothesis 3, which states that the benefit of redundancy increases with decreasing task

difficulty for the classifier, is supported.

In most of the experimental conditions in Figs. 4 and 5, the graphs showed a downward

trend, indicating that results in redundancy level 1 had the highest scores. This supports

Hypothesis 4, which states that the optimal redundancy level varies depending on the budget,

the accuracy of the crowd worker’s answers, and the difficulty of the task.

In the experiment using a pretrained model, redundancy level 1 didnt always have the

highest scores. The results did not show a downward trend like the image classification and
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Fig. 4. Training from simple aggregation.
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Fig. 5. Training from weighted aggregation.
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Fig. 6. Using pretrained model.

Fig. 7. Efficiency of redundancy.

NER results. In most of the experimental conditions in Fig. 6, the graph was flat, showing

that the advantage and disadvantage of increasing the redundancy was balanced.

This indicates that Hypothesis 3, which states that when the task is easy for the classi-

fier, taking redundant labels decreases the performance of the classifier, is rejected when the

argument is about pretrained models. Hypothesis 3 seems to be convincing when the task

complexity is the indicator of task difficulty, but not when considering the prior knowledge of

the model.

5. Discussion

Figs. 7 and 8 are reference data to discuss the results of the experiment. Fig. 7 shows that the

probability of obtaining the correct answer to a binary classification when a majority vote is

taken by the workers, assuming that the accuracy of the workers is constant. The vertical axis

shows the probability of obtaining the correct answer, the horizontal axis shows the degree of

redundancy, and lines show the results for each worker accuracy. Fig. 8 shows the results of

an experiment to investigate the change in classification accuracy when the accuracy of the

training data given to the classifier is varied. The horizontal axis shows the macro F1 value
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Fig. 8. Effect of training dataset accuracy.

of the prediction for the test dataset of the classifier, the horizontal axis shows the accuracy

of the training dataset, and the lines show the results for each training data.

Looking back to Figs. 4 and 5, they show that the benefit of increasing the redundancy

level decreases as the size of the budget decreases. This is because when the amount of training

data gets smaller, the benefit of increasing the amount of training data becomes larger, and as

the budget gets smaller, the benefit of increasing the redundancy becomes relatively smaller.

We can also see that the benefit of increasing the redundancy level decreases as the worker

accuracy increases.

In situations where the worker accuracy is high, the answer rate converges with a small

number of workers. Fig. 7 shows that after convergence, there is only a little benefit from the

increase in redundancy. Furthermore, Fig. 8 shows that the increase of macro F1 value by the

increase of the training dataset accuracy becomes gentle as the training dataset accuracy gets

higher. This means that the higher the worker accuracy, the smaller the benefit of increasing

the redundancy.

From the results of the experiment using the Conll-2003 dataset, we found that when the

size of the budget was 4500 and the accuracy of the worker’s response was 0.3, the macro F1

value dropped rapidly when the redundancy changed from 1 to 5, and then increased as the

redundancy level increased.

Fig. 2 shows that in the Conll-2003 dataset, the prediction accuracy increased rapidly until

the number of training data reached a certain value, and then the growth of the prediction

accuracy became very small. Therefore, in the experiments using the Conll-2003 dataset with

a large budget, the benefit of increasing the redundancy level was significant.

Furthermore, when the accuracy of the worker response was low, the benefit of increased

redundancy was not significant at low redundancy levels. This is why, in the experiment

using the Conll-2003 dataset with a budget size of 4500 and a worker response accuracy of

0.3, changing the redundancy from 1 to 5 resulted in a sharp decrease in the macro F1 value.

In experiments using pretrained models, gaining redundancy level did not give much im-

pact on the classifier. The sentiment analysis model seemed to learn well even when the



314 Effect of Label Redundancy in Crowdsourcing for Training Machine Learning Models

training data amount was relatively small, presumably because the pretrained model is quite

powerful.

Machine learning acquires a stable predictive performance by training based on the trends

of the entire training data. Therefore, the training of the classifier itself can be interpreted

as a majority vote on a set of similar data instances. This implies that for tasks that can

be solved by statistical approaches, there is no need for majority voting on repeated human

labels in advance. However, when the model has a powerful prior knowledge, low accurate

labels seem to mess up the results, and label quality has higher priority.

6. Conclusion

In this paper, we demonstrated that the prediction accuracy of a classifier is at its highest

when the redundancy is 1, regardless of the worker’s accuracy or the difficulty of the task for

the classifier. In particular, when the size of the budget is small, the accuracy of the worker’s

answer is high, and when the difficulty of the task for the classifier is high, the benefit of

reducing the redundancy level is large. On the other hand, when the model acquires prior

knowledge, taking multiple labels may be beneficial since label quantity is relatively less

important.

We focused on image classification, NER, and sentiment analysis tasks in this work, but

crowdsourcing training data are also utilized in more complex tasks such as translation and

summarization. In future work, we aim to examine the significance of redundancy in these

tasks.
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