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Many systems in the Edge Cloud, the Internet-of-Things or Cyber-Physical Systems
are built for processing data, which is delivered from sensors and devices, transported,

processed and consumed locally by actuators. This, given the regularly high volume of

data, permits Artificial Intelligence (AI) strategies like Machine Learning (ML) to be
used to generate the application and management functions needed. The quality of both

source data and machine learning model is here unavoidably of high significance, yet has
not been explored sufficiently as an explicit connection of the ML model quality that are

created through ML procedures to the quality of data that the model functions consume

in their construction. Here, we investigated the link between input data quality for ML
function construction and the quality of these functions in data-driven software systems

towards explainable model construction through an experimental approach with IoT

data using decision trees. We have 3 objectives in this research: 1. Search for indicators
that influence data quality such as correctness and completeness and model construction

factors on accuracy, precision and recall. 2. Estimate the impact of variations in model

construction and data quality. 3. Identify change patterns that can be attributed to
specific input changes. This ultimately aims to support explainable AI, i.e., the better

understanding of how ML models work and what impacts on their quality.

Keywords: Explainable AI, AI Engineering, Data Quality, IoT Systems, Machine Learn-
ing, Data Correctness, Data Completeness, Decision Trees.

1. Introduction

There are different types of errors or faults which may occur in data sets, such as missing

values or rows, invalid values or formats, or duplicated values or rows. Low quality data will

result in low quality machine learning models if the model is used to learn from the data.

Before using often faulty real world data and trying to find a remedial solution for observed

machine learning model, we need to better understand the effects of low input data quality

on the created models.

Our ultimate goal is to automate quality control of machine learning models, but to

reach that the understanding the impact of a sensor producing faulty data or no data on

a model trained on this data is a general requirement. The wider objective is explainable

model construction. Black-box explainable AI aims at a better understanding of how ML

model output depends on the model input [20]. Of particular importance is here a root cause
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analysis for model deficiencies. Our aim here is, based on observed model quality problems,

to identify a root cause at input data level. The concrete practical benefit of this in an

IoT setting for example is, that certain ML quality patterns might already point to specific

problems with the data, such as outages for faulty sensors.

Therefore, we investigated different experimental scenarios with artificial and real faulty

input data sets. We specifically considered 1) input data completeness and 2) input data

correctness, since these are of direct relevance to IoT settings. With the experiments, we

created situations with different faulty data sets and compare the results to find a connection

between the type of faulty data and the ML quality assessment factors (accuracy, precision,

recall). We focus here on numeric data that would for example be collected in technical or

economic applications, neglecting text and image data here. This paper extends the earlier

[4] by technical details and experimental results. Furthermore, we have positioned this in the

context of Explainable AI and AI Engineering.

The novelty lies in the integrated investigation the quality of information that is derived

from data through a machine learning approach. We proposed a quality frameworks in [2],

[1], but report on an in-depth experimental study here.

The remainder of the paper is structured as follows. In Section 2, we provide some back-

ground on Explainable AI. In Section 3, we review related work. Our methods, experiments

and comparisons are presented in Section 4. Sections 5 and 6 present the experimental analysis

and summarise the evaluation results, before concluding in Section 7.

2. Explainable AI

Explainable AI is the context of this work. Explainability is the extent to which the internal

mechanics of a machine or deep learning system can be explained in human terms. Inter-

pretability is about being able to identity the mechanics without necessarily knowing why.

Explainability is being able to explain what is happening. Our ultimative objective is to

automate a root cause analysis that aims to ’explain’ the reasons for quality deficiencies or

defects [13] in the ML model. This explains ML quality in terms of data quality [17].

Applied to our Internet-of-Things (IoT) setting, this means that for instance accuracy

problems with traffic or weather prediction models or often cause by either unsuitable ML

model construction or by data quality problems of data that is processed by the ML models.

Here, we are specifically interested in understanding the impact of IoT data quality concerns.

This in concrete terms meaning to understand if sensor failures cause incorrect readings or if

network outages cause the data to be incomplete.

Overall, the aim is to move towards an explainability or interpretability of ML model fail-

ures/deficiencies as an a-posteriori measure for detection and correction [31]. Pre-construction

data validation is an advisable step prior to model construction. In contrast to works in this

context, we aim to identify missing values/default replacements as the root cause of prediction

deficiencies (such as accuracy) as a remedial action. Some problems will still go undetected

in an a pre-construction approach. Our approach (an a-posteriori analysis) can be adjusted

to the presence of a-priori validation of data. Our approach also allows a black-box mode, if

the construction itself is not visible/observable.

AI Engineering [6] is working towards a systematic construction of for instance ML models

in order to achieve and maintain quality. Our root cause analysis can also been seen as an
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endeavour to continuously improve quality.

3. Related Work

Machine learning (ML) techniques have generated huge impacts in a wide range of applications

such as computer vision, speech processing, health or IoT.

Input data quality is important. The issue of missing data is unavoidable in data collection

[7], [22], [15], [32]. Various imputation approaches, i.e., substituting missing values, have been

proposed to address the issue of missing values in data mining and machine learning appli-

cations. [22] addresses missing data imputation. The authors propose a method called DIFC

integrating decision tress and fuzzy clustering into an iterative learning approach in order

to improve the accuracy of missing data imputation. They demonstrated DIFC robustness

against different types of missing data.

Currently, missing data impacts negatively on the performance of machine learning mod-

els. Regarding concrete ML techniques, handling missing data in decision trees is a well

studied problem [11]. [33] also proposed a method for dealing with missing data in decision

trees. In [15], authors tackle this problem by taking a probabilistic approach. They used

tractable density estimators to compute the “expected prediction” of their models. Missing

data or uncertain data in general have always been a central issue in machine learning and

specially classifiers. [32] focused on the accuracy of decision trees with uncertain data. The

authors discovered that the accuracy of a decision tree classifier can be improved if the com-

plete information of a data item is utilized. They extended classical decision tree algorithms

to handle data tuples with uncertain data. Paper [26] describes a solution pattern that an-

alyzed IoT sensor data and failure from multiple assets for data-driven failure analysis. The

paper used univariate and multivariate change point detection models for performing analysis

and adapted precision, recall and accuracy definition to incorporate the temporal window

constraint. In [28], a toolkit for structured data quality learning is presented. They defined

4 core data quality constructs and their interaction to cover the majority of data quality

analysis tasks.

Focusing on decision trees and missing data, we investigate the link between source data

and machine learning model as a so far unexplored AI explainability concern.

4. Method

Before presenting the results of the experiments in the following section, we introduce here

our methods including the description of objectives, data and implementation.

4.1. Objectives

In many applications, ML models are reconstructed continuously based on changing input

data. We use experiments to determine the extent to which different input changes regarding

data quality impact on model construction quality. In more concrete terms, the question is if

changes in the data quality or the model construction have a similar impact on output quality.

We consider here the following ML quality attributes. Precision, also known as Positive

Predictive Value (PPV), answers the question of how many selected items are relevant. Recall,

or Sensitivity, answers the question of how many relevant items were selected. Accuracy is
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the percentage of correct predictions for the test data.

For input data quality, we selected two attributes that are IoT-relevant [3]: completeness

is the degree to which the number of data points required to reach a defined accuracy threshold

has been provided and correctness is the degree to which data correctly reflects an object

or an event described, i.e., how close a label is to the real world.

In the context of these definitions, a sample question is if minor changes in the completeness

of data (as a data quality problem) or the tree depth of decision trees (as a model construction

concern) have a similar impact on model accuracy. Experiments shall help to determine the

scale of the impact of a given size on input variations. We use experiments to determine if

certain input change patterns correlate to observable output change patterns [12]. In concrete

terms, this is if minor or major changes in input and input quality result in identifiable change

patterns across different output qualities (e.g., accuracy, precision, recall). The question is if

observed change patterns in the ML model output can be attributed to the root cause of that

change at input data level.

4.2. Implementation and Data Sets

Our models here are decision trees – using scikit-learnato both data sets for predictions. Using

traffic data, see Fig. 1, we predicted the traffic volume and using weather data we predicted

rain fall. The first data set was traffic data that has been taken from an application, which

consisted of daily averages of traffic and number of vehicles in 72 stations around our province

in a month. The total number of rows in this data set is thus 72.

Table 1. Traffic Data Set - Selection.

The second data set, see Fig. 2, was weather data consisting of the minimum and maximum

temperature, rainfall, wind speed, humidity, pressure, cloud and rain today as features, and

the target is the possibility of rain fall the next day for 49 stations.

Table 2. Weather Data Set - Selection.

The data from both data sets consisting of only numerical values has been processed and

labeled manually.

4.3. Experiments

ahttps://scikit-learn.org/ - Machine learning library for Python.
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Table 3. Incompleteness and Incorrectness Experiments Summary.

Completeness Correctness
R
o
w
s

In the traffic data, precision and
recall behaved slightly different
from accuracy but we do not see
the same behavior for weather
data. However, there is no
significant difference.

For -1000 the values fell from lower initial values than
in traffic data. For -5000, accuracy, precision and recall
fell but the gradient was steeper than for -1000. For -
10000, all three factors fell from a lower initial value but
the final values are not lower than before. Therefore,
the graph gradient is slighter when in fact the higher
invalid value has effected the factors correctly.

F
e
a
tu

re
s

The stable area in the accuracy
graph in the missing row does
not occur in for missing features,
where we see a soft fall. For the
precision and recall, the sudden
rise does not occur here. All fac-
tors have a steady gradient not
as steep as for missing rows.

Accuracy is gradually falling, but precision and recall
are acting differently. There is no connection to previ-
ous cases as those were from missing rows and invalid
features here. Comparing the results we can say that
this results are more understandable to the lower in-
valid value results because like there, accuracy is show-
ing a steep and steady fall where on the other hand
precision and recall are acting differently in a more un-
predictable way.

The experimental strategy was to find the effect on accuracy, precision and recall while in-

ducing error into the data set. We start each experiment with an initial baseline for these

quality attributes. In order to check the impact of incomplete and incorrect input data on

accuracy we created two different situations for each data set. For incompleteness, we checked

the impact of Missing Features and Missing Rows on accuracy, precision and recall. For in-

correctness, we checked the impact of Invalid Features and Invalid Rows for different invalid

values on accuracy, precision and recall.

The experiments on input data completeness and incorrectness have been summarised

in Table 1. For each data set in each table, we performed the experiments in two different

formats, missing or invalid rows and missing or invalid features. The values were selected to

reflect small, medium and large scale faulty situations. The values are in that sense meaningful

in relation to the size of the data set in rows or features. For the missing or invalid rows in

traffic data, we started with 2 rows and increased the number of missing rows gradually to 5,

15 and 24. For the missing or invalid features, we started with 3 features then 7 then 10 and

lastly 13 features. For the missing or invalid rows in weather data we started with 6 rows and

increased the number of missing rows gradually to 20, 36 and 49. For the missing or invalid

features we started with 2 features then 4 then 8 and lastly 13 missing features. We observed

the accuracy, precision and recall in these situations with 20% test size and tree depth of 3.

A summary of the results is presented in Fig. 3. The details of these observations follow

then in Figs. 4 to 6.

For the weather data set we tried another set of invalid values as well to test the accuracy

of the machine learning tool in identifying invalid values. As we mentioned before, in the first

set we tried negative values as clearly invalid, but in the second set we tried extreme positive

values as potentially possible, though highly improbable rainfall values. In general, we wanted

to reflect different categories of sensors values: (i) correct sensor readings within small sensor

reading variation, (ii) extreme but in principle possible values, likely linked to sensor faults,

and (iii) clearly incorrect reading, definitely linked to sensor faults. We are dealing with
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Table 4. Incorrectness Experiments Summary (Negative Rows).

Traffic Weather

Negative
Invalid
Rows

Overall Results: Accuracy, precision
and recall all decreased with increasing
the invalid rows but after 15 rows they
all started to increase again. A possible
explanation is over-fitting.
Observations: According to the
graphs what we can state is that from
5 invalid rows until 24 all three factors
follow the same pattern but for smaller
numbers of invalid rows the results vary.
Interpretation: The results for more
significant errors were as expected.

Overall Results: We started with
-1000 as the incorrect value. With
increasing the invalid rows, accuracy,
precision and recall were gradually re-
duced.
Observations: The accuracy fell from
65 to 35, precision fell from 64 to 41
and recall fell from 64 to 45 which all of
them are lower values compared to the
traffic data.
Interpretation: There is a gradual fall
of all three factors. For -5000, there is
a steeper and more steady graph with
increasing the invalid value.

Comparison: For -1000 it needs to be pointed out that the values fell from lower
initial values than in the traffic data. For -5000, accuracy, precision and recall
fell but the gradient was steeper than the -1000 one. For -10000, all three factors
fell from a lower initial value but the final values are not lower than the previous
situations. Therefore, the graph looks softer when in fact the higher invalid value
has effected the factors correctly.

sensor data and chose invalid values that are out of the range of regular sensor readings. We

generally chose 3 different incorrect settings in order to avoid unexpected behaviour from a

single invalid value – typically choosing a clearly incorrect value such as -1000 and increasing

this to the next order of magnitude. What we are also looking for is to find out which type of

invalid values (positive or negative) can be identified better by the machine learning tool, thus

allowing a better judgement of the possible root causes. The same experiments were repeated

also on positive values. Compared to the negative results no significant pattern changes were

identified except that the output values were less in positive values.

After observing the effect of different levels of faulty situations on accuracy, precision and

recall, the next step was to try to find a concrete change pattern on each outcome factor’s

variation in different scenarios in order to connect those patterns to a specific scenario. To

do so, we also tested the effect of different tree depths and different test sizes on normal and

various faulty data sets and compare the results with each other in order to find a specific

change pattern. We present the results in Table 2.

5. Observation, Analysis and Validation

The outcome of the experiments demonstrated similarity between the data sets and thus a

validity of the observations as they have been confirmed in two settings.

5.1. Experiments and Observations

In total, we conducted more than 50 experiments that varied settings in 4 dimensions (tree

depth, test size, missing/invalid features, missing/invalid rows). The respective settings and
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Table 5. Incorrectness Experiments Summary (Negative Features).

Traffic Weather

Negative
Invalid
Features

Overall Results: The results showed
a steady fall for accuracy but precision
and recall acted differently.
Observations: Accuracy, precision
and recall fell significantly and this fall
got steeper with higher values until -
1000. From -1000 the results started
to change, accuracy, precision and re-
call first fell but afterwards they started
to increase. This situation got steeper
with higher values.
Interpretation: For precision and re-
call, the graph rose after an initial fall.
The results changed when we changed
the invalid value to a higher value.

Overall Results: Starting from -1000,
with increasing the invalid features, the
accuracy, precision and recall gradient
falls gradually.
Observations: In -5000 the accuracy,
precision and recall fell more signifi-
cantly than for -1000. The gradient
is steeper. And finally for -10000, the
graphs are steady and they fall without
any change.
Interpretation: There is not much
difference between invalid rows and
invalid features.

Comparison: We are facing a familiar behavior where the accuracy is gradually
falling but precision and recall are acting differently but there is no connection
since the previous one was from missing rows and here, we have invalid features.
Comparing this outcome to the lower invalid value results, the diagram for all three
factors became a steep and somehow steady fall. Comparing the results we can say
that this results are more understandable to the lower invalid value results because
like there, accuracy is showing a steep and steady fall where on the other hand
precision and recall are acting differently in a more unpredictable way.

their observations are illustrated in Figs. 1 to 4.

As a summary of the findings, we can state that:

1. Incorrectness more significant than Incompleteness. The incorrectness has a bigger effect

on the accuracy than the incompleteness. The most probable reason for it is that in

incompleteness the machine learning tool may ignore the missing rows or features and

not engage them in the predictions and calculations, but regarding incorrectness the

tool is forced to use all the values either correct or incorrect therefore it cannot control

or minimize the damage to the accuracy.

2. Rows more significant than Features. Missing or invalid rows have a stronger impact on

the accuracy than missing or invalid features. Here again, the causes may be different

factors, but the most probable one may be the fact that dealing with a complete missing

or invalid row is more difficult than dealing with some missing or invalid features.

Remedying the reduction of accuracy is more difficult with missing or invalid rows than

missing or invalid features, see Figure 1.

3. Data set differences. In the analysis of the experiments, we noted that the results of

the weather data was easier to process than the traffic data. In the traffic data set, the

volume of data might have been rather low.
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Table 6. Incorrectness Experiments Summary (Positives).

Results

Positive
Invalid
Rows

Overall Results (1000): Compared to the negative values the accuracy did not
change much and decreased only a few points but as for precision and recall the
drop is more considerable. Observations: Accuracy fell from 57 to 30, precision
fell from 65 to 31 and finally recall fell from 60 to 31. Interpretation: Overall
compared to the traffic data, all three factors are lower.
Overall Results (5000): With increasing the invalid rows the accuracy, precision
and recall fell. Observations: Accuracy fell from 53 to 28, precision fell from 54
to 27 and recall fell from 54 to 28 which all of them either compared to the negative
values or traffic data are lower. Interpretation: Compared to 1000’s results, a
significant fall in the results is visible but we can see that the gradient’s steepness
is similar to 1000 because the fall is based on the same ratio. In general, the results
are similar to the negative values and lower than the traffic data.
Overall Results (10000): Everything was as expected. Accuracy, precision and
recall fell from lower values to even lower values and compared to previous positive
value, negative values and traffic data, the results were lower.

Positive
Invalid
Features

Overall Results (1000): All three factors fell as expected. Observations: the
accuracy fell from 68 to 40, precision fell from 67 to 39 and recall fell from 67 to 43.
Interpretation: Compared to the invalid rows the results are higher but compared
to the same experiment with negative values and traffic data set, the outcomes are
lower.
Overall Results (5000): The results are similar to the invalid rows. From 6 rows
to 20 rows, we observed a sudden fall followed by a gradual fall afterwards but
in the invalid features, the fall was gradual from the beginning. Observations:
Accuracy fell from 55 to 30, precision fell from 53 to 30 and recall fell from 52 to
30. Interpretation: Compared to the negative values, the steepness of the graph
is not as expected. Compared to the 1000, we noted a fall in the values but not
in graph steepness, compared to the negative values, the results were lower and in
overall compared to the traffic data, the results were lower.
Overall Results (10000): We noted an initial rise in precision and recall. The
accuracy for invalid features is very similar to the invalid rows either in values
or graph but overall the accuracy in invalid rows is lower than invalid features.
The same can be said about the precision and recall even though the graphs look
different, but overall the values are lower for invalid rows than invalid features.
Compared to the negative values, both results look less steep, but they are lower.
The same can be said in comparison to the traffic data.

4. Overfitting. As a general observation, with very high results in the outcome, we tend

have a machine learning tool problem like over-fitting, but when we have low results in

outcomes, it means that the problem lies more likely in the data or sensors.

5. Incorrect and Improbable Data. Regarding positive and negative values, i.e., highly

improbable vs. certainly incorrect data, we observed for weather data that the results

for positive invalid values were lower than negative invalid values. This situation needs

to be tested on other data sets to determine a reason. However, for weather data and

with some negative values as inputs, a plausible explanation is that it is difficult to

identify a real negative error, but for positive values, since the values were very high, it

was easier for the algorithm to identify them.

In conclusion, the observations are validated in both data sets and are practically applica-
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Table 7. Comparison Summary (TS: Test Size, TD: Tree Depth).

R
ow

s-
T
D

In traffic data, the accuracy fell with increasing the missing rows. Depths 3, 4 and some-
times 5 were the best and anything below or over were unstable. This was shown better
in the weather data set. The accuracy increased until the depth of 3, 4 and sometimes
5 and then started to fall which is expected. In traffic data, the accuracy first increased
with tree depth but from the depth 3 to 5 was stable and after that fluctuated irregularly.
In weather data, a similar result is visible. The best accuracy was at depths 3 to 5 as
well but afterwards the accuracy started to fall. The fall was more significant with higher
incorrectness.

F
ea
tu
re
s-
T
D

In both data sets, accuracy started to rise until depth 4 and afterwards to fall. However,
in traffic data it started to grow again after depth 8. A probable reason is over-fitting. In
traffic data the accuracy rose from depth 1 to 3-4, then varies and then after reaching the
depth 8 it rose again. In weather data, the accuracy rose from depth 1 to 4 and then it
fell significantly. In traffic data, the first rise is expected because it’s normal for accuracy
to rise until the best depth but the second rise is due to a machine learning tool error or
over-fitting.

R
ow

-T
S

In traffic data, accuracy falls with more missing rows but improves with bigger test sizes.
The best test sizes were 20% and 30%. For weather data, accuracy improved until 20%
and 30% before falling again. In traffic data, accuracy gradually increased until 30% but
varied afterwards. In Weather Data, the results were more clear. The accuracy first rose
until the best test size and then started to fall gradually. The best test sizes were 20%
and 30%.

F
ea
tu
re
s-
T
S

The best test size for both data sets were 20% and 30%. In traffic data, accuracy started
to grow after 40% but according to the other experiments and weather results, probable
reasons are ML errors or over-fitting. The results were similar to the previous experiments.
Overall, the effect of invalid features on accuracy was less than the effect of invalid rows.

ble in machine learning quality analysis. They can be used in root cause analyses to identify

possible faults in a IoT architecture such as sensor or connectivity problems. This provides

a post-hoc explanation to black-box explainable model construction and recommendation of

remedies [8, 9].

However, a clear identification of the reason behind the observation is not always possi-

ble. The problem here is the white-box explainability of machine learning models. As deep

learning and other highly accurate black-box models develop, the social demand or legal re-

quirements for interpretability and explainability of machine learning models are becoming

more significant [27]. Nowadays, the two terms are beginning to have different meanings,

with interpretability describing the fact that the model is understandable by its nature (e.g.

decision trees) and explainability corresponding to the capacity of a black-box model to be

explained using external resources (e.g., visualizations). However, white-box explainability is

beyond the scope of the paper here.

6. Validation

We used two data sets to investigate the correctness of the results and applicability for multiple

domains. While the observations are generally of practical benefit, another important aspect

is the explainability of the observations. Our observations apply to sensor-based IoT settings

where all the data came from IoT sensors. The question is whether or not we can utilise the

observations in a root cause analysis.
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Fig. 1. Accuracy on Depth 3 and 20% Test Size in Different Invalid Rows for Each Invalid Value

in Traffic Data.

The missing or invalid rows situation is more likely to happen in real-life situations than

missing or invalid features. Data is received from sensors. If a sensor is faulty or the data

is not received due to a connection problem, all the data from that sensor is lost (and not a

part of data), unless we have different sensors for different factors. In the latter case, it would

be possible to have missing features. For example, if a weather sensor can calculate different

factors like temperature, humidity, pressure, wind and etc., then if the sensor is faulty, we will

lose all the measurement at the same time. If we have different sensors for each measurement,

then if the sensor is faulty, we will lose only some at the same time, but not all of them. For

invalid values, it depends on the type of sensor and factors. For instance, -50C is generally

unlikely for a temperature reading, but still possible to happen; on the other hand below

-100C can be assumed incorrect. These observation can be used to deduce probable root

causes in sensor-based IoT environments such as faulty sensors or incorrect data processing.

6.1. Transferability

We looked at IoT settings, based on sensors as data producers. In that context, we have used

traffic and weather data sets.

Other application domains could here be considered, such as mobile learning that includes

the usage of multimedia content being delivered to mobile learners and their devices [18, 21,

14]. Here the setting is different in that multimedia content is produced and transferred. This

can equally cause incompleteness and incorrectness problems, but here the differences is that

continuous streams of binary data is affected.

A further direction is the implementation of self-adaptive ML quality management in an

IoT-edge continuum [16, 5, 10, 19]. In that context, similar to the original setting, sensors

produce data (albeit sensors measuring often virtualized infrastructure performance) that is
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Fig. 2. Accuracy on Depth 3 and 20% Test Size in Different Invalid Features for Each Invalid

Value in Weather Data.

after some analysed translated into instructions to be executed by actuators in the same IoT

edge space. Here, video surveillance could be considered, where cameras monitor for example

building that need protection. Image quality could be monitored and faults in the video or

transmission system detected. Microservices and containers [29, 30, 23, 25] would here be the

main artifacts that would be monitored, causing continuously produced input data.

From our results, we can ascertain that sensor faults have a different impact than for

instance network failures and that with some certainty a defect cause can be identified. This,

however, needs to be further explored and confirmed for other data than the numerical and

limited volume situations considered here.

7. Conclusion

More and more software applications are based on functions generated using ML from larger

volumes of data available in contexts such as the Internet-of-Things (IoT) instead of being

manually programmed [24]. With less human involvement in the construction process of the

software, quality assurance becomes more important.

We focused on the link between input data quality for ML function construction and the

quality of these functions in data-driven software applications. An important observation

is the range of quality concerns that apply. For input data, we considered correctness and

completeness as data quality concerns. For ML model construction, the usual accuracy,

precision and recall were considered. We organized our work in three steps. In first step,

we determined a framework of indicators that influence data quality such as correctness and

completeness and model construction factors on accuracy, precision and recall as described

above. Then, we experimentally analysed the impact of variations in model construction
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Fig. 3. Accuracy on Depth 3 and 20% Test Size in Different Invalid Features for Each Invalid

Value in Traffic Data.

and data quality on ML model quality and in the final step, we aimed to identify change

patterns that can be attributed to specific input changes caused by for instance faults in the

environment in the context of a root cause analysis. This provides an a-posteriori explanation

for a black box explainability setting.

The observations were validated in two data sets and are practically applicable in machine

learning quality analysis and root cause analysis. However, a clear identification of the reason

behind the observation is not always possible. More work on the white-box explainability of

results is needed.
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