
Journal of Data Intelligence, Vol. 3, No. 1 (2021) 131–148
© Rinton Press

A COMPARATIVE STUDY USING DIFFERENT QUESTION CONTEXT INFORMATION

ON PAIRWISE LEARNING-TO-RANK CQA TRANSFORMER MODELS

IN THE HOME IMPROVEMENT DOMAIN

MACEDO MAIA

University of Passau
Passau, Germany

sousam02@gw.uni-passau.de

MARKUS ENDRES

University of Passau

Passau, Germany
Markus.Endres@uni-passau.de

To find answers for subjective questions about many topics through Q&A forums, ques-
tioners and answerers can cooperatively help themselves by sharing their doubts or

answers based on their background and life experiences. These experiences can help

machines redirect questioners to find better answers based on community question-
answering models. This work proposes a comparative analysis of the pairwise com-

munity answer retrieval models in the home improvement domain considering different
kinds of user question context information. Community Question-Answering (CQA)

models must rank candidate answers in decreasing order of relevance for a user question.

Our contribution consists of transformer-based language models using different kinds of
user information to accurate the model generalisation. To train our model, we propose

a proper CQA dataset in the home improvement domain that consists of information

extracted from community forums, including question context information. We evaluate
our approach by comparing the performance of each baseline model based on rank-aware

evaluation measures.

Keywords: Information Retrieval, Community Question Answering, and Neural Net-
works.

1. Introduction

Web platforms allow web users to share opinions without disclosing too much identity. It

encourages users to post genuine comments about something on web forums [17]. Some

situations in the real world make some web users access the web to ask about daily problems.

For instance, users who want to renovate their houses can ask for tips or opinions about

improvements (e.g., buying new appropriate furniture or repairing some broken installation)

in some specialized community forums.

The complexity of answering user questions is in the fact of lack of further explicit infor-

mation to help models to find the most relevant answer. We show in Figure 1 an example of a

subjective question and two user comments as accepted answers obtained from a community

question-answering foruma. This example shows a web user asking some tips to measure the

height of a tree. This questioner aims to install an antenna for internet service that needs

ahttps://diy.stackexchange.com/questions/7100/is-there-an-easy-way-to-measure-the-height-of-a-tree
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132 CQA Transformer Models in the Home Improvement Domain

to clear some tree because it requires a clear line of sight to work. The expected answers for

this question are distinct because there are many ways that we must consider to measure the

height of something. Answerer 1 suggests to find an approximated tree size by using some

steps considering a pencil, moving some meters away from the tree, extend your arm, and

hold the pencil so that you can measure the height of the tree on the pencil with your thumb.

Meanwhile, Answerer 2 suggests to find the approximated tree height by using a formula

based on the questioner’s shadow, questioner’s and the tree’s shadow measures. We conclude

that subjective questions have different answers based on the experience of different users.

A possible solution to match question and correct answer is to find an association between

“ways to measure” words and often terms that appear in texts that describe approach to

measure something. A way to help to generalise pairwise CQA model inferences is to use

further explicit information (e.g., tags) provided by users.

Question: Is there an easy way to measure the height of a tree?
Questioner’s nickname: JohnFx

Answer 1: Take a pencil, move some meters away from the tree. Outstrech your
arm and hold the pencil so that you can measure the height of the tree on the pencil
with your thumb. Then turn the pencil at the bottom of the tree by 90 degrees. Note
where the distance measured by thumb hits the earth and measure the way from this
point to the tree. This is the height of the tree.
Answerer’s nickname 1: bennymo

Answer 2: Use shadows... 1-Measure your shadow; 2-Measure yourself; 3-Measure
the tree’s shadow. Calculate (tree’s shadow * your height) / your shadow = Tree
Height. You’ll have to do this on a sunny day (you might also need an assistant), and
the ground will have to be relatively flat (a slope will throw off the measurement).
Answerer’s nickname 2: Tester101

Fig. 1. Examples of questions and their respective answers.

To provide further information for community questions, users can also post the question

context to help users deeply understand which kind of answer the questioner expects and

improve the question and answer matching or answer retrieval ranking models. In Figure 2

we show two different kinds of question context: question description and user tags. Question

description is a full text that details the meaning of the question. User tags describe the

more relevant keywords related to the question. These two kinds of information describe

the context for a question differently. In Figure 2 we show the question description and the

user tag for the question presented in Figure 1. In this question description, the questioner

describes why it is necessary to measure the height of a tree. In this example, we only have

a user tag. However, many questions have multiple different tags.

This work proposes a comparative analysis on community answer retrieval based on trans-

former learning-to-rank (LeToR) model in the home improvement domain. We propose sce-

narios based on question-based information (e.g., question, question description, and user

tags) and QA pairwise sequence embedding matching.

As a first contribution, we propose a tag-based transformer model that improves the CQA

learning-to-rank model generalisation. For that, we also propose an approach to encode
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Question: Is there an easy way to measure the height of a tree?
Questioner’s nickname: JohnFx

Question Description: I’m looking to get an antenna installed for Internet
service that will need to clear some trees on my neighbor’s property because it
requires a clear line of sight to work. I really don’t trust my estimating skills
enough to plunk down money on a utility pole that might be too short or too
tall. And climbing the tree with a tape measure (in my neighbors yard) is a bit
intrusive and dangerous. Is there a clever way that I can get a reasonably close
(within 5’ or so) estimate of the height of the tree other than eyeballing it? I
thought about putting together a bunch of 10’ runs of PVC pipe and holding it
up against the tree, but that is going to get pretty unwieldy by about 30’ and the
trees are at least that tall. My other thought is to break out my old Trig textbooks
and use the angle/distance to tree, but it seems like it would be pretty hard to
judge the angle correctly, maybe with a laser pointer or something? Any other ideas?

User Tags: measuring

Fig. 2. Question context information example.

multiple tags as a new sentence. As a second contribution, we build and validate a CQA

dataset based on users questions and their respective candidate answers to test our approach.

We also include a scenario where question context is part of question input. Finally, as a third

contribution, we compare our approach with different state-of-the-art baselines in pairwise

matching and pairwise learning-to-rank models using the rank-aware evaluation measures.

The experiment aims to show the impact of each different question context information in

each scenario.

The rest of the paper is organized as follows. Section 2 discusses related work. In Section

3 we present background on transformer models. Section 4 contains our approach to encode

questions and answer pairs and include question context information. Section 5 describes

the guidelines for building and validating our home improvement domain dataset. Section

6 presents our experiments and compares the results for different scenarios. We conclude in

Section 7.

2. Related Work

Some CQA challenge series inspire our task [21, 20, 16] that aim to promote related research

on that area. They provided datasets, annotated data, and developed robust evaluation

procedures to establish a common ground for comparing and evaluating different CQA ap-

proaches. Despite these CQA challenge series contains user questions, they have no extra

explicit information like user tags. This work is an extension of the work described in [15],

where we consider question description as a new question context information to our compar-

ative analysis. The plan is to evaluate whether the capacity of transformer model baselines

improves the performance by including these kinds of new information. In order to explain

how transformer models work, we first must understand how attention mechanisms work. In

Section 3, we have a background about attention mechanisms and transformer architecture
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applied in different transformer model variations.

Advances in word embedding models have improved neural network for generalising pair-

wise models. Word embedding refers to a group of Machine Learning algorithms that learn

contextual high-dimensional dense word vector representations (e.g., Glove [22], Word2Vec

[18], and ELMo [23]). There are some models based on Long Short-Term Memory (LSTM)

[10] and the Gated Recurrent Unit (GRU) [4] to learn sequential information on words. Bi-

lateral Multi-Perspective Matching Model (BiMPM) [27], for instance, proposes a model for

text similarity. Given two sentences, P and Q, it matches the two encoded sentences in two

directions, P against Q and Q against P. In each matching direction, each time step of one

sentence is matched against all the other sentences’ timesteps from multiple perspectives.

Then, another BiLSTM layer is utilized to aggregate the matching results into a fixed-length

matching vector. Finally, based on the matching vector, a decision is made through a fully

connected layer. Multi-Perspective Sentence Similarity Modeling with Convolutional Neural

Networks (MPCNN) [8] proposes a model for comparing sentences that use diverse perspec-

tives. Firstly, MPCNN models each sentence using a Convolutional Neural Network (CNN).

It extracts features at multiple levels of granularity and uses multiple types of pooling. Af-

ter, it compares the sentence representations at several granularities using multiple similarity

metrics. We consider these last two approaches in our comparative experiments.

Unlike Recurrent Neural Network (RNN) and its extensions (e.g., LSTM and GRU) that

process each sequence element, in turn, transformer-based language models [26] process all

parts concurrently, forming direct connections between individual ones through attention

mechanisms.

Bidirectional Encoder Representations from Transformers (BERT) [6] is the main trans-

former-based language model. It consists of pretraining deep bidirectional representations of

unlabeled text by jointly conditioning both left and right context in all layers. Initially, that

model outperforms other neural network approaches based on RNN, CNN and attentive mech-

anisms for eleven different NLP tasks. DistilBERT [25] is based on the BERT architecture

with some optimisation procedures to improve the inference speed by removing some parame-

ters to reduce the training speed and train a transformer model by considering a lower amount

of computational resources. RoBERTa [12] also proposes a replication study of BERT that

measures the impact of many key hyperparameters and training data size. The conclusion

is that BERT was significantly undertrained, and must match or exceed the performance of

some models in some tasks. RoBERTa specify some modifications in BERT pretraining step

to get a better accuracy as well as decrease the time for pretraining a new model. The best

model achieves state-of-the-art results on three Natural Language Processing (NLP) tasks.

XLNet [28] is similar to previously described transformer models, where tokens in XLNet

are also predicted but in a random order. XLNet is based on two features: (1) enables learning

bidirectional contexts by maximizing the expected likelihood over all permutations of the

factorization order, and (2) overcomes the limitations of BERT thanks to its autoregressive

formulation. As BERT, XLNet also model bidirectional contextual information, denoising

autoencoding based pretraining. However, BERT neglects dependency between the masked

positions and suffers from a pretrain-finetune discrepancy because it relying on corrupting the

input with masks. XLNet also integrates ideas from Transformer-XL [5], the state-of-the-art

autoregressive model, into pretraining to overcome this dependence. With the capability of
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modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves

better performance than pretraining approaches based on autoregressive language modeling.

However, relying on corrupting the input with masks, BERT neglects dependency between

the masked positions and suffers from a pretrain finetune discrepancy.

3. Background

Although the RNN model and its variations (e.g., LSTM and GRU) provide accurate per-

formance in some text classification tasks, they need to use special procedures like attention

mechanisms to detect the most relevant parts (for prediction purposes) in texts. In order to

address this issue, transformer-based models consist of multiple layers where each one con-

tains multiple attention heads. To understand transformer models and Natural Language

Processing (NLP) tasks like CQA, we must explore the background of their related topics.

Our CQA baselines are based on attention-based neural networks. This section focuses on

describing the background on attention mechanisms in NLP and the transformer architecture

used as the base to understand how attention models work in our CQA baselines.

3.1. Attention Mechanisms and NLP

The first proposed attention mechanism approach was used in visual imaging in the 1990s

[11]. However, attention became a hot topic after Google Mind studies, resulting in the work

described in [19]. Attention mechanisms also became popular in applications about Neu-

ral Networks (NN) in other fields like Information Retrieval (IR) and Question-answering

(Q&A) approaches. The NN model can align different modalities during the training pro-

cedure for different applications (e.g., aligning questions and answers to find the best QA

pairwise matching). The attention mechanism is a part of a neural architecture that enables

dynamically highlighting relevant features of the input data, which, in NLP, is typically a

sequence of textual elements. It can be applied directly to the raw input or its higher-level

representation. The core idea behind attention is to compute a weight distribution on the

input sequence, assigning higher values to more relevant elements. The rapid advancement in

modelling attention in Neural Networks on textual information is visible because these models

are now the state-of-the-art for multiple tasks in NLP [7, 3].

The first successful applications of attentional mechanisms to align pairwise-matching

texts task were used to improve Neural Machine Translation (NMT) by selectively focusing

on parts of the source sentence during translation [14, 2]. The approach in [2] introduces an

extension to the encoder-decoder model, which learns to align and translate jointly. For that,

this work proposes a new architecture that consists of a bidirectional RNN as an encoder and

a decoder that emulates searching for a set of positions in a source sentence during decoding

a translation where the most relevant information receive a higher weight (Figure 3). The

model predicts a target word based on two information: (1) the context vectors connected

with the source positions and (2) the previously generated target words.

To annotate each word in a sentence, the model uses the bidirectional RNN to encode each

word considering the word sequence information. For a word wj , its annotation hj (hidden

state of the j − th word) contains the summaries of both the preceding and the following

words. The context vector ci is computed as a weighted sum of these annotations hi.
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Fig. 3. An illustrative example of the attentive model architecture proposed in [2].

ci =

T∑
j=1

αijhj , (1)

The attention weight αij of each annotation hj is computed by:

αij =
exp(eij)∑T
k=1 exp(eik)

, (2)

eij = a(si1, hj) (3)

where a is an alignment model which scores the matching relevance between the inputs

around position j and the output at position i and exp is an exponential function.

The target word yt generation can be defined using conditional probability as:

p(yi/y1, . . . , yi1, X) = g(yi1, si, ci), (4)

where g is a nonlinear, potentially multi-layered function that outputs the probability of

yi, and si is an RNN hidden state of the decoder for time i, computed by:

si = f(si1, yi, ci) (5)

The probability αij , or its associated energy eij , reflects the importance of the annotation

hj with respect to the previous hidden state si1 in deciding the next state si and generating

yi. Intuitively, this implements a mechanism of attention in the decoder.

NMT model has a sentence from a source language as an input and generate the corre-

sponding sentence in another target language. The attention model helps the decoder finds

the source input tokens that are relevant while generating the next token in the target sen-

tence. For CQA, the application is the same. In that case, a use question is our source, and

an answer is a target.
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The approach described in [14] proposes some attention-based models separated into two

different categories: global and local. These classes differ in whether the attention weight is

placed on all source positions or only a few source positions. In Figure 4 we show the global

and local attention model architectures. Common to these two types of models is that at each

time step t in the decoding phase, both approaches first take as input the hidden state ht at the

top layer of a stacking LSTM. The goal is to derive a context vector ct that captures relevant

source-side information to help predict the current target word yt. While these models differ

in how the context vector ct is derived, they share subsequent steps. In global attention

mechanisms, at each time step t, the model infers a variable-length alignment weight vector

at based on the current target state ht and all source states h̃s. A global context vector ct
is then computed as the weighted average, according to at. The model first predicts a single

aligned position pt for the current target word in local attention mechanisms. A window

centred around the source position pt is used to compute a context vector ct (a weighted

average of the source hidden states in the window). The weights at are inferred from the

current target state ht and that source states h̃s in the window, overall the source state. This

attention is also used for machine translation task by considering the and we can implement

this attentive approach to run in CQA in the same sense.

Fig. 4. Global and local attention model architectures presented in [14].

Attention-based models are used across a broad spectrum of problem domains. Due to

their effectiveness, such models are top-rated in the language and vision domains, a global

approach in which all source words are attended and a local one whereby only a subset of

source words are considered at a time. The local and global attention mechanisms resemble

the model of [2] but are simpler architecturally.

3.2. Transformer Model Architecture

In this section, we summarize the description of the transformer model architecture described

in [26]. In transformer architecture, the encoder maps the source input sequence of symbol

representations to a sequence of continuous representations. Given this continuos represen-
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tations, the decoder then generates an target sequence of symbols one element at a time. At

each step the model is auto-regressive [10], consuming the previously generated symbols as

additional input when generating the next. [26]

In Figure 5 we find the transformer model architecture using stacked self-attention, point-

wise, and fully connected layers for the encoder (left-hand side) and decoder (right-hand

side). Initially, the transformer encoder is defined as a stacked similar layer (two sub-layers

compound each). These sublayers are a multi-head self-attention mechanism and a position-

wise fully connected feed-forward network. A residual connection described in [9] and a layer

normalization (LayerNorm) described in [1] are implemented between these sublayers. Similar

to encoders, transformer decoders also are defined as a stacked similar layer with two sub-

layers in each one. However, the decoder adds a extra sub-layer that process multi-head

attention over the output of the stack encoder layer. Moreover, the decoder also applies

residual connections and layer normalization in the same way they are applied in the encoder.

The Self-attention sub-layer in the decoder stack was modified to prevent positions from

attending to subsequent positions. This change, combined with the fact that the output

embeddings are offset by one position, ensures that the predictions for position i can depend

only on the known outputs at positions less than i.

Fig. 5. Transformer Model Architecture (taken from [26]).
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Transformer models are based on learned embeddings to convert input and output tokens

into vectors. This model also computes the learned linear transformation and softmax function

to transform the decoder output into information to predict the next-token probabilities. The

same weight matrix are used by input, and output embedding layers and the pre-softmax linear

transformation is based on [24].

3.3. Attention in Transformers

In transformer models, the attention mechanism functions are a mapping between a query

and a set of key-value pairs to an output, where different vectors represent them. The output

vector is represented as a weighted sum of the values. The weight in this sum is performed by

a compatibility function of a query with its related key. In Figure 6 we show the self-attention

models called Scaled Dot-Product Attention and Multiheads Attention, which are proposed

as part of the transformer architecture.

Fig. 6. Self-attention mechanisms used in transformer models described in [26]: On the left-hand

side we show the Scaled Dot-Product Attention. On the right-hand side we show Multi-Head

Attention consists of several attention layers running in parallel.

3.3.1. Scaled Dot-Product Attention

In this attention mechanism approach, the inputs are queries, keys and values where the dot

products of the query are performed with all keys, divided by dk. The softmax activation

function is used to acquire the weights. The attention function is performed simultaneously

on queries, inserted jointly into a matrix Q. The keys and values are also added into the

matrices K and V . Equation 6 represents the attention function used to obtain the Matrix

output.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)
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3.3.2. Multiheads Attention

Another way to apply attention is to linearly project the queries, keys and values h times

with different, learned linear projections. In this case, the attention function is performed

parallelly on these projected versions of queries, keys and values, resulting in output values.

Then these are concatenated and once again projected, resulting in the final output.

Multi-head attention allows the model to jointly attend to information from different

representation subspaces at different positions. A single attention head inhibits this [26].

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (7)

headi = Attention(QWQ
i , QW

k
i , QW

V
i ) (8)

where WQ
i , WK

i , WV
i , and WO are learning parameters.

3.3.3. Position-wise Feed-Forward Networks

Each layer in the encoder and decoder has a fully connected Feed-Forward Network (FFN),

which is applied to each position separately and identically [26].

FFN(x) = max(0, xW1 + b1)W2 + b2, (9)

where W1, W2, b1, and b2 are learning parameters.

4. Question Context Information on Transformer-based CQA Model

Given a question and a set of comments as candidate answers in natural language, a CQA

LeToR model sorts comments as candidate answer list to the question in order of ascending

relevance score. In Figure 7 we represent a generic QA pairwise LeToR model architecture.

Question (Q) 

Comment 1 (C  )

...

CQA 
Letor 
Model

Comment 2 (C  )

Comment n (C  )

QA 
pairs

<Q , C  >

...

<Q , C  >

<Q , C  >

<Q , C  , O  >

...

<Q , C  , O  >

<Q , C  , O  >
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List
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Pair List 

1

2

1

2

nn

j j

l l
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Fig. 7. CQA Learning-to-rank Pairwise Model
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For a question Q and a set of n candidate answers [C1, C2, C3, ..., Cn] we must build

question and comment pairs QCP = {< Q,C1 >,< Q,C2 >,< Q,C3 >, ..., < Q,Cn >},
where The model output is represented by an n-dimensional vector O = {< C1, O1 >,<

C2, O2 >, ..., < Cn, On >}, where the pair < Cj , Oj > represents the comment Cj and the

relevance score Oj of < Q,Cj >.

Our CQA pairwise learning-to-rank transformer model is based on a question answering

pairwise approach, including different question context information as further information of

questions.

4.1. Input and Tag Representation

The input in our proposed model is a user question Q ={w1, w2,...,wi,..., wm}, a candidate

answer based on comment C ={v1, v2,...,vi,..., vn}, where wi is the i -th token in Q and vj
is the j -th token in C. In order to include tags information in our model, we also consider

extra inputs: the set of alphabetically ordered user tags T = {t1, t2, ..., to} and a question

description D ={x1, x2,...,xi,..., xm}.
To represent multiple tags as new information, we define a new input sentence adding

the coordinating conjunction term “and” to connect all tags in alphabetical order (see Figure

8). Conjunction term helps the model identify different tags and avoid confusing them with

compound names (e.g., electrical panel). We represent multiple tags in alphabetical order

because it helps the model know which tags must appear before or after others. Question Q

and tag-based sentence T are concatenated into a new input Q̂ where Q comes before T (see

Equation 10).

Q̂← [Q,T ] (10)

To represent question description as new information, we define a new input sentence by

concatenating question Q and question description D (see Equation 11).

Q̂← [Q,D] (11)

In our experiments, we considered tags and question description in different scenarios.

t ...

and and and...

Join Tags

1 t 2 t n

t 1 t 2 t n

Fig. 8: Procedure to join tags and create a new sentence.
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4.2. CQA Pair Matching Model

We use transformer-based language models to represent each QA pairwise representation using

sequential contextual information among user question, tag-based sentence, and candidate

answers.

For Information Retrieval (IR) tasks like CQA, we use pre-trained transformer models

and run the fine-tuning step to fit the model parameters to our data. Firstly, we convert raw

input question and answer pair into a proper unified input U . Before using a transformer

tokeniser, we must indicate where the input starts using a special token “< CLT >”. We also

need to inform the model where the first sentence ends and where the second sentence begins

by using a special token “< SEP >”. The tokens < CLT > and < SEP > are predefined

for the transformer models as default. After defining U , we use the Transformer Tokeniser

(T Tokeniser) (Equation 12) to separate it into tokens.

U = [< CLT >, Q̂,< SEP >,C,< SEP >] ; Û = T Tokeniser(U), (12)

When we tokenise the inputs using Transformer Tokeniser, each token receives an ID.

Hence, when we want to use a pre-trained transformer model, we need to convert each token

in Û into its corresponding unique IDs. The “attention mask” tells the model which tokens

should be attended to and which must not. Tokens id and attention mask feed the input

into the transformer model (Equation 13).

tokens id, att mask = Û .convert tokens to ids(), Û .get att mask() (13)

After defining the word encodings and the attention mask, we must pass these as input

parameters to the transformer model (Equation 14). The transformer output is the addictive

pairwise encoding by considering whether an answer comes after a question. In Section 3

we described information about transformer models. Finally, We feed the result to a sigmoid

activation function in the output layer (Equation 14) to return the pairwise matching relevance

score.

M = Transformer(tokens id, att mask) ; orel = σ(WhM + b) (14)

where Wh ∈ R|M | and b ∈ R are learning parameters and σ represents a sigmoid function.

The variable orel represents the relevance score of U where {orel ∈ R | 0 ≤ orel ≤ 1}.

4.3. Model Optimisation

We use the samples in the training set described in Section 5 for training the model by

minimising the binary cross-entropy loss:

Loss = − 1

|S|

|S|∑
s=1

ys log ŷs + (1− ys)log(1− ŷs), (15)

where |S| is the size of the training dataset. ys and ŷs are the true and the predicted CQA

pairwise relevance, respectively. The model parameters are optimised through the AdamW

optimizer [13].
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4.4. Candidate Answers Ranking

Our pairwise LeToR model must rank all the QA pairs for a question Q in terms of relevance.

Let L the list of all QA pairs for q, adding the all pair relevance scores. The result is shown

in Equation 16:

L = [< q, c1, o1 >,< q, c2, o2 >, ..., < q, cn, on >] ; L̂ = desc sort(L), (16)

where |L| = n, where n is the number of candidate answers to q and oj is the relevance score

of the pair < q, cj >. To ranking our QA pairs, we sort L in relevance score descending order

through the function desc sort, where the final output is a sorted list L̂ and the most relevant

pair is in the first position.

5. Dataset Building and Validation

In this section, we describe the procedure of building our CQA dataset and its validation.

5.1. Subjective CQA

We built our dataset composed of subjective texts harvested from a specialized Q&A forum

called Home Improvement (HI)b. This website has 77.000 thousands of subscribed users with

some background in this domains. They share questions and opinions about different subjects

associated with home improvements. Some moderators review new postings, correct mistakes

directly and suggest new changes for original authors. They use facts and references to support

and help the user to fix some incoherence or misunderstanding information.

Postings in these websites also contain some explicit information provided by users. We

use the number of upvotes as information to validate our gold standard dataset. Upvotes

represents the number of positive votes that the message receive by other users. we build

our dataset considering the two information. We scrapped the question comments from both

home improvements forums in a dataset.

We describe quantitative information about questions and their associated tags in Table

1. Following the information in these tables, we state that 11935 questions about home

improvement topics where each question is associated with one tag, at least. There are

questions associated with five different user tags.

Table 1. Distribution of number of tags by number of questions in either training, dev, and test

sets in home improvement dataset.

Datasets #1 tag #2 tags #3 tags #4 tags #5 tags #Questions
Training 2308 2681 1673 627 187 7476
Validation 250 546 563 248 125 1732
Test 196 757 961 563 250 2727
Total 2754 3984 3197 1438 562 11935

Questions are associated with user tags. We show in Table 2 the most frequent user tags

in our dataset. Precisely, we have 771 different home improvement tags in our dataset.

bhttps://dyi.stackexchange.com
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Table 2. Tag examples and their frequency for our Home Improvements dataset.

tag frequency
electrical 2941

wiring 1136
plumbing 827
lighting 423
drywall 392

bathroom 358

5.2. Gold Standard Definition

We distributed all the questions into training, dev and test datasets in question amount.

Initially, we distributed all the questions using an overall distribution of about 75/25% for

the training and test dataset. Afterwards, we split the original training set into training

and development sets with a proportion of 80/20% approximately. In Table 3 we show the

distribution of the number of questions, number of accepted answers, number of non-related

answers, and QA pairs.

Table 3. Distribution of the number of questions by labels in either training, dev and test datasets
for home improvements.

Datasets #Question #Acc Answers #NonRelev Answers #QA pairs
Training 7476 10451 29542 39993
Validation 1732 2408 6879 9287
Test 2727 3878 10856 14734
Total 11935 16737 47277 64014

6. Evaluation

We evaluated the ranking performance of our approach with different state-of-the-art learning-

to-rank models on our gold standard datasets described in Section 5.

6.1. Experimental Setup

For Recurrent Neural Networks, we performed our experiments with the 300-dimension word

vectors by using the pre-trained GloVE [22] word embedding model generated from a 6-billion-

token corpusc(extracted from Wikipedia 2014 + Gigaword 5). Regarding transformer-based

language models baselines, we used different configurations for each one. In Table 4 we

describe the pretraining model configuration for different transformer-based algorithms. The

RNN- and CNN-based models’ parameters were optimized through the Adam optimizer, and

transformer-based language models optimized through the AdamW optimizer [13].

We ran our experiments in a dedicated server with Intel(R) Xeon(R) CPU E5-2643 v3

with 24 cores, 128 GB DIMM DDR4 Memory, and an NVIDIA Tesla K40c GPU device.

chttp://nlp.stanford.edu/data/glove.6B.zip
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Table 4. Overview of transformer-based language models configuration.

Model pre-trained #layer #hidden #param #token
BERT bert-base-uncased 12 768 110M 512
RoBERTa roberta-base 12 768 125M 512
DistilBERT distilbert-base-uncased 6 768 66M 512
XLNet xlnet-base-cased 12 768 110M 512

6.2. Rank-aware Evaluation Metrics

We considered two rank-aware evaluation measures in our experiments. Mean Reciprocal

Rank (MRR) is the average of the reciprocal ranks of the first relevant answer among candidate

answers for a set of community queries. Mean Average Precision (MAP) is the mean of average

precision across multiple community questions. For a single question, Average Precision (AP)

is the average of the precision value obtained for the set of top-k candidate answers existing

after each relevant answer. MRR evaluates the performance of a ranking-based model to

find the first relevant answer. In contrast, MAP evaluates the capacity of the same model to

predict the whole candidate answer list.

6.3. Results

In Table 5 we show the performance of different baselines considering different evaluation

measures for the ranking task. Among RNN-based neural network models, BiPMP has the

best performance in terms of ranking measures. BiPMP outperformed MPCNN and the

simple Siamese BiLSTM for both evaluation measures. BiPMP also outperformed MPCNN

with 6.1% of the difference.

The previously discoursed approaches depend on the word embedding models to encode

the model. Real-world texts are a problem because this kind of text contains some new

words or misspelt words classified as an out-of-vocabulary words. These word groups have no

distinct representation, and thus the model must lose relevant information. Unlike the previ-

ously described models, transformer-based language models performed better in all scenarios.

XLNet outperforms all the state-of-the-art approaches considered in our analysis. However,

the difference in performance for each transformer-based model is slight, as shown in Table 5

for XLNet, BERT and DistilBERT. XLNet obtained the best results in our ranking analysis

among these baseline models.

6.4. Question Context Influence on Transformer-based Pairwise CQA task

In the same Table 5, we realised how transformer models generalise better when we include

user tags or question descriptions as extra information on questions. For DistilBERT and

BERT with user tags information, for instance, outperformed these models without this new

information in around 2% of difference for both MRR and MAP measures. Although XLNet

with multiple user tags also has improvements by generalising ranking models regarding the

same model, the difference is smaller than the other two transformer models without this extra

information. The explanation is in the way how attention mechanisms work for each model.

DistillBert and BERT have the same parameters where the difference is because the first one

is a distilled version of the second one (it must explain why BERT outperforms DistillBERT).
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Unlike BERT and DistillBERT, XLNet outperforms the results of other approaches without

using tags as extra information. However, Bert and DistilBERT obtained more advantages in

extracting information on tags than XLNet. Unlike BERT, DistillBERT and XLNet, Roberta

has no improvements when using tags as extra information. BERT outperformed the other

approaches for transformer models using tags as extra information.

Regarding the model performance, when we include question description as extra informa-

tion, we find out that it improved the performance of rank-based community answer retrieval

considering transformer models for almost every transformer-based model. The reason is that

the question description specifies better the question context where the questioner explains

doubt in further detail. In that case, RoBERTa outperformed all the other baselines where

it was the unique model setting that reached 90% for MRR measure. RoBERTa also had the

most significant improvement concerning comparing the transformer models with and without

question context as extra information. XLNET and BERT also had a relevant improvement

in that sense.

Table 5. Experiment results for Mean Average Precision (MAP) and Mean Reciprocal Rank

(MRR).

Home Improv.
MRR MAP

MPCNN 0.636 0.617
BiPMP 0.701 0.676
DistilBERT 0.773 0.753
DistilBERT+ tags 0.791 0.773
DistilBERT+question description 0.788 0.769
BERT 0.799 0.778
BERT+ tags 0.821 0.804
BERT+question descriptiont 0.868 0.848
XLNet 0.813 0.795
XLNet+tags 0.815 0.798
XLNet+question description 0.888 0.872
RoBERTa 0.823 0.808
RoBERTa+ tags 0.779 0.756
RoBERTa+question description 0.900 0.885

7. Conclusion

We proposed a comparative analysis on community answer retrieval based on the transformer

LeToR model in the home improvement domain. As a first contribution, we built a CQA

dataset based on users questions and comment-based answers. We validated that dataset by

considering explicit information and feedback from different users on the website. We also

proposed a way to encode question and answer pairs considering question, answers, and ques-

tion context information. Our experiments show that question context input helps increase

the CQA generalisation performance on pairwise LeToR CQA tasks considering different

transformer-based models. BERT showed better performance using the tag information if

we compare the difference between the performance of each approach without tags and with

these. Approaches using question description as an extra input information present the best
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results where RoBERTa outperformed every baseline in this scenario.

We plan to analyse community questions from other domains and determine the effects

of specific-domain multiple tag information in the model generalisation for future work. We

also plan to explain the effects of tag information on the attention mechanism for transformer

models.
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