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In classification, class imbalance is a factor that degrades the classification performance

of many classification methods. Resampling is one widely accepted approach to the class
imbalance; however, it still suffers from an insufficient data space, which also degrades

performance. To overcome this, in this paper, an undersampling-based imbalanced clas-

sification framework, MMEnsemble, is proposed that incorporates metric learning into
a multi-ratio undersampling-based ensemble. This framework also overcomes a problem

with determining the appropriate sampling ratio in the multi-ratio ensemble method. It

was evaluated by using 12 real-world datasets. It outperformed the state-of-the-art ap-
proaches of metric learning, undersampling, and oversampling in recall and ROC-AUC,

and it performed comparably with them in terms of Gmean and F-measure metrics.
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1. Introduction

Class imbalance [15] is a crucial problem in real-world applications that degrades classi-

fication performance, especially with minority classes. Class imbalance refers to a situation

with datasets in which the number of examples in a class is much larger than that in other

classes. The large difference in terms of the numbers of examples causes classifiers to be bi-

ased toward the majority class. Class imbalance has been observed and dealt with in various

domains, such as the clinical domain [7], economic domain [25] and agricultural domain [28],

and in software engineering [26] and computer networks [12].

Resampling is an effective solution to class imbalance, and it has been widely stud-

ied [8, 19, 5, 6]. Resampling techniques can be roughly classified into two categories: over-

sampling (e.g., SMOTE [8] and SWIM [6]) and undersampling (e.g., EasyEnsemble [19] and

RUSBoost [27]). Undersampling is a simple and powerful resampling technique for dealing

with class imbalance [10]. Not only using single-shot undersampling but also combining mul-

tiple undersampled datasets in an ensemble manner have done for the problem [19, 16, 27].

A preliminary survey of various datasets on the effects of different undersampling ratios,

shown in Figure 1, indicated that different undersampling ratios have different preferences

toward classes. Sampling ratio refers to the ratio of the sampled majority size over the minority

size. In this paper, the minority class and majority class are regarded as the positive class

and negative class, respectively. A sampling ratio of 1.0 means that the majority examples

are randomly selected so that the number of sampled examples equals that of the minority

examples. A ratio below 1.0 means that the number of sampled majority examples is below

that of the minority examples. In this paper, this is called excessive undersampling and
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Fig. 1. Small sampling ratios prefer minority, and vice versa.

its antonym is moderate undersampling. The figure depicts the true positive and negative

ratios for different sampling ratios in the Abalone dataset. It indicates that classifiers learned

with excessively undersampled datasets favor the minority class and those by moderately

undersampled datasets favor the majority class, so 1.0 may not be best balanced ratio.

This paper proposes a novel undersampling-based ensemble framework, MMEnsemble,

that is composed of metric learning, multi-ratio ensemble, and asset-based weighting.

• Metric Learning: Metric learning methods such as LMNN [34] learn a data transforma-

tion so that instances in different classes can be distinguishable. Recent metric learning

approaches [33] have shown that selecting subsets of training instances for metric learning

improves the classification performance of an imbalanced classification. On the basis of

this idea, in MMEnsemble, metric learning is incorporated into an undersampling-based

ensemble.

• Multi-ratio Ensemble: When applying undersampling, the sampling ratio is an impor-

tant parameter. It determines the number of drawn majority instances. A recent study [17]

has shown that incorporating multiple sampling ratios in an ensemble manner improves the

classification performance.

• Asset-based Weighting: When applying a multi-ratio undersampling-based ensemble,

weak classifiers for different sampling ratios have different assets. A classifier with a large

sampling ratio may correctly classify the majority class, and another classifier with a small

sampling ratio may correctly classify the minority class. To capture the assets, MMEnsem-

ble introduces a weighting scheme that weighs on classifiers that can correctly classify

instances that are hard for the other classifiers to classify.

The contributions of this paper are summarized as follows.

• MMEnsemble – a novel framework: MMEnsemble is a framework composed of met-

ric learning, multi-ratio undersampling-based ensemble, and asset-based weighting. This

framework overcomes the weakness of metric learning regarding the class imbalance by

applying undersampling beforehand, and it releases users from the burden of choosing sam-

pling ratios in undersampling by using ensemble of base classifiers in various sampling ratios

and automatic weighting schemes.
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• Superior Classification Performance: In an experiment using 12 real-world datasets,

MMEnsemble outperforms the state-of-the-art approaches, especially for recall and ROC-

AUC metrics, and it performs comparably to them on Gmean and F-measure metrics. This

experiment indicates that this approach can achieve higher recall scores, which would be

useful for many real-world applications.

The rest of this paper is organized as follows. Section 2 introduces the related work on

resampling-based approaches. Section 3 explains MMEnsemble in detail, and Section 4 shows

the experimental evaluation using 12 real-world datasets. Finally, Section 5 concludes this

paper.

2. Related Work: Resampling Approaches

To deal with class imbalance, there are basically three groups of approaches, namely,

resampling, cost-adjustment [9], and algorithm modification [32]. Resampling is commonly

used because it has shown robust performance and applicability to any classifiers. Resam-

pling approaches can be roughly classified into two categories, namely, oversampling and

undersampling.

2.1. Oversampling-based Approaches

A simple oversampling approach is to randomly copy minority examples so that the num-

bers of minority and majority examples become the same. This approach easily causes over-

fitting. To cope with the overfitting problem, oversampling approaches generate synthetic

minority examples that are close to the minority. SMOTE [8] is the most popular syn-

thetic oversampling method. It generates synthetic minority examples on the basis of the

nearest neighbor technique. Since SMOTE does not take majority examples into considera-

tion, the generated examples can easily overlap with majority examples. This degrades the

classification performance. To overcome the weakness of SMOTE, more recent approaches

have incorporated majority examples into the resampling process. SMOTE-Tomek [4] and

SMOTE-ENN [5] employ data cleansing techniques including the removal of Tomek links [30]

and Edit Nearest Neighbours [35]. Along this line, there are more advanced approaches (e.g.,

ADASYN [14], borderline-SMOTE [13], and SVM-SMOTE [23]). One of the state-of-the-art

synthetic oversampling approaches is SWIM [6]. SWIM utilizes the density of each minority

example with respect to the distribution of majority examples in order to generate synthetic

minority examples. Comprehensive experiments by [18] were conducted to investigate a large

number of SMOTE variants and to compare these variants with diverse kinds of datasets. In

this investigation, PolyFitSMOTE [11] and ProWSyn [2] showed the best performances.

2.2. Undersampling-based Approaches

Undersampling-based approaches can be classified into three categories: example selection

and boosting and bagging ensembles. Example selection is an approach to choosing majority

examples that are expected to contribute to better classification. Major approaches choose

majority examples hard to distinguish from minority examples. NearMiss [22] samples major-

ity examples close to minority examples. Instance hardness [29] is a hardness property that

indicates the likelihood that an example will be misclassified.
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Boosting ensemble is a learning method that gradually changes majority examples. For

each iteration, boosting approaches remove a part of the majority examples. BalanceCas-

cade [19] is a boosting approach that removes correctly classified majority examples. RUS-

Boost [27] is a weighted random undersampling approach for removing majority examples

that are likely to be classified correctly. EUSBoost [21] introduces a cost-sensitive weight

modification and an adaptive boundary decision strategy to improve model performance.

Trainable Undersampling [24] is the state-of-the-art in this category. It trains a classifier by

reinforcement learning.

Bagging ensemble combines multiple weak classifiers, each of which is learned on individual

pieces of undersampled training data in a voting manner. Ensemble of Undersampling [16] is

one of the earlier bagging approaches using undersampled training data. EasyEnsemble [19]

is an ensemble-of-ensemble approach that ensembles AdaBoost classifiers for each piece of

undersampled training data in a bagging manner. In [10], a comprehensive experiment on

boosting and bagging approaches is reported. It shows that RUSBoost and EasyEnsemble

are the best performing approaches, and they outperform oversampling-based approaches.

MUEnsemble [17] extends EasyEnsemble to incorporate multiple sampling ratios. DDAE [36]

is the state-of-the-art bagging-based approach that takes metric learning and cost-sensitive

learning into account.

The proposed method, MMEnsemble, is classified in the bagging category. A major dis-

tinction of MMEnsemble from the others (except DDAE) is that it incorporates metric learn-

ing to overcome the issue of insufficient data spaces in resampling methods. There are two

major differences between DDAE and MMEnsemble. One is the control of undersampling

(called data block); MMEnsemble undersamples data with respect to the sampling ratio,

while DDAE undersamples on the basis of the number of blocks, which is not dependent on

the imbalance ratio of datasets. The other is the choice of weak classifier; DDAE uses the

nearest neighbor classifier, which is considered to fit metric learning, while MMEnsemble uses

the AdaBoost classifier. Additionally, but importantly, DDAE has (at least) three hyper-

parameters that need to be tuned, while MMEnsemble has only one, which is a much smaller

parameter space.

In terms of the multi-ratio ensemble, MMEnsemble uses assets of weak classifiers that are

obtained from the process of validating weak classifiers, while MUEnsemble uses a heuristic

weighting (i.e., Gaussian function-based weighting). Therefore, to capture the characteristics

of weak classifiers, a comprehensive hyper-parameter tuning is required. The experimental

evaluation in this paper shows the superiority of the asset-based weighting scheme over the

heuristic weighting in MUEnsemble.

3. MMEnsemble

Figure 2 shows an overview of MMEnsemble, which consists of three phases: the multi-

ratio undersampling phase, metric learning phase, and multi-ratio ensemble phase. The first

phase is imitated from MUEnsemble [17], that is, for each sampling ratio ri ∈ R (R is a

predefined set of sampling ratios), multiple undersampled sets of instances with ri are drawn

from the training data. In the second phase, for each drawn set, metric learning is performed

and a base ensemble classifier, called MLEnsemble, is trained using this drawn set that is

transformed by the metric learning. In the last phase, given |R| base classifiers from the
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Fig. 2. MMEnsemble – Proposed Framework

Algorithm 1 MLEnsemble

Input: Training data D(train) = {Dmaj , Dmin}, sampling ratio r, the number of weak clas-
sifiers n

Output: Base ensemble classifier with metric learner Cr = ((c1,m1), (c2,m2), . . . , (cn,mn))
1: for i = 1 to n do
2: D′maj ← Randomly sample Dmaj s.t.

|D′
maj |

|Dmin| = r

3: Train metric learner mi using {D′maj , Dmin}
4: D′ ← Transform {D′maj , Dmin} using mi

5: Train weak classifier ci using D′

6: end for

previous phase, the final ensemble classifier is constructed by the asset-based weighting. In

the following sections, the technical details of MLEnsemble and the ensemble with the asset-

based weighting are introduced.

3.1. Base Ensemble Classifier – MLEnsemble

MLEnsemble is a bagging classifier with metric learning. Its procedure is summarized

in Algorithm 1. The training data are sampled multiple times with replacement to obtain

particular sets of instances (Line 2). For each set, a metric learner is trained by using the

set so that it transforms the set into a sufficient data space for distinguishing instances of

different classes (Lines 3-4). Using the transformed set, a weak classifier is trained (Line 5).

3.2. Ensemble using Asset-based Weighting
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Typical ensemble methods use the weighted voting strategy. These methods often use

equal weights for all base classifiers, and they are not aware of class imbalance. In contrast,

for the case of an ensemble of base classifiers in different sampling ratios, the weights of

base classifiers are more sensitive, and thus need to be carefully designed. [17] showed that

a heuristic weighting using a Gaussian function is superior to the equal weighting. The

Gaussian-based weighting is calculated as follows.

Wgauss(r) = a · exp

(
− (r − µ)2

2σ2

)
, (1)

where µ and σ2 are tunable parameters, and a is a normalization constant such that a =
1∑

r∈RWgauss(r)
. When µ = 1.0, most of the weight is on the base classifier trained using the

balanced data, and the weights gradually decrease as r increases and decrease from µ.

The heuristic weighting approach does not take the classification performances of base

classifiers into consideration. There are typically some instances that can be correctly classi-

fied by only a few base classifiers. To improve the classification performance with the ensemble

mechanism, base classifiers classifying such instances correctly are important. Also, these base

classifiers are expected to not incorrectly classify instances that are correctly classified by the

other base classifiers. In this paper, this is called an asset of a base classifier. Formally, given

set C = {Cj}sj=1 of base classifiers with size s and validation set D(val), for each instance

(di, `i) ∈ D(val), where di is a feature vector, and `i is a class label of the i-th instance,

the number Ti of base classifiers that correctly classify the i-th instance is obtained. That

is, Ti = |{Cj |Cj ∈ C,Cj .predict(di) = `i}|. This number indicates how hard (or easy) an

instance is to classify. The intuition behind using this number for weighting base classifiers

is that the lower the number, the more weights on a base classifier if it correctly classifies the

instance. This intuition is formalized by the following formula.

Wasset(r) = a ·
∑

(di,`i)∈D(val)

δ(Cr.predict(di), `i) · T−ki , (2)

where k is a tunable parameter for emphasizing the importance of the classifiers that correctly

classify instances that other classifiers cannot, δ function is the Kronecker delta (i.e., 1 if

the two arguments are equal, 0 otherwise), and a is a normalization constant such that

a = 1∑
r∈RWasset (r)

.

4. Experimental Evaluation

In this experiment, MMEnsemble was evaluated to answer the following questions.

Q1 Does MMEnsemble outperform the state-of-the-art imbalanced classification methods of

metric learning, oversampling and undersampling?

Q2 Is the combination of metric learning and multi-ratio ensemble effective?

Q3 Does the asset-based weighting help improve the classification performance? and what is

the effect of choice of its hyper-parameter k (Equation 2)?

4.1. Settings
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Table 1. Datasets

ID Name #records #minor #dim IR

D1 cm1 498 49 21 9.2
D2 kc3 458 43 39 9.7
D3 mw1 403 31 37 12.0
D4 pc1 1,109 77 21 13.4
D5 pc3 1,563 160 37 8.8
D6 pc4 1,458 178 37 7.2

D7 yeast1-7 459 30 7 14.3
D8 abalone9-18 731 42 8 16.4
D9 yeast6 1,484 35 8 41.4
D10 abalone19 4,174 32 8 129.4
D11 wine3-5 691 10 11 68.1
D12 abalone20 1,916 26 8 72.7

Datasets: The datasets for the experiment were obtained from the OpenML dataset [31]

and KEEL repository [1]. Table 1 shows the total number of records (#records), the number

of minority instances (#minor), dimensionality (#dim), and the imbalance ratio (IR), which

is #major
#minor . D1-D6 were obtained from the OpenML dataset, and the rest were obtained from

the KEEL repository.

Evaluation: The evaluation metrics were Recall, Gmean, F2, and AUC. Let TP, FN, TN,

and FP be the true positives, false negatives, true negatives, and false positives. Recall =
TP

TP+FN measures how many positive (minority) instances are correctly classified. Gmean =√
Recall · TNR is the geometric mean of the recalls of both classes, where TNR = TN

TN+FP .

Fβ = (1+β2)Recall·Precision
Recall+β2Precision is the harmonic mean of the recall and precision, where Precision =

TP
TP+FP , and β determines the weight on the recall. In this experiment, β was set to 2 because

the higher recalls are preferred in many real-world applications. AUC is the area under the

receiver operation characteristic curve.

To accurate estimate these evaluation metric values, the experimental process was repeated

50 times. In the process, a dataset was randomly separated into 70% for training and 30%

for testing, and the classifiers were trained on the training set and evaluated using the test

set. The overall metric scores were the macro average of the 50 trials.

Baseline Methods: MMEnsemble was compared with the state-of-the-art methods of

metric learning, resampling (oversampling and undersampling) and the ensemble approach.

IML [33] is a state-of-the-art approach of metric learning and copes with the class imbalance.

IML incorporates LMNN [34] and iteratively selects training samples to improve the data

transformation. For resampling, ProWSyn [2] was selected for the oversampling approach

on the basis of the comprehensive experiment in [18] and a preliminary evaluation on the

datasets in this experiment. For the undersampling and ensemble method, DDAE [36] is

the state-of-the-art and also includes metric learning. Since this experiment uses the same

dataset as DDAE, the results of IML and DDAE were copied from the DDAE paper [36]

(though, in [36], MWMOTE [3] is selected as the state-of-the-art oversampling method, [18]
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and the preliminary evaluation showed the superiority of ProWSyn).

To answer Q2, MMEnsemble was compared with EasyEnsemble [20], MUEnsem-

ble [17], and MLEnsemble (in this paper), which are an undersampling-based ensemble, a

multi-ratio undersampling-based ensemble, and a metric learning incorporating EasyEnsem-

ble, respectively. The difference between EasyEnsemble and MMEnsemble shows the benefit

of integrating both the metric learning and the multi-ratio ensemble. Similarly, the difference

between MMEnsemble and MUEnsemble shows the benefit of metric learning to improve the

performance for the imbalanced classification.

Parameters: The parameters of ProWSyn, EasyEnsemble, MLEnsemble, and MUEnsem-

ble were set as follows. The sampling ratio in ProWSyn, EasyEnsemble and MLEnsemble

was set to 1.0. The metric learning method was LMNN with the k parameter of kNN set to

3. For MUEnsemble, the predefined set R of sampling ratios is set to {0.2, 0.4, . . . , 2.0}, and

Gaussian weighting was used with parameters, µ and σ2, of 1.0 and 0.2, where µ was fixed to

1.0 have the parameter be the same as the former methods, and the best σ2 was experimen-

tally explored from {0.1, 0.2, . . . , 1.0}. For MMEnsemble, the base classifier, MLEnsemble,

was set the same as above, R is the same as MUEnsemble, and k of the asset-based weighting

was chosen from {0.1, 0.2, . . . , 5.0}.

4.2. Results

To answer the questions, the experimental results are shown from three perspectives: an

overall comparison (corr. Q1), the ablation study (corr. Q2), and a comparison over the k

parameter and other weighting schemes (corr. Q3).

4.2.1. Overall Comparison

Table 2 showcases the metric scores of MMEnsemble with the state-of-the-art methods.

In the table, the highest scores in a row are boldfaced. MMEnsemble totally outperformed

IML and ProWSyn, and it outperformed DDAE in recall and AUC, and it was comparable

with DDAE in terms of Gmean and F2 metrics. It is noteworthy that MMEnsemble totally

outperformed the others on the AUC metric, and it achieved almost the best performance on

the recall metric. For the real-world applications, a high recall is preferable; therefore, this

superiority of MMEnsemble is practically useful. On the contrary, the Gmean and F2 scores

were comparable with DDAE. On datasets, D5, D6, D8, D9, and D11, MMEnsemble clearly

outperformed DDAE, however, on the other datasets, MMEnsemble was inferior to DDAE or

comparable. This was caused by the low TNR and precision scores for MMEnsemble, coming

from the weighting scheme design (i.e., the asset-based weighting). Asset-based weighting is

designed to emphasize the base classifiers that correctly classify instances that others cannot.

This increases the chance of increasing the number of false positives.
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Table 2. Comparison with State-of-the-art Methods of Metric Learning (IML), Oversampling
(ProWSyn) and Undersampling-based Ensemble (DDAE) – † means that scores were copied from

the DDAE paper [36]. MMEnsemble achieved the best performance in the recall and AUC, and

it was comparable with DDAE in the Gmean and F2.

IML† ProWSyn DDAE† MMEnsemble
data Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC

D1 .313 .520 .287 .589 .411 .583 .350 .728 .813 .775 .580 .776 .863 .756 .546 .819
D2 .692 .805 .652 .814 .375 .571 .353 .735 .846 .823 .625 .823 .952 .750 .534 .868
D3 .500 .635 .345 .653 .406 .595 .364 .753 .750 .815 .588 .817 .793 .772 .528 .866
D4 .852 .657 .408 .679 .433 .620 .378 .821 .963 .819 .573 .830 .944 .819 .548 .895
D5 .510 .578 .342 .582 .444 .623 .404 .796 .735 .743 .536 .744 .867 .794 .598 .854
D6 .814 .725 .574 .730 .685 .790 .646 .920 .932 .804 .676 .813 .963 .873 .748 .934
D7 .667 .716 .471 .718 .502 .648 .387 .757 .833 .841 .649 .841 .933 .808 .512 .883
D8 .600 .709 .375 .719 .537 .695 .452 .803 .700 .814 .603 .824 .886 .877 .650 .941
D9 .700 .798 .407 .805 .669 .796 .532 .884 .900 .883 .421 .883 .931 .920 .585 .976
D10 .667 .626 .037 .628 .436 .612 .118 .754 1.000 .839 .075 .852 .935 .835 .128 .876
D11 .000 .000 NA .500 .153 .248 .287 .691 .333 .550 .156 .620 .894 .842 .188 .939
D12 .800 .802 .252 .802 .680 .801 .471 .891 1.000 .964 .556 .965 .992 .943 .451 .982
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Table 3. Ablation Study – EE, ML, and MR stand for EasyEnsemble [20], metric learning, and

multi-ratio ensemble, respectively. MLEnsemble is extension of EE with ML, MUEnsemble [17]
is extension of EE with MR, and MMEnsemble is extension of EE with ML and MR. For this

evaluation, MMEnsemble used Gaussian-based weighting (Equation 1) with the same parameters

as MUEnsemble for fair comparison with MUEnsemble. MMEnsemble achieved best performance
on all metrics.

EasyEnsemble MLEnsemble MUEnsemble MMEnsemble
(EE) (EE + ML) (EE + MR) (EE + ML + MR)

data Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC

D1 .705 .667 .441 .738 .751 .695 .475 .754 .812 .698 .484 .783 .820 .699 .483 .783
D2 .775 .706 .475 .805 .854 .742 .518 .831 .821 .718 .490 .826 .891 .731 .509 .862
D3 .730 .705 .444 .805 .790 .720 .461 .817 .761 .700 .439 .820 .864 .761 .506 .860
D4 .833 .778 .500 .848 .875 .804 .533 .871 .880 .788 .509 .860 .873 .816 .548 .885
D5 .799 .749 .540 .816 .821 .760 .554 .821 .828 .753 .546 .828 .844 .781 .581 .837
D6 .920 .873 .750 .925 .921 .844 .707 .907 .946 .883 .764 .934 .971 .873 .747 .921
D7 .771 .732 .427 .812 .787 .746 .444 .830 .792 .743 .438 .818 .860 .749 .444 .859
D8 .752 .751 .436 .830 .835 .822 .537 .913 .769 .757 .440 .840 .911 .835 .531 .959
D9 .820 .844 .418 .928 .893 .874 .438 .951 .850 .857 .427 .935 .885 .890 .508 .973
D10 .804 .735 .090 .807 .835 .762 .101 .828 .911 .770 .096 .834 .999 .828 .112 .887
D11 .587 .633 .152 .752 .735 .697 .144 .797 .785 .753 .178 .841 .765 .724 .160 .795
D12 .835 .823 .235 .911 .882 .875 .330 .951 .870 .840 .248 .931 .987 .923 .363 .985
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Fig. 3. Effect of k in Asset-based Weighting – As k increases, recall scores decrease, and the
Gmean, F2, and AUC scores increase.

4.2.2. Impact of the Combination

Table 3 shows a comparison of MMEnsemble and its basic approaches. The comparisons

of EasyEnsemble to MLEnsemble and MUEnsemble show that the classification performance

could be slightly increased by adding either the metric learning or the multi-ratio ensemble.

The architectural difference between MUEnsemble and MMEnsemble is whether metric learn-

ing is involved; therefore, to observe the performance improvement caused by the difference,

MMEnsemble was incorporated with the Gaussian weighting (Equation1). On the basis of

this comparison, MMEnsemble showed its superiority to MUEnsemble, that is, the metric

learning successfully improved the data space in the sets of data for each sampling ratio. In

addition, as it can be seen by comparing the columns of MMEnsemble in Table 2 and Ta-

ble 3, MMEnsemble with the asset-based weighting was superior to that with the Gaussian

weighting; therefore, MMEnsemble clearly outperformed MUEnsemble.

4.2.3. Effect of the Asset-based Weighting

Figure 3 shows the effect of the hyper-parameter k on the asset-based weighting. A

basic finding is that the recall scores dropped as k increased. This is because the higher

the k, the more weights are given to the base classifiers that can correctly classify instances

that are incorrectly classified by the other base classifiers. This leads to a higher TNR and

precision; therefore, as k increases, the Gmean and F2 scores increase, and similarly, AUC

scores gradually increase.

Table 4 shows a comparison of the asset-based weighting with uniform weighting. Uniform
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Table 4. Comparison between Uniform and Asset-based Weighting

Uniform Gauss Asset
data Rec Gm F2 AUC Rec Gm F2 AUC Rec Gm F2 AUC

D1 .893 .637 .456 .781 .820 .699 .483 .783 .863 .756 .546 .819
D2 .950 .711 .502 .818 .891 .731 .509 .862 .952 .750 .534 .868
D3 .813 .692 .435 .815 .864 .761 .506 .860 .793 .772 .528 .866
D4 .954 .788 .505 .891 .873 .816 .548 .885 .944 .819 .548 .895
D5 .923 .748 .550 .840 .844 .781 .581 .837 .867 .794 .598 .854
D6 .972 .846 .710 .925 .971 .873 .747 .921 .963 .873 .748 .934
D7 .915 .742 .432 .882 .860 .749 .444 .859 .933 .808 .512 .883
D8 .900 .817 .509 .931 .911 .835 .531 .959 .886 .877 .650 .941
D9 .910 .872 .413 .954 .885 .890 .508 .973 .931 .920 .585 .976
D10 .924 .758 .091 .837 .999 .828 .112 .887 .935 .835 .128 .876
D11 .633 .666 .152 .810 .765 .724 .160 .795 .894 .842 .188 .939
D12 .873 .858 .303 .953 .987 .923 .363 .985 .992 .943 .451 .982

weighting gave equal weights for all base classifiers. MMEnsemble with uniform weighting

tended to achieve high recall scores, but low scores for the other metrics. This indicates that

taking the average performance among the base classifiers trained using datasets of different

sampling ratios increases the number of instances classified to the minority class.

Although the details are omitted due to space limitations, it is noteworthy that MLEnsem-

ble with the asset-based weighting showed a similar classification performance to that with the

uniform weighting. This is because the base classifiers in MLEnsemble are close in terms of

classification tendency, that is, correctly classified instances are almost common among these

classifiers. Thus, the weights on these classifiers calculated by Equation 2 become similar val-

ues. This fact indicates that the asset-based weighting is effective for ensemble classifiers of

which the classification tendencies of the base classifiers differ from each other. MMEnsemble

is this kind of ensemble classifier, that is, base classifiers are trained for different sampling

ratios; thus, the tendencies of these base classifiers differ from each other.

4.3. Lessons Learned

Q1: Does MMEnsemble outperform the state-of-the-art imbalanced classification

methods of metric learning, oversampling and undersampling? — In terms of recall

and AUC, MMEnsemble achieved the state-of-the-art, while MMEnsemble was comparable

with DDAE in Gmean and F2. This indicates that MMEnsemble can achieve a higher recall,

but its performance in TNR and precision is limited. Though many real-world applications

expect a higher recall, a high TNR and precision with high recall is ideal; therefore, improving

MMEnsemble for these metrics without sacrificing high recall is a promising next direction.

Q2: Is the combination of metric learning and multi-ratio ensemble effective? —

Yes, the combination contributes to improving the classification performance for all metrics.

The comparison between MMEnsemble and MLEnsemble revealed that the multi-ratio ensem-

ble improved the performance, and that between MMEnsemble and MUEnsemble revealed

that the metric learning improved the performance.

Q3: Does the asset-based weighting help improve the classification performance?

and what is the effect of choice of its hyper-parameter k (Equation 2)? —
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Asset-based weighting improved classification performance compared with the two weight-

ing schemes (uniform and Gaussian) for all metrics; however, the hyper-parameter k must be

carefully determined because it is sensitive to recall. As k increases, recall decreases, while

the Gmean and F2 increase. This indicates that a higher k improves classifiers in terms of the

TNR and precision. Thus, k can be tuned in terms of users’ preferences on recall or precision.

5. Conclusion

In this paper, a novel undersampling-based ensemble framework, MMEnsemble was pro-

posed. MMEnsemble integrates three techniques, metric learning, multi-ratio ensemble, and

asset-based weighting to overcome the insufficient data space issue in the previous undersampling-

based ensemble approaches. An experimental evaluation revealed the superiority of MMEnsem-

ble to the state-of-the-art methods, especially for the recall and AUC metrics. The major

limitation of MMEnsemble (also in the other methods) is that it can achieve higher recall

scores but sacrifices precision.
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