
Journal of Data Intelligence, Vol. 2, No. 3 (2021) 301–325

© Rinton Press

A PENALTY-AWARE CLOUD MONITORING SYSTEM

BASED ON BLOCKCHAINS

CHRISTIAN DIENBAUER

Faculty of Computer Science, University of Vienna
Waehringerstrasse 29, Vienna, Austria

a1026759@univie.ac.at

BENEDIKT PITTL

Faculty of Computer Science, University of Vienna

Waehringerstrasse 29, Vienna, Austria
benedikt.pittl@univie.ac.at

ERICH SCHIKUTA

Faculty of Computer Science, University of Vienna

Waehringerstrasse 29, Vienna, Austria
erich.schikuta@univie.ac.at

Today, traded cloud services are described by service level agreements that specify the
obligations of providers such as availability or reliability. Violations of service level

agreements lead to penalty payments. The recent development of prominent cloud plat-
forms such as the re-design of Amazon’s spot marketspace underpins a trend towards

dynamic cloud markets where consumers migrate their services continuously to different

marketspaces and providers to reach a cost-optimum. This leads to a heterogeneous
IT infrastructure and consequently aggravates the monitoring of the delivered service

quality. Hence, there is a need for a transparent penalty management system, which

ensures that consumers automatically get penalty payments from providers in case of
service violations.

In the paper at hand, we present a cloud monitoring system that is able to execute

penalty payments autonomously. In this regard, we apply smart contracts hosted on
blockchains, which continuously monitor cloud services and trigger penalty payments to

consumers in case of service violations. For justification and evaluation we implement

our approach by the IBM Hyperledger Fabric framework and create a use case with Ama-
zon’s cloud services as well as Azures cloud services to illustrate the universal design of

the presented mechanism.

Keywords: Cloud Comuting, Smart Contract, Service Monitoring, SLA Management

1. Introduction

Cloud providers such as Amazon and Azure sell their datacenter resources in form of services.

For the description of services, so-called Service Level Agreements (SLAs) are used [1]. They

are specifications that define, inter alia, details about the offered service such as availability

and reliability. Violations of SLAs can lead to penalty payments. Thus, consumers are

interested in monitoring the service performance. Cloud providers such as Amazons offer

monitoring platforms like Amazon Cloudwatch that provide APIs to query the performance

metrics of the service. Besides, several third-party cloud monitoring platforms are existing,

301

302 A Penalty-Aware Cloud Monitoring System based on Blockchains

such as dynatracea, datadogbor AppDynamicsc. The vision of a monitoring platform that also

manages penalty payments is still unrivaled [2]. For the establishment of such a platform in

industry not only machine-readable SLAs such as described in [2] are necessary, but also the

transparent management of penalty payments has to be ensured. Hence, in the last years,

neutral third parties were introduced that are responsible for confirming service violations and

transferring penalty payments to consumers [3, 4]. Even such neutral third party approaches

have structural weaknesses as Robert Sams summarizes with three sins [5]: sin of commission,

sin of deletion and sin of omission. Nowadays, the scientific community reverts to neutral

consensus finding approaches among untrusted participants which are technically realized by

blockchain technology. For example, the authors of [6] introduced an approach for managing

and modifying SLA terms with blockchains. However, penalty management for SLA violations

was neglected.

The paper at hand focuses on the development of a blockchain-based, penalty-aware cloud

monitoring platform. Thereby we apply so-called smart contracts, which are programs exe-

cuted on the blockchain. A first step towards such systems was introduced in [7], where a

pure provider-centric smart contract was introduced. In contrast to that, the approach intro-

duced in our paper treats a smart contract as a bilateral agreement between consumers and

providers. Therefore, consumers and providers have to register their SLAs of traded cloud

services in a smart contract, including corresponding commonly trusted cloud monitoring

authorities. The smart contract uses them to monitor the performance of the cloud services

and automatically transfers penalties to the consumer in case of SLA violations. This ensures

that consumers get penalties immediately for service violations, while providers can profit

from a clear and transparent monitoring approach. The technical feasibility of our approach

is demonstrated by a smart contract deployed on the Hyperledger Fabric Blockchaind that

uses arbitrary monitoring services for detecting SLA violations and consequently executing

penalty payments. Within this paper, we use cloud services as well as monitoring APIs both

from Amazon and from Azure.

The remainder of the paper is structured as follows: First, we focus on foundations and

related work. Then, we present the concept of the penalty-aware cloud monitoring platform,

which is followed by an introduction of our implementation using the IBM Hyperledger Fabric

Blockchain for Amazon EC2 and Azure. A discussion about the findings of the presented

concept and future work is given before we close the paper with a summary and conclusion.

2. Foundations and Related Work

This section is structured into two parts. The first part describes foundations of the blockchain

technology and the second part presents related cloud monitoring approaches.

With the rising popularity of the Bitcoin in mid-2017, the underlying blockchain technol-

ogy gained attraction. This technology is not limited to cryptocurrencies and so organizations

from various domains started to identify reliable business models enabled by the blockchain [8].

A typology of emerging blockchain applications with regards to the domains where they are

ahttps://www.dynatrace.com
bhttps://www.datadoghq.com/
chttps://www.appdynamics.com/
dhttps://www.ibm.com/blockchain/hyperledger

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 303

applied is presented in [9, 10]. Due to the decentralized nature with no need for intermediaries,

the blockchain technology can handle transactions in different markets and consequently re-

duces friction costs [11, 8]. The Economist article The Trust Machine considers the blockchain

technology as a solution for establishing trust and its antecedents, as confidence, integrity,

reliability, responsibility and predictability [8]. While sometimes blockchains are described as

trust-less [12], other authors [13] state that there is a shift of trust from current intermedi-

aries to the technical implementation of blockchain systems. Limitations of the blockchain

such as scalability, energy usage, and growing complexity are summarized in [14]. While

data once stored within a blockchain is immutable, it does not mean that this data is al-

ways valid. Therefore, current research investigates in incentive-based blockchains to provide

data quality [12]. When a blockchain needs to query data from the outside world, it uses

so-called oracles. However, the capabilities of oracles are sometimes limited: For example,

Ethereume prohibits that smart contracts can query external sources, and so the data needs

to be stored within a smart contract [15] first. The smart contract with the injected data

can then be used as oracle and queried by other smart contracts. Hyperledger Fabric, as a

contrary example, uses general-purpose programming languages and allows that data can be

retrieved from anywhere. Important hereby is that, no matter by whom this data is queried

and regardless of time, the results need to be the same to ensure a deterministic behavior of

the blockchain.

Today, most of the monitoring platforms are cloud provider-specific limiting the monitoring

of heterogeneous IT infrastructures, as found in smart city architectures and industry 4.0 [16].

This enables data-driven applications that require reliable communication models to operate

more efficiently [17]. Complex cloud service compositions are currently hard to monitor by

existing monitoring platforms. In [18] a generic framework to monitor the performance of

services deployed on different providers is presented. To collect data from the services, the

framework proposes a client-server approach, where agents are deployed together with the

service that should be monitored: Those agents can be accessed by a centralized monitoring

platform to retrieve data of monitored services. A similar approach in the context of edge

computing is presented in [16]. There, an architecture divided into management and worker

layer is presented. The management layer provides functionalities to measure the activities

of the edge nodes in the network to distribute workloads based on different algorithms.

An approach for monitoring data streams in distributed systems with the focus on com-

munication efficiency and data privacy can be found in [19]. The system collects information

about different components and sets the granularity based on a given threshold by a central-

ized monitoring unit. Such centralized monitoring systems suffer from a single point of failure.

Therefore, a distributed agent-based monitoring system to handle multi-tenant service-based

systems is used [20]. A challenge of service monitoring is the system overhead of monitoring

tools that the collection of data can be done in a resource-effective manner [21]. The authors

of [7] introduce a concept of a blockchain based cloud monitoring system without a concrete

implementation. Thereby, the provider creates a smart contract that manages a list of con-

sumers. In case of a service violation service coins are transferred to consumers. Motivated

by the vision of billing consumers with smart contracts, the role of the consumer is neglected:

it neither has to acknowledge the smart contract nor does it acknowledge the used monitoring

ehttps://ethereum.org/

304 A Penalty-Aware Cloud Monitoring System based on Blockchains

services.

To foster the quality of services and the reliability of business processes that are based

on these, Service Level Agreements (SLAs) between a service provider and consumer are

defined [22]. As SLAs are legally binding contracts, they have to be audited by an instance that

is trusted by all participants. While conventional SLA trust models are centrally configured,

deployed and maintained, new approaches to define SLAs using smart contracts can be found

in [23, 24, 25, 26, 22, 27]. A conceptual blockchain-based framework for SLA management

is presented in [23]. It gives a general overview of this topic and addresses the challenge of

trust between all participants arguing that no single party should have control over the SLA

lifecycle. In traditional SLA approaches service consumers need to detect abnormalities and

check SLA violations, which leads to an extensive manual process including personnel and

capital resources [23, 25]. An approach for automated compensation of SLAs based on smart

contracts can be found in [24]. It compares its approach to existing solutions with regards to

human-computer interaction.

A formal description of a SLA lifecycle based on a smart contract is presented in [26] that

includes 5 steps: 1. Discovery of service and Negotiation of SLAs, 2. Deployment of the SLA

using smart contracts, 3. Monitoring of the service, 4. Billing and Penalty Enforcement, and

5. Termination of the smart contract. A system architecture in the context of fog computing

can be found in [22] that provides IoT client devices with the means to explore the best-

suited fog nodes via smart contracts by considering the reputation and credibility based on

SLA requirements.

Current approaches try to address today’s requirements of heterogeneous and decentralized

infrastructures by agent-based systems with either a centralized unit or a wholly distributed

approach. They identify the challenges of data privacy and communication efficiency. These

approaches are usually isolated systems as the data is subject to a single entity with lack

of transparency. Thus, for organizations it is hard to get reliable information about the

current and past state of their IT infrastructure [28]. Consequently, consumers are forced to

implement systems to gather information This results in additional costs and the burden of

proofing the lack of quality [23, 25].

While approaches exist to define Service Level Agreements using smart contracts without

the need to rely on a single party and automate the way to identify SLA violations, they are

either conceptual or lack the implementation of a penalty mechanism. Approaches mentioned

in [23, 24] use Ethereum as the underlying blockchain technology but miss the part on how to

inject service metrics into smart contracts to trigger events while preserving a deterministic

behavior of the blockchain. Therefore, we focused on the implementation of a monitoring

system for a service provider where SLA can be defined. Compared to existing approaches

we implemented a mechanism to define SLAs and trigger penalties in case of their violation.

Thus, for our research endeavor we pursue the following requirements:

1. It is mandatory that cloud services from multiple service provider can be monitored.

2. The monitoring tool needs to be distributed with no single point of failure.

3. Data within the system will be treated confidentially.

4. There is no need to trust in a single participant and transparency of the system.

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 305

5. Implementation uses effective communication models for scalability.

Fig. 1. Traditional cloud monitoring scenario

3. Cloud Monitoring with Smart Contract

A traditional cloud monitoring scenario is presented in Figure 1. First, the consumer purchases

a service from a provider (1) then both, consumer and provider use services to monitor the

performance of traded service (2). As soon as the consumer observes a service violation, it

claims a penalty payment from the provider (3). Finally, the provider transfers the penalty

payments to the consumers’ bank (4). The traditional monitoring scenario comes with two

drawbacks: First, the identification of a service violation can lead to contradictory results

as both, the consumer and the provider could use separate monitoring services. Second, the

scenario requires a trusted third party such as the bank which is responsible for transferring

penalty payments.

To tackle these issue,s the paper introduces a cloud monitoring system based on blockchains.

It uses smart contracts that are responsible for processing data from monitoring services and

executing penalty payments in case of identified cloud service violations. The following two

components are essential for such a smart contract:

• Monitoring Service.

A smart contract cannot monitor the cloud service directly. Therefore, it has to make use

of a monitoring service that returns performance metrics. Such services are offered by

cloud providers such as Amazonf, but also by independent monitoring service providers

such as datadoghqg. Both, the consumer and the provider have to agree on the selected

monitoring service. Even multiple monitoring services could be used in parallel, whereby

the smart contract has to decide which value is used in the case of contradictory results.

In the rest of the paper, the monitoring services are explicitly referred to as monitoring

services to distinguish them from the traded cloud service, which is termed service.

fhttps://aws.amazon.com/de/cloudwatch/
ghttps://www.datadoghq.com

306 A Penalty-Aware Cloud Monitoring System based on Blockchains

• Wallet.

The smart contract is a neutral entity that is trusted by both, consumer and provider.

To guarantee transparent and fast penalty payments, the smart contract needs a wallet.

Instead of directly transferring the service fee to the provider, the consumer has to pay

it by transferring tokensh to the smart contract. Those tokens are stored in the wallet

of the smart contract. In the case of service violations, tokens are transferred back to

the consumer. The remaining tokens are transferred to the provider after the contract

period expired.

Fig. 2. Blockchain-based cloud monitoring scenario

Figure 2 introduces an exemplary scenario in which a cloud provider hosts the service

used by the consumer. The numbers in the following enumeration refer to the numbers in the

figure.

1. A consumer decided to use a cloud service from a provider for a certain period of time.

For the autonomous penalty management, the consumer and the provider create a smart

contract. The provider adds endpoints of the used monitoring services to it. They are

used by the smart contract for monitoring the service performance. The consumer

agrees to use the service by transferring the service fee in form of tokens to the smart

contract. They are stored in the smart contract’s wallet.

2. The consumer uses the service. The service is monitored by the monitoring services

defined in the smart contract.

3. Service violations detected by the monitoring service are accessible for the smart con-

tract. If multiple monitoring services are used, the smart contract has to resolve con-

tradictory results to determine if a service violation occurred. This conflict resolution

is part of the smart contract, so both the consumer and the provider are aware of it.

hTokens can be money but also other trade-able entities.

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 307

4. If the smart contract detects a service violation, it automatically transfers penalty pay-

ments from its wallet to the consumer. After the contract period between consumers

and providers expired, the remaining tokens in the wallet of the smart contract are

transferred to the provider. If no service violations occur, all tokens representing the

service fee are transferred to the provider.

The introduced approach has several benefits over approaches where non-blockchain based

software solutions are employed for penalty management. (i) First of all, smart contracts

are deployed and executed on the blockchain and consequently on a neutral platform while

typical software solutions have to be hosted on a server. There, the availability, as well

as the execution, are not guaranteed. (ii) Further, smart contracts are participants of the

blockchains, which means that they can send and receive tokens such as money. For the

realization of non-blockchain based software, a trusted third party such as a bank would be

necessary. (iii) Trusted third parties charge fees and require time for executing payments.

On the blockchain, these fees for trusted third parties are not relevant. The consumer gets

penalty payments automatically and immediately on detected service violations. (iv) Smart

contracts are immutable, which means that the code cannot be modified after it is deployed

and so the approach is appropriate for untrusted consumers and providers.

The consumers have to transfer the service fee upfront to the smart contract. This implies

that the consumer has to pre-pay the complete service fee while the provider gets the remaining

service fee at the end of the contract period. Especially for high service fees or long contract

periods, this might cause financial embarrassment. In such cases, the consumer and the

provider could agree to transfer only parts of the payments to the smart contract.

Fig. 3. Scenario of the cloud monitoring system

3.1. Forming an Agreement

We assume that the deployment of the Smart Contract takes place during the subscription

process for a service. Customers lookup the desired service via the product catalog of a

308 A Penalty-Aware Cloud Monitoring System based on Blockchains

service provider and choose available subscription options. In our example of subscribing

to a virtual machine, customers can select the number of CPUs, the available RAM, or the

available network bandwidth as well as metrics for the availability. The service properties and

selected options are then used to shape the characteristics of the smart contract to enforce

SLA violations. Important hereby is that metrics stated in an SLA, need to be requestable

by a smart contract using the monitoring tools of the service provider as an oracle.

Fig. 4. Defining SLAs in a Smart Contract

After the customer accepted the Service Level Agreements, a wallet holding the crypto-

graphic key-pair will be generated for the customer. The smart contract with the defined

SLAs and information about the wallet addresses of the provider and the client will be de-

ployed to the blockchain network (see Figure 4). All blockchain-related steps are performed

automatically in the background without any interaction needed by the customer. At the

end of the subscription process, the customer gets a summary of the deployed smart contract

and information on how to access the wallet. Executing the contract verifies that the service

operates as stated in the SLAs. If it fails to deliver the characteristics as defined during the

subscription process, a penalty payment is transferred to the wallet of the customer. This

corresponds to step two, three, and four of the SLA lifecycle described in [26].

3.2. Retrieving Data Off-Chain

Sometimes blockchain-based systems need to obtain information outside the boundaries of

the blockchain network. This is necessary, if volatile information, e.g. data from the stock

market or metrics from a web service, are used as a basis for decisions. While data once

stored in the blockchain is immutable and therefore considered as trustworthy, using data

from the outer-world is a critical process to preserve trust and transparency. For example,

an approach could mitigate the strength of a blockchain, where the client application sends

information as a payload to a smart contract. No other participant of the network could be

able to verify if the information a user committed is correct.

This challenge is addressed by so-called oracles. An oracle is a data source queried by

smart contracts influencing their action. Depending on the underlying blockchain technology

an oracle can either be:

1. Smart contract itself, or

2. Trusted third party service

Important for oracles is their deterministic behavior. Thus, regardless of time, the partic-

ipants of the network and who is querying the smart contract, the oracle will always deliver

the same result.

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 309

In the case of Ethereum, an oracle is a smart contract, as Solidity, the language used to

implement smart contracts, has no concept to query external services. So off-chain data needs

to put into a smart contract first, which can afterward be queried by other smart contracts.

The correctness of the data put into the smart contract makes it reproduce- and traceable.

The smart contract that acts as oracle can implement some logic, that the input of multiple

parties will be aggregated. For example, if an escrow service is implemented, an oracle will

consider the input of the buyer, the seller, and a trusted third party. If the seller and buyer

do not agree, the input of a trusted third party will be required to either send the funds to

the seller or give them back to the buyer.

Other blockchain technologies, e.g. Hyperledger, use general-purpose programming lan-

guages like JavaScript, Python, or Go to request services. In this case, an oracle can be a

trusted third party service that is queried in runtime. The logic is implemented in a smart

contract on which the participants of a network previously agreed. Thereby, it is important to

preserve the deterministic behavior of the blockchain again. In figure 5 the concept is shown,

where multiple organizations execute the same smart contract to verify that the data stored

in the blockchain is indeed the data from the trusted third party.

Fig. 5. Participants validate data

310 A Penalty-Aware Cloud Monitoring System based on Blockchains

4. Implementation

This section introduces the implementation of the scenario shown in Figure 3. It distinguishes

between three stakeholders: two cloud service providers and one consumer. In the scenario,

one service provider is Amazon, the other service provider is Microsoft Azure. The consumer

uses a virtual machine, which represents the traded cloud service from both providers. For

each cloud service, a smart contract is instantiated. It has access to monitoring services hosted

by the corresponding provider respectively. Those monitoring services act as oracles for the

smart contract and allow for a deterministic behavior of the states in the blockchain.

Different blockchain technologies can be used for the implementation of the scenario.

For the selection of appropriate blockchain technology implementing the envisioned penalty-

aware cloud monitoring platform, we follow the blockchain-selection guideline [29]. As the

participants’ identities will be established before purchasing a service and data of services

is not publicly verified, we decided to use a private permissioned blockchain. A private

permissioned blockchain will guarantee that service data will only be accessible for the users

specified in an endorsement policy: the service provider and the consumer. Transaction

fee for processing data is not relevant for private blockchains. For the presented use-case

we used the Hyperledger Fabric frameworki , which supports the usage of a general-purpose

programming language for writing smart contracts, chaincode as they call them, to implement

any conceivable logic.

Figure 6 shows the technical architecture of the implemented scenario. It consists of the

smart contracts, monitoring service integration code and the core environment.

Peer Nodes, or short peers, are a fundamental part of a blockchain network and inherit a

cryptographic identity given by a certificate authority. With this identity, peers can be au-

thenticated in the network and, with regards to the endorsement policy, join certain channels.

A channel is a sub-net of the blockchain network and enables private communication between

peers. Members of the channel share a distributed ledger to store confidential transactions.

Smart contracts are deployed on channels and can be executed by its peers to interact with

the ledger. In our example, the service consumer shares a separate ledger with each provider.

Each participant deploys a graphical user interface and an API via a docker-compose file in

its environment. Communication with the participants of the network is only done via smart

contracts.

• Smart Contract.

For the implementation of the smart contracts we decided to use JavaScript, as Hyper-

ledger Fabric officially supports an SDK for Node.js. If a consumer consumes multiple

services from a provider, one smart contract is sufficient. It can handle multiple services

of the same type by linking the measurements to a single instance via a unique service

key. In the code snippet below an excerpt of a smart contract is shown for retrieving

measurements. The credentials are stored in the ledger and will be used for querying

the Amazon EC2 Oracle.

async updateService(ctx, serviceKey, startTime, endTime) {

const serviceAsBytes = await ctx.stub.getState(serviceKey);

i https://www.hyperledger.org/use/fabric

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 311

Fig. 6. Components of the cloud monitoring system

if (!serviceAsBytes || serviceAsBytes.length === 0) {

throw new Error(‘${serviceKey} does not exist‘);

}

let service = JSON.parse(serviceAsBytes.toString());

...

// query the oracle

service.data = await this.getMetricsDataEC2(

service.accessKeyId,

service.secretAccessKey,

service.region,

service.dimensionName,

service.dimensionValue,

startTime,

endTime

);

// calculate availability

if (service.cpuUtilization >= 0) {

service.timesAvailable += 1;

console.log("Connection good");

} else {

service.timesNotAvailable += 1;

console.log("No connection");

312 A Penalty-Aware Cloud Monitoring System based on Blockchains

}

...

// give credit if availability is to low

if (currentAvailability < service.promisedAvailability) {

service.credit += PENALTY_AMOUNT;

}

await ctx.stub.putState(

service.name,

Buffer.from(JSON.stringify(service)));

• Monitoring Service Integration.

Smart contracts require access to the monitoring services. In blockchain-environments,

accessing such external services is technically challenging: The Node.js SDK provided by

Amazon is used to retrieve metrics of the service from their monitoring tool Cloudwatch.

When a service is registered to the monitoring system, an unique service key with all the

necessary information to retrieve metrics from Cloudwatch is stored within the ledger.

This enables retrieving information from Cloudwatch and storing the information into

the ledger running purely inside a smart contract by just passing the service key for

identification.

An update function is used to retrieve the information about the service metrics of

the latest time interval. During registration of a service in our system, the availability

promised by the service provider is passed as a parameter and stored together with

the credentials and information of the service in the ledger. As the update function

queries the information about the service from Cloudwatch, we see from the response if

a service is available or not. Within the smart contract we mark this requested interval

as either available or unavailable and compare it to the total run-time of the service. If a

service’s downtime exceeds the promised availability of a service provider, the customer

will receive a certain amount of credit for this service. This credit can then be used as

an offset during settlement. As smart contracts are not self-executable programs, the

update function needs to be requested from outside of the network. To prevent a user

from requesting the service’s status for the same time interval twice, smart contracts

check at each request of the update function if the time of the last state in the ledger

will not overlap with the time interval in the request.

The same logic is used for the implementation of the smart contract for Azure VM

services. However, instead of using an SDK to retrieve information from the Azure

monitoring tool, we decided to use their provided REST API.

• Core Environment.

To provide users of the system a convenient way to register services and explore their

current and past state together with actual availability and possible credits, we cre-

ated a graphical user interface with React. As React is based on JavaScript and the

Hyplerdeger also provides a JavaScript SDK for application to interact with smart con-

tracts deployed in the network, our first attempt was to use this SDK within the React

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 313

application. Unfortunately this was not possible as the version we used of React is

based on the ES6 JavaScript specification, whereby the SDK for Fabric 1.4 follows the

specification of ES5. This mismatch of versions of the specifications lead to import

errors and crashes of the React application. Thus, we developed a REST API which

uses the SDK to interact with the blockchain network and provides endpoints that can

be requested by the React application. This API has as further advantage that it can

be used by a cron job to automatically query the latest states of a registered service.

A reference to the complete script to reproduce the created setup can be found on GitHubj.

The main components of the script are:

1. Generate x.509 certificates,

2. Configuration of the channels,

3. Creation of the peer nodes,

4. Joining the peers to the channels, and

5. Instantiating the smart contracts in the channels

The current implementation of the monitoring service is capable of retrieving information

about two service types of two different service providers. To prove the feasibility of integrating

service level agreements we started with the implementation of the promised availability that

is passed to the system during registration process. Though, as this logic is deployed via

smart contracts, the system can be extended in a modular manner to support additional

service types as well, as a variety of service metrics that are provided by the oracles. All this

information can then be used to define SLAs via the monitoring system. If an SLA agreement

is violated, the current approach will trigger a penalty by increasing the credit of variables

within the ledger that is shared between the service provider and the consumer. To change

the value of this variable, a predefined logic within the smart contract is used that considers

all the past states of service as well as the promised availability passed during registration of

the service in the system. As smart contracts are not self-executable programs, the process of

retrieving new states of a service needs to be started by the user. Currently, this is done via

a button in the user interface but can be automated using a cron job. For this purpose, we

created a RESt API as it was necessary to implement the JavaScript SDK to interact with

the smart contracts. As first attempt we used the SDK within the React application, which

led to importing errors, as the JavaScript standard used by React (ES6) did not match the

standard used by the SDK (ES5). The code listing shows the endpoint of the API that is

used by the frontend to query the smart contract to retrieve new states of service. The user

interface is deployed locally without any direct connection to the internet. All the information

that is shown is retrieved from the blockchain network by using smart contracts. The code

snippet shows how new services are registered to the system. Our scenario uses services from

Amazon and Microsoft and can choose between two registration forms. This form contains

information for authentication to the oracles as well as information about the SLA. If the

jhttps://github.com/dieni/blockchain-based-cloud-monitoring

314 A Penalty-Aware Cloud Monitoring System based on Blockchains

entered information is correct, the credentials will be stored in a smart contract. On the

bottom of the form, a list of all registered services of a provider can be seen. When clicking

on the services, the details page of the service 8 opens: Here a user can see information about

the retrieved measurements of the service. By clicking on the button, new measurements can

be retrieved. If the service is more often unreachable than promised, the customer will receive

a credit.

app.put(’/aws/services/:serviceKey’, async (req, res) => {

console.log(req.body)

let serviceKey = JSON.parse(req.params.serviceKey)

const gateway = new Gateway()

try {

console.log(’CONNECT TO NETWORK’)

await gateway.connect(connectionProfile, connectionOptions)

const network = await gateway.getNetwork(’channel-aws’)

const contract = network.getContract(’ec2contract’)

const endTime = new Date()

const startTime = new Date(endTime.getTime() - 30 * 60000)

await contract.submitTransaction(

’updateService’,

serviceKey,

startTime.toISOString(),

endTime.toISOString()

)

console.log(’SERVICE UPDATED’)

} finally {

// Disconnect from the gateway

console.log(’Disconnect from Fabric gateway.’)

gateway.disconnect()

}

})

In the appendix we documented the system setup as well as the available services that we

implemented.

5. Findings and Future Work

This paper is part of a research project aiming on using blockchain technology for monitoring

services of different service providers. Thereby, we aim at a decentralized architecture to

enable penalty payments if service level agreements are violated. This concept is realized by

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 315

Fig. 7. Registration page of a cloud service that should be monitored by the smart contract

deployed on the Hyperledger Fabric Network

Fig. 8. Service details page that show the current status of the monitored service - the same

information is retrieved by the smart contract

316 A Penalty-Aware Cloud Monitoring System based on Blockchains

the presented implementation, where for each service type a smart contract is deployed in a

self hosted Hyplerledger Fabric network and shared between service provider and consumer

via private channels. Even more, the design of the implemented approach will work for any

other provider as long as an API is available that returns the required service performance

metrics.

The following taxative list sums up the findings of the presented work and gives impetus

for future work:

• Blockchain as a Service

The network was created using the CLI tools provided by Hyperledger and was deployed

locally running the components within docker containers. Hyperledger provides the

containers via docker hub for all necessary components to run the network. Though,

the configuration of the network can be quite difficult as documentation about different

settings and operations is quite rare. A recommended approach for a future project

is to use Blockchain as a service. Amazon k as well as Microsoft l provide managed

blockchains services to create Hyperledger Fabric networks as well as Ethereum. They

claim that this can be done with minimal time for configuration. Another platform to

be considered for using Hyperledger Fabric as a service is from IBM m.

• Smart Contracts.

With the use of a general-purpose programming language, the development of smart

contracts is nothing out of the ordinary. Hyperledger Fabric supports a chaincode SDK

for JavaScript that enables a convenient interaction with the ledger using a so-called

transaction context. Other languages are supported too. Packages can be used without

any restrictions. One thing to keep in mind when developing smart contracts is, that

each operation needs to follow a deterministic behavior. This is necessary that nodes of

the network reach consensus and the states in the ledger are reproducible.

• Oracles.

For the deterministic behavior of the system, we used the monitoring tools of the service

provider as our oracles. Amazon as well as Microsoft provides a sophisticated API to

query current and past states of services based on different metrics. For AWS we used a

JavaScript SDK and for Azure a Rest API. Both methods work like expected and can be

used to query information in granularity of one minute. The execution of a request will

be done by a single node and the results distributed through the network. To prevent

the owner of a node making changes to the request, the oracle might sign the reply with

its private key so that other nodes can verify the validity of the data.

• Multiple service types.

We decided to deploy one smart contract between a service provider and consumer

for each service type. This enables a consumer to monitor multiple services from the

khttps://aws.amazon.com/marketplace/pp/B0797GK9YY
l https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft-azure-blockchain.azure-
blockchain-hyperledger-fabric-aks-based
mhttps://www.ibm.com/blockchain

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 317

same provider using a single smart contract. It has to be investigated how to enable

the monitoring of multiple services from different types between a service provider and

consumer. One approach could use one smart contract for each additional service type

that has to be monitored. However, This results in a very static design and a large

number of smart contracts when supporting several service providers each delivering a

variety of services. A generic approach of registering different service types is worthwhile

to be investigated, to limit the number of smart contracts and to have a more flexible

way of on-boarding new service providers with there services.

• Service Level Agreements.

For this project, we used a single metric to determine the availability of the service

and compared it to the promised availability. With each request to an oracle, the

state of the service was compared with all past events. As smart contracts are not

self-executable, we had to care that requests are not made twice for the same time

interval. We solved this by checking the last time interval stored in the ledger before

retrieving new measurements from the oracle. For more sophisticated SLA’s we will

need to consider more metrics and let the users define the appropriate levels for those.

The best case would be to combine this task with a generic approach to registering

services.

• Penalty Payments.

As already said, if there is a violation of the SLA’s, a predefined amount is credited to

the consumer. This is currently done via a variable stored in the ledger that can only

be modified based on the retrieved metrics from the oracles. While the credit is defined

when creating the invoice, we aim for an independent process of transferring funds

between the users. One approach is to define a penalty token that will be transferred

between the users, if SLA’s are violated. Therefore we need to replace the logic of

increasing the variable with the mechanism to trigger the transfer. The tokens need

to be transferred between wallets dedicated to the users to give them the possibility to

have them at one’s disposal later.

• Tokens.

Usually, in blockchain networks tokens Bitcoins are transferred instead of money. They

represent compensation of money and can be transferred and traced in a tamper-

resistant manner. Especially the ability of smart contracts to transfer tokens in the

program code enables the implementation of the introduced monitoring system. On

the contrary, if consumers and provider do not execute any other transactions in that

blockchain network, they have to exchange them for global currencies such as Dollars or

Euros. Especially for industrial use-cases this comes with currency risks as the exchange

rate is volatile. State-supported Blockchain networks could help to tackle that issue.

6. Summary and Conclusion

The trend towards dynamic cloud markets, where consumers purchase cloud services from

various providers in an ad-hoc manner, leads to heterogeneous IT-infrastructures. Consumers

318 A Penalty-Aware Cloud Monitoring System based on Blockchains

have to ensure that the service performance conforms to the published service specification

as violations might lead to penalty payments. With the increasing number of potentially

unknown service providers the penalty management becomes a relevant issue for consumers,

which raises the need of an autonomous penalty-aware cloud monitoring system that ensures

transparent penalty management in case of service violations.

In the presented paper, we applied blockchain technology for the realization of such a

monitoring system: Traded cloud service are registered in a smart contract, which continu-

ously monitors the performance of the traded cloud service. As soon as a service violation is

identified, the smart contract transfers penalty payments to the consumer. Consumers profit

from an autonomous transfer of penalty payments while providers profit from a transparent

and reasonable assessment of services. Due to the management of the penalty payments in

the smart contracts, correct payoffs are ensured for both, the provider and the consumer.

To prove the technical feasibility of the approach, a penalty-aware cloud monitoring system

was implemented using the IBM Hyperledger Fabric framework. The implemented scenario,

monitoring the availability of the virtual machines from Amazon and Azure, illustrates the

generic applicability of our introduced approach. For immediate adoption in industry a uni-

fication of service performance metrics is necessary as well as a predictable exchange rate for

tokens to global currencies.

References

[1] B. Pittl, W. Mach, and E. Schikuta, “A classification of autonomous bilateral cloud SLA

negotiation strategies,” in Proceedings of the 18th International Conference on Infor-

mation Integration and Web-based Applications and Services, iiWAS 2016, Singapore,

November 28-30, 2016, 2016, pp. 379–388.

[2] H. Nakashima and M. Aoyama, “An automation method of SLA contract of web apis

and its platform based on blockchain concept,” in IEEE International Conference on

Cognitive Computing, ICCC 2017, Honolulu, HI, USA, June 25-30, 2017, 2017, pp.

32–39. [Online]. Available: https://doi.org/10.1109/IEEE.ICCC.2017.12

[3] A. Maarouf, Y. Mifrah, A. Marzouk, and A. Haqiq, “An autonomic SLA monitoring

framework managed by trusted third party in the cloud computing,” IJCAC, vol. 8,

no. 2, pp. 66–95, 2018.

[4] Y. Zhang, X. Li, and Z. Han, “Third party auditing for service assurance in cloud comput-

ing,” in 2017 IEEE Global Communications Conference, GLOBECOM 2017, Singapore,

December 4-8, 2017, 2017, pp. 1–6.

[5] M. Mainelli, M. Smith et al., “Sharing ledgers for sharing economies: an exploration

of mutual distributed ledgers (aka blockchain technology),” The Journal of Financial

Perspectives, vol. 3, no. 3, pp. 38–69, 2015.

[6] R. B. Uriarte, R. D. Nicola, and K. Kritikos, “Towards distributed SLA

management with smart contracts and blockchain,” in 2018 IEEE International

Conference on Cloud Computing Technology and Science, CloudCom 2018, Nicosia,

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 319

Cyprus, December 10-13, 2018, 2018, pp. 266–271. [Online]. Available: https:

//doi.org/10.1109/CloudCom2018.2018.00059

[7] N. Neidhardt, C. Köhler, and M. Nüttgens, “Cloud service billing and service

level agreement monitoring based on blockchain,” in Proceedings of the 9th

International Workshop on Enterprise Modeling and Information Systems Architectures,

Rostock, Germany, May 24th - 25th, 2018, 2018, pp. 65–69. [Online]. Available:

http://ceur-ws.org/Vol-2097/paper11.pdf

[8] R. Beck, “Beyond bitcoin: The rise of blockchain world,” Computer, vol. 51, no. 2, pp.

54–58, 2018.

[9] C. Elsden, A. Manohar, J. Briggs, M. Harding, C. Speed, and J. Vines, “Making sense of

blockchain applications: A typology for HCI,” in Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada, April 21-

26, 2018, 2018, p. 458.

[10] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and oppor-

tunities: A survey,” International Journal of Web and Grid Services, vol. 14, no. 4, pp.

352–375, 2018.

[11] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman et al., “Blockchain technology:

Beyond bitcoin,” Applied Innovation, vol. 2, no. 6-10, p. 71, 2016.

[12] A. Auinger and R. Riedl, “Blockchain and trust: Refuting some widely-held misconcep-

tions,” in Proceedings of the International Conference on Information Systems - Bridging

the Internet of People, Data, and Things, ICIS 2018, San Francisco, CA, USA, December

13-16, 2018, 2018.

[13] O. Labazova, T. Dehling, and A. Sunyaev, “From hype to reality: A taxonomy of

blockchain applications,” in 52nd Hawaii International Conference on System Sciences,

HICSS 2019, Grand Wailea, Maui, Hawaii, USA, January 8-11, 2019, 2019, pp. 1–10.

[14] A. Welfare, Commercializing Blockchain: Strategic Applications in the Real World. Wi-

ley, 2019.

[15] M. Bartoletti and L. Pompianu, “An empirical analysis of smart contracts: platforms,

applications, and design patterns,” in International conference on financial cryptography

and data security. Springer, 2017, pp. 494–509.

[16] T. Bayer, L. Moedel, and C. Reich, “A fog-cloud computing infrastructure for condition

monitoring and distributing industry 4.0 services,” in Proceedings of the 9th Interna-

tional Conference on Cloud Computing and Services Science, CLOSER 2019, Heraklion,

Crete, Greece, May 2-4, 2019, V. M. Muñoz, D. Ferguson, M. Helfert, and C. Pahl, Eds.

SciTePress, 2019, pp. 233–240.

[17] X. Jiang, C. Fischione, and Z. Pang, “Poster: Low latency networking for industry 4.0,”

in Proceedings of the 2017 International Conference on Embedded Wireless Systems and

Networks, EWSN 2017, Uppsala, Sweden, February 20-22, 2017, 2017, pp. 212–213.

320 A Penalty-Aware Cloud Monitoring System based on Blockchains

[18] A. Noor, D. N. Jha, K. Mitra, P. P. Jayaraman, A. Souza, R. Ranjan, and S. Dustdar, “A

framework for monitoring microservice-oriented cloud applications in heterogeneous vir-

tualization environments,” in 12th IEEE International Conference on Cloud Computing,

CLOUD 2019, Milan, Italy, July 8-13, 2019, 2019, pp. 156–163.

[19] J. Sun, R. Zhang, J. Zhang, and Y. Zhang, “Pristream: Privacy-preserving distributed

stream monitoring of thresholded PERCENTILE statistics,” in 35th Annual IEEE In-

ternational Conference on Computer Communications, INFOCOM 2016, San Francisco,

CA, USA, April 10-14, 2016, 2016, pp. 1–9.

[20] D. Ye, Q. He, Y. Wang, and Y. Yang, “An agent-based decentralised service monitoring

approach in multi-tenant service-based systems,” in 2017 IEEE International Conference

on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017, 2017, pp. 204–211.

[21] Y. Wang, Q. He, D. Ye, and Y. Yang, “Formulating criticality-based cost-effective mon-

itoring strategies for multi-tenant service-based systems,” in 2017 IEEE International

Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-30, 2017, 2017,

pp. 325–332.

[22] M. Debe, K. Salah, M. H. U. Rehman, and D. Svetinovic, “Iot public fog nodes reputation

system: A decentralized solution using ethereum blockchain,” IEEE Access, vol. 7, pp.

178 082–178 093, 2019.

[23] A. Alzubaidi, E. Solaiman, P. Patel, and K. Mitra, “Blockchain-based sla management

in the context of iot,” IT Professional, vol. 21, no. 4, pp. 33–40, 2019.

[24] E. J. Scheid and B. Stiller, “Automatic sla compensation based on smart contracts,”

Technical Report No. IFI-2018.02, April, Tech. Rep., 2018.

[25] H. Nakashima and M. Aoyama, “An automation method of sla contract of web apis and

its platform based on blockchain concept,” in 2017 IEEE International Conference on

Cognitive Computing (ICCC). IEEE, 2017, pp. 32–39.

[26] R. B. Uriarte, R. De Nicola, and K. Kritikos, “Towards distributed sla management

with smart contracts and blockchain,” in 2018 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). IEEE, 2018, pp. 266–271.

[27] A. T. Wonjiga, S. Peisert, L. Rilling, and C. Morin, “Blockchain as a trusted component

in cloud sla verification,” in Proceedings of the 12th IEEE/ACM International Conference

on Utility and Cloud Computing Companion, 2019, pp. 93–100.

[28] G. Vossen, T. Haselmann, and T. Hoeren, “Cloud computing für unternehmen,” Technis-

che, wirtschaftliche, rechtliche und organisatorische Aspekte. dpunkt, Heidelberg, 2012.

[29] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018 Crypto Valley Conference

on Blockchain Technology (CVCBT). IEEE, 2018, pp. 45–54.

Appendix A Setup of the System

The implementation of the system can be found on GitHubn.

nhttps://github.com/dieni/blockchain-based-cloud-monitoring

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 321

The creation of the blockchain network is done with some command-line tools provided by

Hyperledger. All the commands to spin up the network including peer nodes for the users are

composed in sms.sh within the network folder. This script file takes one of the three options:

up, down, and generate.

1. Install prerequisites for Hyperledger Fabric as described in its documentation

2. Navigate into the network folder and execute the command ./sms.sh up

This will execute multiple operations:

• If they do not already exist, this will generate certificates for each of the organiza-

tions and stores them into the crypto-config folder

• Based on the endorsement policy stated in configtx.yaml the artifacts for the chan-

nel creation will be generated and stored in the folder channel-artifacts. Note:

When generating the artifacts, the folder needs to exist already.

• Starts docker service containers described in the docker-compose.yaml file which

are an ordering service, peer nodes for each organization and another peer node

which acts as a helper for further configuration of the network

• Within the cli peer the utils.sh the script will be executed which makes use of the

crypto files of the different organizations and performs following operations:

– Based on the previously generated channel artifacts two channels will be cre-

ated and registered to the ordering service: channel-aws and channel-azure

– The AWS peer together with the peer of University are joined to the channel-

aws

– Analog to the previous step the Azure peer together with the peer of the

University are joined to the channel-azure

– The smart contract for the EC2 services gets installed on the Univie and AWS

peer and instantiated on the channel-aws

– The smart contract for the Azure VMs gets installed on the Univie and Azure

peer and instantiated on the channel-azure

• When you see in the terminal following output, the creation of the network was

successful:

’========= SMS Up! ===========’

3. Generate wallets for each of the organizations

This is necessary for the SDK to interact with the ledger

(a) Go into the crypto-config folder and copy the name of the .pem file of the organi-

zation you would like to interact with the network.

/network/crypto-config/peerOrganization/<organization>/users/<user>

/msp/keystore/<...9a08817cd53f6_sk>

Beware that the different users of an organization have different permissions. Those

were stated in the endorsement policy on the creation process of the channel arti-

facts. For the reading and writing User1.

322 A Penalty-Aware Cloud Monitoring System based on Blockchains

(b) Within the folder of the organization open the file:

organization/{organization}/application/addToWallet.js

• Past the name of the .pem file and make sure that the path to the .pem file

matches the actual location.

• Define the path to the MSP certificate of the identity form the crypto-config

• Define a label for the identity and save the file

(c) Execute the addToWallet.js

This will create a wallet within the folder of the organization which can be used

for an application to authenticate to the peer and manage transactions

(d) Repeat this procedure for all three organizations

4. Execute the docker-compose file with the organization folder

This will create the container for the User Interface and the API of each organization.

The user interfaces for the organizations can be found under:

• localhost:4000 (univie)

• localhost:4010 (azure)

• localhost:4020 (aws)

API of the System

The implementation is located in /organizations/org/server and uses the Nodejs library

’express’ for building a REST API. Depending on the organization this interface consists

either of the routes for the AWS service, for the Azure service, or both in the case of the

University of Vienna. The APIs can be accessed under the following addresses:

• localhost:4001 (University of Vienna)

• localhost:4011 (Azure)

• localhost:4021 (Amazon)

The endpoints for EC2 instances of the API are as following:

/aws/services
Method GET
Returns the keys of all EC2 instances registered in the ledger of the AWS
channel. It uses the function getallKeys of the AWS EC2 contract. This
operation does not change the state of the ledger.
Request -
Response HEADER:

Content-Type: application/json

BODY:
List of service keys

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 323

/aws/services
Method POST
Register a EC2 instance in the ledger of the AWS channel. Uses the
function createService of the AWS EC2 contract. This operation changes
the state of the ledger.
Request HEADER:

Content-Type: application/json

BODY:
{

name: < string >,
dimensionName: < string >,
dimensionValue: < string >,
region: < string >,
accessKeyId: < string >,
secretAccessKey: < string >,
promisedAvailability: < string >

{
Response -

/aws/services/< serviceKey >
Method GET
By passing the service key in the url the ledger will be queried for all
measurements of a service. It uses the function getStateHistory of the
AWS EC2 contract. This operation does not change the state of the
ledger.
Request -
Response HEADER:

Content-Type: application/json

BODY:
List of measurements

/aws/services/< serviceKey >
Method PUT
By passing the service key in the url information about a service will
be retrieved from the service provider and written to the ledger. It uses
the function updateService of the AWS EC2 contract. This operation
changes the state of the ledger.
Request -
Response -

The endpoints for Azure VM of the API are as following:

324 A Penalty-Aware Cloud Monitoring System based on Blockchains

/azure/services
Method GET
Returns the keys of all Azure VM instances registered in the ledger of
the Azure channel. It uses the function getallKeys of the Azure VM
contract. This operation does not change the state of the ledger.
Request -
Response HEADER:

Content-Type: application/json

BODY:
List of service keys

/azure/services
Method POST
Register a Azure VM instance in the ledger of the Azure channel. Uses
the function createService of the Azure VM contract. This operation
changes the state of the ledger.
Request HEADER:

Content-Type: application/json

BODY:
{

name: < string >,
tenant: < string >,
clientId: < string >,
clientSecret: < string >,
subscriptionId: < string >,
resourceGroup: < string >,
computerName: < string >,
promisedAvailability: < string >

{
Response -

/azure/services/< serviceKey >
Method GET
By passing the service key in the url the ledger will be queried for all
measurements of a service. It uses the function getStateHistory of the
Azure VM contract. This operation does not change the state of the
ledger.
Request -
Response HEADER:

Content-Type: application/json

BODY:
List of measurements

Christian Dienbauer, Benedikt Pittl, and Erich Schikuta 325

/azure/services/< serviceKey >
Method PUT
By passing the service key in the url information about a service will
be retrieved from the service provider and written to the ledger. It uses
the function updateService of the Azure VM contract. This operation
changes the state of the ledger.
Request -
Response -

