
Journal of Data Intelligence, Vol. 2, No. 2 (2021) 166–189
© Rinton Press

AN APPROACH TO DEVELOP MOBILE PROXEMIC APPLICATIONS

PAULO PEREZ PHILIPPE ROOSE

University of Pau, LIUPPA – T2I64600, Anglet, France
{paulo.perez-daza,philippe.roose}@univ-pau.fr

YUDITH CARDINALE

Universidad Simón Boĺıvar, Caracas, Venezuela
Universidad Católica San Pablo, Arequipa Perú

ycardinale@usb.ve

MARK DALMAU

E2S / University of Pau, LIUPPA – T2I64600, Anglet, France
dalmau@iutbayonne.univ-pau.fr

DOMINIQUE MASSON

Technopole Izarbel Dev1-0, Bidart, France
d.masson@dev1-0.com

NADINE COUTURE

University of Bordeaux, ESTIA Institute of Technology, Bidart, France

n.couture@estia.fr

Traditional Human-Computer Interaction (HCI) is being overpowered by the widespread

diffusion of smart and mobile devices. Currently, smart environments involve daily day

activities covered by a huge variety of applications, which demand new HCI approaches.
In this context, proxemic interaction, derived from the proxemic theory, becomes an

influential approach to implement new kind of Mobile Human-Computer Interaction

(MobileHCI) in smart environments. It is based on five proxemic dimensions: Distance,
Identity, Location, Movement, and Orientation (DILMO). However, there is a lack of

general and flexible tools and utilities focused on supporting the development of mobile
proxemic applications. To respond to this need, we have previously proposed a framework

for the design and implementation of proxemic applications for smart environments,

whose devices interactions are defined in terms of DILMO dimensions. In this work, we
extend this framework by integrating a Domain Specif Language (DSL) to support the

designing phase. The framework also provides an API, that allows developers to simplify

the process of proxemic information sensing (i.e., detection of DILMO dimensions) with
mobile phones and wearable sensors. We perform an exhaustive revision of relevant and

recent studies and describe in detail all components of our framework.

Keywords: Domain specific language, proxemic interaction, proxemic zone, dilmo, mobile

devices, graphical modelling

1. Introduction

Nowadays, the use of mobile technologies in our daily life is very common. People can interact

with different contexts through electronic devices (e.g., personal mobile phones, tablets, wear-

able technologies, and smart-watches) to accomplish their daily tasks. Many of these tasks

require a specific Human-Computer Interaction (HCI). Researchers are therefore seeking to

develop new useful and enjoyable interfaces. Proxemic interaction arises as a novel concept

166



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 167

to improve HCI[1, 2]. Proxemic interaction describes how people use interpersonal distances

to interact with digital devices[3, 4, 5], using five physical proxemic dimensions: Distance,

Identity, Location, Movement, and Orientation (DILMO).

Proxemic interaction is derived from the social proxemic theory proposed in 1966 by the

anthropologist Edward T. Hall[6]. Hall describes how individuals perceive their personal space

relative to the distance between themselves and others. According to Hall’s proxemic theory,

interaction zones have been classified into four zones: (i) intimate zone, comprised between 0

and 50 cm of distance; (ii) personal zone, defined by a distance of 50 cm to 1 m; (iii) social

zone, when the distance is between 1 m and 4 m; and (iv) public zone, for distances of more

than 4 m. He underlines the role of proxemic relationships as a method of communication

based on the distance among people. This theory has been applied to define relation and

communication among people and digital devices[4].

In this context, solutions such as Toolkit[7] and ProximiThings [8](for proxemic interac-

tion in the Internet of Things) have been proposed to support the development of proxemic

interaction. However, existing tools and frameworks present limitations for implementing

proxemic interaction in mobile technologies because they require special hardware devices

connected to the system (e.g., a Kinect Depth sensor, which must be installed on a PC for

sensing proxemic information).

Nowadays, the vast majority of smartphones and mobile devices are equipped with pow-

erful hardware capabilities. These capabilities allow devices to process and obtain proxemic

information; for example by using sensors and cameras embedded in a smartphone. In turn,

it is possible to implement proxemic based mobile applications that facilitate users’ contact

and interaction with other people and devices in indoor and outdoor spaces, which we call

smart proxemic environments. This fact, combined with the current trend of using proxemic

interaction to improve HCI, has raised the need for frameworks and tools to support the

development of such mobile proxemic applications.

In a previous work, we have proposed a framework[9] for the design and implementation of

mobile proxemic applications, comprised by entities, whose interactions are defined according

to DILMO dimensions. Our framework offers a process to define and manage all components

in a proxemic environment: the interaction objects, the DILMO dimensions that govern the

HCI, and the proxemic mobile applications. In this work, we extend this framework by

integrating a graphical Domain Specific Language (DSL) to support the designing phase [10].

An API is integrated into the framework, that allows developers to simplify the process of

proxemic information sensing (i.e., measure of DILMO dimensions) by mobile phones and

wearable sensors. In this work, we perform an exhaustive revision of relevant and recent

studies, to show how they cover the design and implementation phases of the development of

proxemic applications. We describe in detail all components of our framework. We developed

two mobile apps as proof-of-concept to demonstrate the suitability of our framework. These

two mobile apps are based on HCI defined as a function of different DILMO combinations

that specify different context-based infrastructures for proxemic environments based on mobile

devices.

The remainder of this work is organized as follows. In Section , we outline related work on

proxemic interaction. Section presents our definitions for designing proxemic environments

based on a graphical DSL, followed by a description of the framework in Section . The



168 An Approach to Develop Mobile Proxemic Applications

details of proof-of-concept and applications are presented in Section . Finally, we conclude

and outline our future work in Section .

2. Related work

Proxemic concepts are based on physical, social, and cultural factors that influence and reg-

ulate interpersonal interactions [7]. In order to know how the factors should be applied

to proxemic interactions for ubiquitous computing applications, Greenberg et al. [4] identi-

fied five dimensions: Distance, Identity, Location, Movement, and Orientation (we call them

DILMO as an abbreviation), which are associated with people, digital devices, and non digital

things. In this section, we review prior works on proxemic interaction and how they have been

implemented. Afterward, we analyze the existing technical methods for the development of

proxemic applications and compare them with our framework.

2.1. Applications based on Proxemic Interactions

There exist a variety of works that implement interactive ubiquitous applications. The com-

mon aspect to all these applications is the use of all or a subset of proxemic dimensions

(i.e., DILMO). These dimensions allow applications to know absolute and relative positions

of people and objects in the physical space. In this section, we describe the concept of each

proxemic dimension and how they have been used by prior works.

Distance is a physical measure of separation between two entities, according to how they

interact[11]. Typically, short distances allow high interactions, while long distances allow

little to no interaction. For example, in [2, 7, 12, 13, 14, 15, 16], the distance is used as

a parameter to assign a proxemic zone that allows the users to interact with the display or

devices in different proximities. The interaction zones are also used for adapting visualizations

on displays based on the users’ distance relative to the screen, such as the studies presented

in [17, 18, 19].

Distance can be obtained by using different techniques based on a variety of sensors to

capture their values. Bluetooth Low Energy (BLE) technologies allow the device to estimate

the proximity among entities by Received Signal Strength Indicator (RSSI) and Broadcasting

Power value (TX power), as in [20, 21]. The work presented in [22] uses a smartphone with

BLE technology in order to obtain proximity between blind persons and fixed objects. The

work presented in [15], proposes the use of the body-tracking capabilities of Kinect Sensors to

obtain the distance. Authors demonstrate the suitability of their proposal in an application

that measures the distance between blind people and paintings, according to which it provides

different background music experiences. In [17, 23], computer vision is used for measuring

the distance from the device hosting the program to the user.

Identity is a term that mainly describes the individuality or role of a person or a particular

object in a space [3, 7]. SpiderEyes [13] is a collaborative proxemic system that helps designers

to create applications by tracking multiple people interacting in front of a display in run-time.

In this particular regard, it is indispensable to have the user identification. User’s interaction

is based on their identity and distances with the display. The system is able to detect when

users leave the field of view of the display and if they later rejoin the field of view at a different

distance. With SpiderEyes, authors demonstrate the effectivity of the identification system

with up to four users at the same time. This work uses a visual monitoring tool (called



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 169

Microsoft Kinect Depth Camera), that allows developers to classify which entities are being

tracked and how the details of information are stored in the application for creating identities.

FAMA (First Aid Mobile Application) [24] is a mobile app based on proxemic interactions

that offers rescuers to obtain emergency identification (identity) of an unconscious person,

as the rescuers are moving toward the injured person’s proxemic zones. FAMA uses Beacon

BLE technology for the identification of entities (injured people). Proxemic-Aware Controls

system [25] uses identity for controlling spatial interactions between a person’s handheld

device and all contiguous appliances to generate an effective appliance control interface. These

applications have demonstrated that identity can be used to know individuality of a person

or an object.

Location describes qualitative aspects of the space, where there is interaction among

fixed entities (e.g., room layout, doors) or semi-fixed entities (e.g., furniture positions) [14, 25].

Researchers have also considered the location for obtaining the user’s current positions. Multi-

Room Music System [26] is based on proxemic interactions that allow the user to hear the

same songs playlist, while he changes his location around the house through the speakers that

have been installed in the rooms. In the work presented in [15], location is used to detect

events related to hands’ tracking. For example, when a blind user explores a painting with his

hands, the application uses the 3D coordinate system of the Microsoft Kinect Camera [27],

to know the user’s hand position in a specific region of the painting. In [2, 7], entities are

associated with three-dimensional positions related to a fixed point that can be used for initial

setting of smart environments. In such a way, it is possible to obtain the relative position

among people and devices.

Movement is defined as changes of position and orientation of an entity over the time [3].

This is the case when a user walks in front of a screen or approaches it, and the content

of the screen is adjusted according to the user’s movements. This kind of motion can be

captured by motion technology [2, 28]. Velocity changes are calculated in order to respond

to the user’s behavior. The movement also allow gesture recognition through smartphones

or wearable technologies by employing motion sensors [8]. FAMA, a first aid mobile app,

identifies potential rescuers as they move towards the injured person’s proxemic zones [24].

Orientation provides the information related to the direction in which an entity is facing.

It can identify the front of an entity (e.g., person’s eyes, screen front). Previous work have

demonstrated how a person’s orientation related to a display can be used for improving user

interaction [2, 3, 11, 29]. The study presented in [30], describes the use of built-in compass

in mobile devices to support the process of pairing them based on the orientation. Another

remarkable work is Multi-View Proxemic system [31], which considers distinct views from a

single display related to the angle of orientation of two viewers. This work uses gaze detection

technology that allows the active user to be identified.

We have briefly described studies that have implemented multiple proxemic applications

based on DILMO. In all of these applications, the interaction objects (i.e., people and de-

vices) are considered as entities. In other studies, entities have been implicitly managed. For

example in [12], Distance, Movement, and Location dimensions have been used to implement

interaction between a user and a screen; the user and the screen are (non identifiable) enti-

ties. The work presented in [31] detects the Distance and Orientation of a user with respect

to a single display to generate multiple views of the information displayed. Similarly, the



170 An Approach to Develop Mobile Proxemic Applications

applications described in [14, 15] help visually impaired people to explore paintings based on

Distance, Movement, and Location. Thus, we conclude that depending on the application, all

DILMO dimensions are not required and specific combination of them can determine different

proxemic environments. Table 1 summarizes the sensors used by previous proposals to obtain

proxemic information.

Table 1. List of sensors for obtaining DILMO proxemic dimensions used by previous proposals

Sensor D I L M O

Microsoft kinect [3, 7, 11, 12, 13, 15, 16, 19, 23, 29] 4 4 4 4 4

Vicon/OptiTrac Motion Capture [3, 11, 18, 25, 29, 31] 4 4 4 4

Leap Motion [12] 4

LV-MaxSonar-EZ1 [14] 4

SHARP GP2Y0A02YK0F [32] 4

Mobile Sensors (accelerometer, gyroscope, magnetometer) [2, 8, 30] 4 4 4

Bluetooth BLE [2, 20, 21, 22, 24] 4 4

Wi-fi RSSI signal [26] 4 4 4

Mobile computer vision [17] 4 4

Computer vision is frequently employed to obtain almost the whole DILMO proxemic

dimensions using a Kinect depth camera. Kinect depth camera is powerful and low cost

sensor that is frequently used in previous proposal for sensing proxemic interaction. Vicon

motion capture technology is very accurate in seizing people’s movement and objects in which

users have to carry and wear Vicon marker sensors. Notwithstanding, these sensors do not

provide portability that allow developers to implement in different mobile devices.

In the next section, we present some works that have proposed tools and frameworks to

support the development of applications based on proxemic interactions. We highlight their

limitations and how we overcome them.

2.2. Tools to design and develop Proxemic-based Applications

Software design is the process to convert the user requirements into some suitable form, which

supports the developer in software coding and implementation. Some existing tools for the

development of proxemic applications, propose approaches to support the designing phase.

SpiderEyes [13] is a system that offers a visual tool that allows designers to create collabora-

tive proxemic applications for Wall-Sized Dislays. This work develops proxemic applications

for adjusting visualizations on displays. The visualization design tool is a web application

that requires setting the values to distinguish active users passing by in the background and

foreground based on whether their visual attention is on display or not and only displays

visualizations for active users. This system shows how people’s orientation and distance to

the display can support collaborative activities around large wall-sized displays. Nevertheless,

it does not propose a graphical design to enable end-users the general modelling of proxemic

behavior.

Ministudio [33] is a tool for designers without technical implementation skills, which can

be used to build miniature prototypes for proxemic interactions in the design phase. This



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 171

tool illustrates how the proxemic dimensions can be used to define spatial relationships and

interactions among people, devices, and objects using designers’ familiar software and mate-

rials. Ministudio is based on tangible interaction interface, which uses miniature models on

paper and projected images. This work shows that MiniStudio supports rapid designing of

large and complex ideas with multiple connected components for prototyping smart environ-

ments in the design phase. However, the implementation of the tool needs specific hardware

and material for creating miniature models, such as Augmented Reality marker and camera-

projector and it does not offer a graphical notation to allow the designer to model proxemic

behaviors. Therefore, this tool is limited to be implemented on a large scale.

In order to build proxemic environments with mobile devices, we implemented a graphical

notation, described in a previous work [10]. This work provides graphical symbols that allows

representing proxemic environments conformed by the proxemic zones, entities, and their

DILMO dimensions. Each symbol can be described as an entity in the environment. The

graphical model is part of a DSL that allows non-specialist designers to describe the proxemic

interaction among physical user and devices using DILMO. The graphical DSL is proposed

to help developers to understand and implement the proxemic systems.

Table 2 summarizes the current tools for supporting the design of proxemic environments.

Specific hardware requirements limit the use of SpiderEyes and Ministudio for the design of

mobile proxemic applications, meanwhile the DSL is more appropriate and suitable for every

kind of proxemic applications.

Table 2. Tools for design proxemic enviroments

Design tool Graphical notation Proxemic modelling Hardware requirement

SpiderEyes [13] no yes yes

Ministudio [33] yes yes yes

DSL [10] yes yes no

Some frameworks have been proposed to support the development process and comple-

ment the software engineering [7, 34]. In [7], a framework called Proximity Toolkit, used to

discover novel proxemic-aware interaction techniques is proposed. The framework is a guide

on how to apply proxemic interaction for domestic ubiquitous computing environments. It

is used to discover novel proxemic aware interaction techniques. The framework manages

DILMO dimensions, which allow determining relationships between entities and people. The

framework architecture has four main components: (a) a Proximity Toolkit server; (b) a

Tracking pug-in; (c) a Visual Monitoring tool; and (d) an API. The Proximity Toolkit server

is the central component in the distributed client-server architecture which allows multiple

client devices to access the captured proxemic information. The Tracking plug-in contains

two plugins: the marker based VICON and the KINECT sensor, that track the skeletal bod-

ies and stream the raw input data of tracked entities to the server. The Visual Monitoring

tool permits developers and designers to visualize tracked entities and their proxemic rela-

tionships among digital devices. The API is a collection of libraries developed in C that

use spatial information and relations among objects and space for processing proxemic infor-

mation from ubicomp environments. This framework allows rapid prototyping of innovative



172 An Approach to Develop Mobile Proxemic Applications

interfaces processing proxemic information from sensors. However, the implementation of

this framework requires a hardware architecture based on fixed devices (e.g., a Kinect Depth

sensor and a client-server architecture) for allowing the server to process the proxemic infor-

mation from appliances. This solution does not offer the mobility and portability required

for implementing proxemic interactions on mobile devices or wearable technologies [8]. With

the current Proximity Toolkit version, it is not possible to obtain proxemic information from

the new smartphone’s sensors capabilities and ensuring that users can use proxemic mobile

applications on their smartphones in any place.

The work presented in [34], illustrates how the proxemic dimensions can support inter-

action among entities (people or objects), with a proposed context-aware framework. This

framework uses mobile sensors that provide portability for sensing DILMO proxemic dimen-

sions. However, this framework needs an active internet connection to process proxemic in-

formation from mobile sensors. This framework does not offer methods that allow developers

to implement proxemic interactions based on mobile computer vision. Furthermore, neither

of the two current frameworks provides an API that enables developers to process proxemic

information from mobile devices sensors. Both frameworks are limited to built proxemic

mobile applications, while ProximiThings [34] cannot process DILMO dimensions without a

server connection. Table 3 describes constraints for building proxemic mobile applications

with these two proposals.

Table 3. Proxemic frameworks constraints

Framework Portability Offline service Mobile API

Toolkit [7] Low Yes No

ProximiThings [34] High No No

All these works demonstrate the current interest for researchers to develop tools that

support the design and implementation of proxemic applications. Nowadays, smartphones

and mobile technologies are powerful and offer a wide range of possibilities to improve user

interaction. There are about 2 billion people with smartphones, which represents one-quarter

of the global population in the world, and this trend is on the rise [35]. It is therefore of great

importance to provide tools for developing mobile apps and improve HCI on mobile devices.

3. Proxemic Definitions

In this section, we present the definitions of proxemic environment and its components (i.e.,

entities, DILMO dimensions, and proxemic zones) that we have adapted from the proxemic

studies.

• Entity (E). An entity, denoted as E, represents an interaction object (e.g., a person,

an object, a device), that can be univocally identified or not in a physical space.

• Distance (D). The distance, denoted as D, is the physical measure of proximity among

mobile or fixed entities (E) in a physical space.

• Identity (I). The Identity, denoted as I, represents an entity (E) that has a unique

identification or a specific role in a physical space.



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 173

• Location (L). The location, denoted as L, is a relative position or an absolute position

of an entity (E) in a physical space.

• Movement (M). The movement, denoted as M , represents the change in measures of

distance or position of an entity (E), over an interval of time in a physical space.

• Orientation (O). The orientation, denoted as O, represents the face to face alignment

between two entities in a physical space.

• Cyber Physical System (CPS). A cyber physical system, denoted as CPS, rep-

resents the target entity, from which a proxemic environment (P E) is defined. All

proxemic zones (P Z) and DILMO dimensions are measured for all other entities (E)

with respect to the CPS, and the interaction among them will be defined accordingly.

• Proxemic Zone (P Z). A proxemic zone represents a circular zone delimited by a

maximum distance (radio) with respect to the CPS. There are four proxemic zones

defined according to such maximum distance: P Zintimate, P Zpersonal, P Zsocial, and

P Zpublic.

• Proxemic Environment (P E). A proxemic environment, denoted as P E, repre-

sents a set of sensors and devices attached to entities (E) that can in turn interact

according to D, I, L, M , and O. It is denoted as a four-tuple, such as:

P E= < CPS, entities, identities, distances >

where:

- CPS is the target entity;

- entities is a set of general interaction objects;

- identities is a set of identifiable interaction objects; and

- distances defines the distances that define the four proxemic zones.

• Behaviour (B). A behaviour represents the change of D, L, M , and O measures or

the P Z of an entity (E or I), starting from its initial behaviour (B0). It is denoted as

a tuple E.Bi =< E.Di, E.Li, E.Mi, E.Oi, E.P Zi > (as identity of I will not change,

this notation is valid for I) and is produced by a transition from the previous behaviour

Bi−1, such that:

- E.B0 =< E.D0, E.L0, E.M0, E.O0, E.P Z0 > (initial behaviour);

- E.Bi = ∇E.Bi−1 =< E.Di, E.Li, E.Mi, E.Oi, E.P Zi > (for i ≥ 1);

where ∇ is a user-defined function to detect the change of measures of DLMO dimen-

sions.

• Action (Action). An action, denoted as Action, represents an event performed by the

CPS or any other entity (E or I) in a P E, in response to a specific behaviour (B) of

an entity or group of entities.



174 An Approach to Develop Mobile Proxemic Applications

In this work, we have defined four proxemic zones, such as P Zintimate, P Zpersonal,

P Zsocial, and P Zpublic. The P Z’s distance is defined by developers according to user

requirements.

A P E represents the system based on proxemic behaviors. The change of DILMO mea-

sures of E in a P E, defines their behaviours. Behaviours of entities might be defined by

developers through user-defined ∇ functions. For example, a ∇ function to detect movement

of an entity, can be implemented based on readings from an accelerometer sensor of a smart-

phone. Actually, when an entity’s movement is detected, the rest of DLO measures can be

affected. These behaviors should be specified by developers. Hence, according to behaviours

of entities, E or I, in a P E, they can react by performing actions to comply their function-

alities. It is expected that the CPS in a P E is the interaction object that should execute

most actions in a P E; however, it is also possible to define actions for other entities, E or I,

in the P E. Actions define the specific functionalities of proxemic applications and must be

defined by developers.

4. Framework to Develop Proxemic Mobile Apps

We propose a framework, based on our previous work [36], along with a simple systematic

development approach, for supporting the construction of mobile proxemic apps for smart

proxemic environments (P E), based on mobile and smart wearable technologies. The sys-

tematic development process provides a guidance on how to choose DILMO combinations for

developing mobile apps, with particular MobileHCI for specific proxemic environments.

4.1. Framework Architecture

The framework architecture is designed to allow the developer to focus on how to obtain the

sensing data from the smart environment (i.e., smartphone, wearable device sensors). The

contribution provided by the framework is to take advantage of current mobile technology

trends related to the capabilities of gathering and processing different types of data that

can be used to create proxemic applications. Our approach helps the developer with the

development process and with the management of proxemic information to establish the

appropriate combination of DILMO dimensions.

In order to create a mobile proxemic app and define a P E, we propose a sequential process

comprised by three single steps:

1. Design the proxemic environment according to which entities will interact based on the

graphical DSL [10].

2. Define the appropriate DILMO combination to define the MobileHCI for the target

mobile app to be developed.

3. Implement the mobile app, considering the technology supported by the entities in the

P E.

To support this process, the framework is composed by mainly three components aligned

with each step (see Figure 1): (i) A graphical DSL module to design the proxemic environment;

(ii) DILMO module to define the combination of DILMO dimensions; and (iii) an API that



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 175

supports the instantiation of the two previous mentioned components. In the following, we

describe each module in detail.

Fig. 1. Framework architecture.

4.2. Graphical DSL module: Designing the proxemic environment (P E)

The graphical DSL allows the definition of the four proxemic zones and the graphical design

of entities in the proxemic environment, according to user needs. The DSL is based on formal

definitions and graphical notations. The DSL allows the formal and graphical representation

of proxemic environments and proxemic behaviours from specific initial conditions of physical

objects and entities based on DILMO dimensions. The graphical notation represents in a

visual way, all components in a proxemic environment. Each symbol of graphical description

can be described as entity in the P E, which has several behaviors. The values of distances

that delimit the proxemic zones are configured through the API. To define a P E the following

initial conditions should be specified:

1. Distances (radios) that define the four P Z are provided by designers/developers ac-

cording to user requirements.

2. In a P E exists only one target entity; thus, given a P E =< CPS, entities, identities, distances >,

CPS is not null.

3. The CPS represents the target interaction object; with the following properties:

• It can be E or I;

• The original location of CPS is denoted as CPS.L = (0, 0), since proxemic zones

and DILMO dimensions of all other interaction objects are determined with respect

to the CPS;

• It has a face from which its area of vision is defined according to the following

angles: ]MinAofV and ]MaxAofV . If ]MinAofV =]MaxAofV =NULL, measn that

the CPS has not face. These values are parameters provided by users or developers.



176 An Approach to Develop Mobile Proxemic Applications

4. For all entities (E) in the system, DILMO dimensions and proxemic zones can be as-

signed as their initial behaviours. Formally:

∀Ei ∈ P E.entities ∧ ∀Ij ∈ P E.identities,

Ei.B0 =< D0, L0,M0, O0 > ∧
Ij .B0 =< D0, Ij , L0,M0, O0 >;

and L0,M0, O0 can be null.

It means that distance (D) is the only mandatory dimension for entities. Orientation is

a dimension that only matters if the CPS has a view angle that shows the space where

other entities can be detected (examples of such CPS are a screen, a smartphone using

its camera).

From these initial conditions, designers can specify conditions in a P E (behaviours –

B) to which entities should react by executing Actions. Hence, from the initial conditions,

proxemic Actions can be defined with respect to the P Z and DILMO dimensions of entities

in the P E.

4.3. DILMO module: Defining DILMO combination

The framework provides a guide that allows developers to know which methods must be

implemented on the API or which objects must be created from the API, according to DILMO

dimensions for processing proxemic information and according to behaviours and actions

identified in the previous step. This module allows developers to relate objects and entities

that can interact in the proxemic environment. Hence, according to the combination of

DILMO dimensions different proxemic environments can be defined, as denoted in Figure. 2.

For example, a DIL proxemic environment (row 30 in Figure 2) means that Distance (D)

and Location (L) are considered for Identities (I). Combination of proxemic dimensions are

also valid, although the entities have not unique identification; e.g., a person, a device beacon,

instead of the smartphone’s owner, my device beacon.

4.4. The API: Implementing the mobile proxemic application

The API facilitates developers processing proxemic information and values. The API pro-

vides seven classes, called ProxZone, DILMO, Distance, Entity, Location, Movement,

and Orientation, to define the P Z, as well as to manage the different combinations of

DILMO dimensions, that are required for implementing a P E. For example, for a DIL prox-

emic environment, methods to identify entities (I) and to process D and L are available in

the DILMO class. Thus, the API behaves as a bridge between the graphical DSL and DILMO

modules.

In the current version of our framework, the API considers the extraction of DILMO values

from smartphones or mobile devices based on the Android native libraries (APKs). The API

provides methods that developers can implement for processing proxemic information using

motion sensors and mobile computer vision cameras. The majority of current smartphones

have a wide range of sensors in their hardware configuration [37], which allow the application

to run proxemic apps. For example, through the BLE beacons mechanisms [38], it is possible

to know the distance (D) between two mobile devices. The distance is estimated using the



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 177

Fig. 2. DILMO proxemic dimensions and nomenclature to describe each combination that is
available through the API methods for processing proxemic information.



178 An Approach to Develop Mobile Proxemic Applications

signal strength of the mobile device’s Bluetooth signals. Another way to estimate the distance

between two entities is to use computer vision (face detection). Android provide methods for

detecting faces as image frame. This image frame size is used to estimate the distance between

the user and the mobile phone camera through the API methods.

The APIais available for free downloading. It was developed in Java, hence the jar files

are provided to be added to the Android Studio platform. Figure 3 describes the structure of

the API, represented by a UML Class diagram. The main classes are described as follows:

1. The ProxZone class allows to define proxemic zones (P Z) according to user require-

ments (i.e., user/developer decides the measures that delimit each P Z), when this class

is instantiated (i.e., by its constructor method). The constructor method of this class

receives as parameters the respective maximum measures of distance D, which define

each P Z. A P Z can be associated to one or more entities.

Figure 4 shows an example of the ProxZone constructor method, in which the maximum

distance, in meters, for each P Z are specified (see Def. ): P Zintimate is delimited from

0 to 0.25 meter, P Zpersonal is defined from 0.26 meter to 0.45 meter, P Zsocial is

from 0.46 meter to 1 meter, and P Zpublic is depicted from 1.1 meters to 2 meters.

Inappropriate arguments are validated in order to have valid measurements (e.g., not

overlapped zones, right order of measures).

2. The DILMO class is useful for developing P E. It offers the possibility of identifying the

P Z of all entities E (or identities I) which will interact in the P E. This class allows

to define relations among proxemic dimensions, according to our proposed combinations

of DILMO (see Figure 2). Its main methods are:

(a) The setProxemicDI(String I, double D) method allows assigning a P Z to an

identity (I), based on the distance (D).

(b) The getProxemicDI(String I) method allows obtaining the P Z of an identity

(I).

(c) The setProxemicDIL(String I,double D, float L) allows assigning a P Z to

an identity (I) based on the distance (D) and processing the location (L).

(d) The getProxemicDIL(String I) method allows obtaining the P Z and relative

location of the identity (I).

(e) The setProxemicDistance(double D) method allows assigning the P Z to an

entity, according to the distance (D).

(f) The getProxemicZoneByDistance() method returns the P Z of an entity, based

on the distance.

3. The Distance class allows the developer to estimate the distance among identities (I).

Distance (D) can be calculated by using any available method. In the current version

of our API, we have integrated some methods to calculate D, based on the Android

platform, such as:

aThe API is available in https://github.com/paulocpd76/ProxemicEnt15-01-20.git/



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 179

Fig. 3 UML Class Diagram of the API.

Fig. 4. Example of ProxZone Class Constructor invocation.

(a) The setBluetoothDistance(double rssi, double txtPower) that allows esti-

mating distance based on BLE.

(b) The setFaceHeight(float faceHeight), which allows estimating the distance

from camera using visual computing; distance is proportional to the height of the

detected face.

(c) The getDistance() method, that allows obtaining D in meters.

4. The Entity class represents the interaction objects in a P E, whose behavior is de-

termined or will be determined according to their DILMO proxemic dimensions. This

class allows the discovering of the entities on a P E.

5. The Location class provides methods to manage location (L) of interaction objects

(E and I). As in the Distance class, location (L) of entities can be calculated by any



180 An Approach to Develop Mobile Proxemic Applications

available method. Currently, we have integrated in our API some methods to calculate

L, such as:

(a) The setRelativeLocationScreen(float L) method, which sets the relative po-

sition on the screen of an entity E, based on the coordinates of E on the display.

(b) The getRelativeLocationOnScreen() method, which returns the relative posi-

tion of an entity E.

6. The Movement class has methods that allow motion processing from the coordinate

system of smart-mobile sensors (e.g., Azimuth, Pitch, Roll), such as:

(a) The setAzimuthWithRange(float MAX, float MIN, float value) method which

allows processing the azimuth angle of an entity E, that has been established by

the developer.

(b) The isAzimuthInRange() method returns true if the azimuth angle of an interac-

tion object (E) is within a range of reference.

7. The Orientation class provides methods to validate the face orientation (O) of in-

teraction objects on a P E. Some of them are:

(a) The setDetectedFaces(String[][] detectedFa ces,ProxZone p) method, that

receives a collection of faces to be defined as interaction objects (E or I) in the

P E.

(b) The isFaceDetected(String I,String P Z) method, which returns true if a

specific face (I) is detected in the P Z.

5. Proof-Of-concept of our Framework

Our goal is to develop proxemic environments, from the design phase, based on mobile devices

and demonstrate that our framework allows developers to build proxemic mobile applications

effectively. For this purpose, we show the implementation of two mobile applications, called

IntelliPlayer and Tonic, based on proxemic interactions. These apps were implemented using

Android Studio platform version 3.3; however a higher Android studio version can be used.

The appsbare available for free downloading.

Both apps have been developed by undergraduate students, as part of their final project in

computer science. The developing team was integrated by four students whose average age was

21 years-old, who have developer experience using Java object-oriented programming. This

project was the first challenge for them implementing Android applications and MobileHCI

based on proxemic interactions.

Two training sessions of two hours each were organised for the student. The training

process allows students to understand the systematic process for building proxemic mobile

applications with our framework. They learned: (i) how to define each P Z, using the graphi-

cal DSL; (ii) how to select each combination of proxemic dimension for recreating a P E; and

(iii) how to use methods and classes in the API. The development time of both applications

was 64 hours by two developers over a period of 4 weeks. IntelliPlayer took 44 hours of work,

while Tonic was finished in 20 hours, in the same four weeks.
bThe APPS are available in https://https://github.com/llagar910e/



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 181

5.1. Tonic app

Tonic is a mobile app for playing musical notes, developed for illustrative purposes. A user’s

smartphone, with the Tonic app (Tonic device), plays and modifies different musical notes

according to its movements and the distance of another smartphone (visitor device).

In the first step of the approach, the four proxemic zones (P Zintime, P Zpersonal, P Zsocial,

and P Zpublic) and the functionality of the application are designed. The visitor smartphone

is identified (i.e., it is an I) by the Tonic device, which plays the sound (i.e., it is the CPS).

The initial conditions that defines this P E are:

• Distances that define the four P Z: P Zintime from 0 mts to 0.5mts; P Zpersonal be-

tween 0.51 mts and 1 mts; P Zsocial from 1.1 mts to 2 mts; and P Zpublic, with 2.1 mts

to 4 mts.

• The target interaction object is the Tonic device. Thus, the four tuple is

P E= < CPS = Tonic device, identity = {I = visitor device}, distances = {0.5, 1, 2, 4} >;

• Initial location of the CPS: CPS.L = (0, 0); it has not face;

• Initial behavior of CPS: CPS.B0 =< D0 = 0, L0 = (0, 0),M0 = quiet >.

• Initial behavior of I: I.B0 =< D0 = 1 >.

The volume of the sound is adjusted according to the P Z in which I is, with respect to

the CPS; and the note changes according to the movements of the CPS. Thus, from the

initial conditions, the CPS can react (i.e., shows different behaviours), by executing different

Actions, such as:

• CPS.B1: if ∃ I in P Zintimate, then CPS.Action1; where Action1= ”increase to 25%

of volume”;

• CPS.B2: if ∃ I in P Zpersonal, then CPS.Action2; ; where Action2= ”increase to 50%

of volume”;

• CPS.B3: if ∃ I in P Zsocial, then CPS.Action3; where Action3= ”increase to 75% of

volume”;

• CPS.B4: if ∃ I in P Zpublic, then CPS.Action4; where Action4= ”increase to 100% of

volume”;

• CPS.B5: if CPS.M = get up ∨ CPS.M = lay down, then I.Action5; where Action5=

”increase a semitone”;

• CPS.B6: if CPS.M = gyre, then CPS.Action6; where Action6= ”increase a tone for

each grade”;

Figure 5(a) shows the graphical representation of P E based on the DSL.

Thus, the CPS plays and modifies a sound, by using proxemic interactions based on the

P Z, and on D, I, and M dimensions – i.e., a DIM proxemic environment according to DILMO



182 An Approach to Develop Mobile Proxemic Applications

combination (step two of the approach). In Tonic, the distance (D) between the two devices

is obtained by using BLE technology. The entity I broadcasts its identifier to nearby portable

electronic devices, thus it is caught by the CPS. The volume of the sound is adjusted accord-

ing to the P Z in which I is, with respect to the CPS. To manage P Z and D, the methods

used from the API, in the third step of the approach, were those described in items 2.(b),

2.(c), and 3.(a) in Section : ProxemicDI(String I), setProxemicDIL(String I, double

D, float L), and setBluetoothDistance(double rssi, double txtPower). The musical

notes are changed according to the smart phone movements. Movements are calculated based

on the capabilities of the smartphone, such as accelerometer, gyroscope, compass, and mag-

netometer. These sensors provide information that is mainly used in the API using methods

setAzimuthWithRange(float MAX, float MIN, float value) and isAzimuthInRange()

described in items 6.(a) and 6.(b) in Section .

Fig. 5. Tonic Proxemic Zones based on Bluetooth Low Energy.

5.2. IntelliPlayer app

IntelliPlayer is a mobile application that plays a video in a smartphone (IntelliPlayer device)

and reacts according to four proxemic zones and DLO proxemic dimensions of another entity

(E1). In the first step of the approach, the four P Z and the initial condition of the CPS are

designed:

• Distances that define the four P Z: P Zintime between 0 mts and 0.25mts; P Zpersonal

from 0.26 mts to 0.45 mts; P Zsocial from 0.46mts to 1 mts; and P Zpublic between 1.1

mts and 2 mts.

• The target interaction object is the IntelliPlayer device. Thus, the four tuple is:

P E =< CPS = IntelliP layer device, entities = {E1},distances = {0.25, 0.45, 1, 2} >;

• CPS.L = (0, 0); it has face;

• Initial behavior of CPS: CPS.B0 =< D0 = 0, L0 = (0, 0), O0 = 0 >, ]MinAofV = 0◦

and ]MaxAofV = 75◦;

• Initial behaviour of E1; Distance of E1: E1.D = 2; Orientation of E (the face of E1

is in the area of vision of the CPS); thus, E1.B0 =< D0 = 2, O0 = 35◦ >, E2.B0 =<

D0 = 2, O0 = 45◦ >.



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 183

With the distance (D) between the user (E1) and the smartphone (CPS), IntelliPlayer

determines the proxemic zone (P Z) of E1 (a user), with respect to the smartphone (CPS).

To do so, it invokes the method getProxemicZoneByDistance() described in item 2.(f) in

Section . IntelliPlayer automatically adjusts the volume of the video according to the P Z in

which E1 (the user) is with respect to the smartphone (CPS): when E1 is in P Zintime, it

decreases to 25% volume of speaker; for P Zpersonal, it increases to 50% volume; for P Zsocial,

it increases to 75% volume; and for P Zpublic, it increases to 100% volume) (see Figure 6).

These behaviours are designed as follows:

Fig. 6. IntelliPlayer proxemic zones.

• CPS.B1: if ∃ E1 in P Zintimate ∧ ]MinAofV ≤ E1.O ≤ ]MaxAofV , then CPS.Action1;

where Action1 = ”increase to 25% of volume”;

• CPS.B2: if ∃ E1 in P Zpersonal: ∧ ]MinAofV ≤ E1.O ≤ ]MaxAofV , then CPS.Action2;

where Action2 = ”increase to 50% of volume”;

• CPS.B3: if ∃ E1 in P Zsocial: ∧ ]MinAofV ≤ E1.O ≤ ]MaxAofV , then CPS.Action3;

where Action3= ”increase to 75% of volume”;

• CPS.B4: if ∃ E1 in P Zpublic: ∧ ]MinAofV ≤ E1.O ≤ ]MaxAofV , then CPS.Action4;

where Action1 =”increase to 100% of volume”;

Then, in the second step, the MobileHCI is designed according to D, L, and O; thus a DLO

P E is defined. Figure 6 shows the proxemic zones that have been defined by the developer

through the API and DSL. With these behaviors, we illustrate a proxemic environment using

a mobile player app that reacts to the distance (D) and location (L) of a person (E1) and

his face orientation (O), with respect to the smartphone (CPS) displaying a video. The

computer vision technique has been used for this purpose, based on the properties of an

Android camera and through the API methods setFaceHeight(float faceHeight) and

getDistance() described respectively in items 3.(b) and 3.(c) in Section . Figure 7 shows a

block code of this case.

More behaviours can be designed. When a second person (E2) is in front of the smartphone

camera (I1), the application verifies if both users are looking at the screen at the same time,

as shown in Figure 8(a). The DSL describes the P E:



184 An Approach to Develop Mobile Proxemic Applications

Fig. 7. Block code of IntelliPlayer.

Fig. 8 Play pause video using users faces orientation.

• The four tuple of P E:

P E =< CPS, entities = {E1, E2},distances = {0.25, 0.45, 1, 2} >;

• CPS.L = (0, 0); ]MinAofV = 0◦ and ]MaxAofV = 75◦;

• Distance of E1: E1.D = 2, E2.D = 2;

• Orientation of E (the face of E1 or E2 is in the area of vision of the CPS) thus,

E1.B0 =< D0 = 2, O0 = 45◦ >, E2.B0 =< D0 = 2, O0 = 35◦ >.

Behaviours according to this scenario are presented in Figure 8(a) using he graphical DSL,

and the actions are:

• CPS.B5: if ∃ E1 ∧ E2 in P Zpublic ∧ ]MinAofV ≤ E2.O ≤ ]MaxAofV ∧ ]MinAofV ≤
E1.O ≤ ]MaxAofV , then CPS.Action5 = video starts (Figure 8 (a)).

• CPS.B6: if E2.O > ]MaxAofV ∧ E1.O > ]MaxAofV , then CPS.Action6 = video is

paused automatically (Figure 8 (b)).

The method setDetectedFaces (String[][]detectedFaces, ProxZone p), item 7.(a) in

Section ) is used to process detected faces. In the case one user (E1 or E2) turns his face, the

video will be paused automatically by the mobile application (see Figure 8(b)).



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 185

Another useful function of IntelliPlayer is to provide a video description that users can

read on the screen according to user location (L). Figure 9 shows the description of this

scenario using the DSL.

Conditions and behaviours of this P E, are described with the DSL, as follows:

• The four tuple of P E:

P E =< CPS, entities = {E1, E2},distances = {0.25, 0.45, 1, 2} >;

• CPS.L = (0, 0) ]MinAofV = 0◦ and ]MaxAofV = 75◦;

• Distance of E1: E1.D = 2, E2.D = 0.45;

• Location of E1.L = (x1, y1) ; E2.L = (x2, y2), face position relate to smartphone camera

in pixels.

• Orientation of E (the face of E1 or E2 is in the area of vision of the CPS), thus

E1.B0 =< D0 = 2, O0 = 45◦ >, E2.B0 =< D0 = 2, O0 = 35◦ >.

The behaviour according to the scenario presented in Figure 9 is:

• CPS.B7: if ∃ E1 in P Zpublic ∧ E2 in P Zpersonal ∧ ]MinAofV ≤ E2.O ≤ ]MaxAofV

∧ ]MinAofV ≤ E1.O ≤ ]MaxAofV , ∧ E2.L = (x2, y2),then CPS.Action6 = screen show

information about the video (Figure 9).

Fig. 9. The split view provides video description.

When a user (E1 or E2) is in the P Zpersonal and his orientation (O) is in front of the screen,

the application can obtain the face location (L) (see setRelativeLocationScreen(float L)

and getRelativeLocationOnScreen() in item 5.(a) and 5.(b) in Section ) to split the screen,

with the video (running) and information about the video on the right or on the left, according

to the detected L. The correct use and instance of methods and classes of the API conforms

the third step of the proposed approach.

5.3. Usability evaluation

In order to evaluate the usability of the API, we applied a survey composed of nine questions

to the group of students who developed the applications described. Results of the survey



186 An Approach to Develop Mobile Proxemic Applications

are shown in Figure 10. These results indicate that 100% of surveyed students have strongly

agreed with Q1: ”It was easy to implement the API with Android Studio” and Q9: ”The

API is useful for the development of proxemic applications with Android?”. While 95% of

students endorsed Q5: ”The API allowed you to process information of a combination of

DILMO dimensions”, Q7: ”The API’s method for estimating distance based on face detection

was accurate”, and Q8: ”The API allows you to obtain the proxemic zone when it is using

Bluetooth proximity sensing”. For Q4: ”The API allows you to improve your productivity

for developing proxemic applications by hiding complexity” and Q6 ”The API allows you to

create the proxemic zones quickly”, 78% of students expressed acceptation. Finally, Q2: ”The

documentation provides enough information to interact with the API” and Q3: ”The API

provides enough examples for creating proxemic applications”, were accepted only by 53% and

61% of students, respectively.

Fig. 10. Results of students feedback.

The the proof-of-concept and survey allow corroborating that the API supports develop-

ment of proxemic applications and creation of proxemic environments, based on the exclusive

use of mobile devices, while reducing complexity of the development process. These apps

offer portable implementations that facilitate using the proxemic interaction in comparison

to previous works that have used fixed platforms for similar purposes. Moreover, the survey

results allow knowing aspects to develop, such as the quality of documentation and the basic

examples provided.

6. Conclusion

Mobile technologies are frequently used in daily life for different activities, and their use keeps

increasing. Through this work introduced a framework that includes an API for developing

proxemic applications for smart environments comprised of entities whose interactions are

supported by proxemic dimensions DILMO. We demonstrated the framework’s effectiveness

through the proof-of-concept, which details the implementation of two proxemic mobile ap-

plications developed by undergraduate students in computer science. With this framework,

we provide a tool that can help developers to build novelty proxemic mobile applications

using social distancing. We used a domain-specific language (DSL) to design proxemic en-

vironments. With our proposal, we hope to inspire other researchers to build more mobile



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 187

applications based on proxemic interactions in accordance with real-life needs. We aim to

improve the current API for building mobile applications based on gesture interaction and

proxemic interactions in a future work.

1. Frederik Brudy, Christian Holz, Roman Rädle, Chi-Jui Wu, Steven Houben, Clemens Nyland-
sted Klokmose, and Nicolai Marquardt. Cross-device taxonomy: Survey, opportunities and
challenges of interactions spanning across multiple devices. In Proceedings of the CHI Confer-
ence on Human Factors in Computing Systems, CHI ’19, page 562. ACM, 2019.

2. Jens Emil Grønbæk, Christine Linding, Anders Kromann, Thomas Fly Hylddal Jensen, and
Marianne Graves Petersen. Proxemics play: Exploring the interplay between mobile devices and
interiors. In Proceedings of Companion Publication of the Conference on Designing Interactive
Systems, DIS ’19, pages 177–181. ACM, 2019.

3. Till Ballendat, Nicolai Marquardt, and Greenberg Saul. Proxemic interaction: designing for a
proximity and orientation-aware environment. In Proceedings of International Conference on
Interactive Tabletops and Surfaces, ITS’ 10, pages 121–130. ACM, 2010.

4. Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen Wang.
Proxemic interactions: the new ubicomp? Interactions, 18(1):42–50, 2011.

5. Jens Emil Grønbæk, Mille Skovhus Knudsen, Kenton O’Hara, Peter Gall Krogh, Jo Vermeulen,
and Marianne Graves Petersen. Proxemics beyond proximity: Designing for flexible social
interaction through cross-device interaction. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pages 1–14, 2020.

6. Edward T Hall. The Hidden Dimension: An anthropologist examines man’s use of space in
private and public. New York: Anchor Books; Doubleday & Company, Inc, 1966.

7. Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg. The proximity
toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In Proceedings of
the 24th annual ACM symposium on User interface software and technology, UIST ’11, pages
315–326. ACM, 2011.

8. Mihai Bâce, Sander Staal, Gábor Sörös, and Giorgio Corbellini. Collocated multi-user gestural
interactions with unmodified wearable devices. Augmented Human Research, 2(1):6, 2017.

9. Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine
Couture. Mobile proxemic application development for smart environments. In Proceedings
of the 18th International Conference on Advances in Mobile Computing & Multimedia, pages
94–103, 2020.

10. Paulo Pérez, Philippe Roose, Yudith Cardinale, Marc Dalmau, Dominique Masson, and Nadine
Couture. Proxemic environments modelling based on a graphical domain-specific language.
In 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications
(AICCSA), pages 1–8. IEEE, 2020.

11. Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. Cross-device interaction via micro-
mobility and f-formations. In Proceedings of the 25th annual ACM symposium on User interface
software and technology, UIST ’12, pages 13–22. ACM, 2012.

12. Tilman Dingler, Markus Funk, and Florian Alt. Interaction proxemics: Combining physical
spaces for seamless gesture interaction. In Proceedings of the 4th International Symposium on
Pervasive Displays, PerDis ’15, pages 107–114. ACM, 2015.

13. Jakub Dostal, Uta Hinrichs, Per Ola Kristensson, and Aaron Quigley. Spidereyes: designing
attention-and proximity-aware collaborative interfaces for wall-sized displays. In Proceedings of
the 19th international conference on Intelligent User Interfaces, IUI ’14, pages 143–152. ACM,
2014.

14. J Antonio Garcia-Macias, Alberto G Ramos, Rogelio Hasimoto-Beltran, and Saul E Pomares
Hernandez. Uasisi: a modular and adaptable wearable system to assist the visually impaired.
Procedia Computer Science, 151:425–430, 2019.

15. Kyle Kyle, Keith Salmon, Dan Thornton, Neel Joshi, and Meredith Ringel Morris. Eyes-free
art: Exploring proxemic audio interfaces for blind and low vision art engagement. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):93, 2017.



188 An Approach to Develop Mobile Proxemic Applications

16. Ghare Mojgan, Pafla Marvin, Caroline Wong, James R Wallace, and Stacey D Scott. Increasing
passersby engagement with public large interactive displays: A study of proxemics and conation.
In Proceedings of the International Conference on Interactive Surfaces and Spaces, ISS’18, pages
19–32. ACM, 2018.

17. Michael Brock, Aaron Quigley, and Per Ola Kristensson. Change blindness in proximity-aware
mobile interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18, page 43. ACM, 2018.

18. Mikkel R Jakobsen, Yonas Sahlemariam Haile, Søren Knudsen, and Kasper Hornbæk. In-
formation visualization and proxemics: design opportunities and empirical findings. IEEE
transactions on visualization and computer graphics, 19(12):2386–2395, 2013.

19. Jo Vermeulen, Kris Luyten, Karin Coninx, Nicolai Marquardt, and Jon Bird. Proxemic flow:
Dynamic peripheral floor visualizations for revealing and mediating large surface interactions.
In Proceedings of IFIP Conference on Human-Computer Interaction, INTERACT’15, pages
264–281. Springer, 2015.

20. Augustin Zidek, Shyam Tailor, and Robert Harle. Bellrock: Anonymous proximity beacons
from personal devices. In Proceedings of International Conference on Pervasive Computing
and Communications, PerCom’18, pages 1–10. IEEE, 2018.

21. Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthbert. Bluetooth positioning
using rssi and triangulation methods. In Proceedings of the 10th Consumer Communications
and Networking Conference, CCNC’13, pages 837–842. IEEE, 2013.

22. Seyed Ali Cheraghi, Vinod Namboodiri, and Laura Walker. Guidebeacon: Beacon-based indoor
wayfinding for the blind, visually impaired, and disoriented. In Proceedings of International
Conference on Pervasive Computing and Communications, PerCom ’17, pages 121–130. IEEE,
2017.

23. Helena M Mentis, Kenton O’Hara, Abigail Sellen, and Rikin Trivedi. Interaction proxemics
and image use in neurosurgery. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI’2012, pages 927–936. ACM, 2012.

24. Paulo Pérez, Philippe Roose, Dalmau Marc, Nadine Couture, Yudith Cardinale, and Dominique
Masson. Proxemics for first aid to unconscious injured person. In Proceedings of the 30th
Conference on l’Interaction Homme-Machine, IHM’18, pages 156–162, 2018.

25. David Ledo, Saul Greenberg, Nicolai Marquardt, and Sebastian Boring. Proxemic-aware con-
trols: Designing remote controls for ubiquitous computing ecologies. In Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile Devices and Services,
MobileHCI’2015, pages 187–198. ACM, 2015.

26. Henrik Sørensen, Mathies G Kristensen, Jesper Kjeldskov, and Mikael B Skov. Proxemic
interaction in a multi-room music system. In Proceedings of the 25th Australian Computer-
Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, OzCHI
’13, pages 153–162. ACM, 2013.

27. Microsoft. Cameraspacepoint structure, 2109. Microsoft Docs https://docs.microsoft.com/en-
us/previous-versions/windows/kinect/dn758354(v%3Dieb.10).

28. Vicon. About vicon motion systems, 2108. https://www.vicon.com/vicon/about.
29. Ahmed E Mostafa, Saul Greenberg, Emilio Vital Brazil, Ehud Sharlin, and Mario C Sousa.

Interacting with microseismic visualizations. In Proceedings of CHI Extended Abstracts on
Human Factors in Computing Systems, HRI’13, pages 1749–1754. ACM, 2013.

30. Jens Emil Grønbæk and Kenton O’Hara. Built-in device orientation sensors for ad-hoc pairing
and spatial awareness. In Proceedings of Cross-Surface Workshop, 2016.

31. Jakub Dostal, Per Ola Kristensson, and Aaron Quigley. Multi-view proxemics: distance and
position sensitive interaction. In Proceedings of the 2nd ACM International Symposium on
Pervasive Displays, PerDis ’13, pages 1–6. ACM, 2013.

32. Katrin Wolf, Yomna Abdelrahman, Thomas Kubitza, and Albrecht Schmidt. Proxemic zones
of exhibits and their manipulation using floor projection. pages 33–37. ACM.

33. Han-Jong Kim, Ju-Whan Kim, and Tek-Jin Nam. ministudio: Designers’ tool for prototyping



Paulo Pérez, Philippe Roose, Yudith Cardinale, Mark Dalmau, Dominique Masson, and Nadine Couture 189

ubicomp space with interactive miniature. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI ’16, pages 213–224. ACM, 2016.

34. Carlos Cardenas and J Antonio Garcia-Macias. Proximithings: Implementing proxemic inter-
actions in the internet of things. Procedia Computer Science, 113:49–56, 2017.

35. Lingling Gao, Kerem Aksel Waechter, and Xuesong Bai. Understanding consumers’ continuance
intention towards mobile purchase: A theoretical framework and empirical study–a case of
china. Computers in Human Behavior, 53:249–262, 2015.

36. Paulo Pérez, Philippe Roose, Nadine Couture, Yudith Cardinale, Marc Dalmau, and Dominique
Masson. Proxemic environments: A framework for developing mobile applications based on
proxemic interactions. In Proceedings of the 2020 Federated Conference on Computer Science
and Information Systems, pages 653–656, 2020.

37. Google. Sensors, 2109. https://developer.android.com/guide/topics/sensors.
38. AltBeacon. The open and interoperable proximity beacon specification, 2018.

https://altbeacon.org/.


