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Event prediction is a very important task in numerous applications of interest like fintech,
medical, security, etc. However, event prediction is a highly complex task because it is

challenging to classify, contains temporally changing themes of discussion and heavy

topic drifts. In this research, we present a novel approach which leverages on the RFT
framework developed in [1]. This study addresses the challenge of accurately representing

relational features in observed complex social communication behavior for the event

prediction task; which recent graph learning methodologies are struggling with. The
concept here, is to firstly learn the turbulent patterns of relational state transitions

between actors preceeding an event and then secondly, to evolve these profiles temporally,

in the event prediction process. The event prediction model which leverages on the RFT
framework discovers, identifies and adaptively ranks relational turbulence as likelihood

predictions of event occurrences. Extensive experiments on large-scale social datasets
across important indicator tests for validation, show that the RFT framework performs

comparably better by more than 10% to HPM [2] and other state-of-the-art baselines in

event prediction.

Keywords: Event Prediction, Artificial Intelligence, Topic Modeling, Wavelet Transfor-
mation, Fractal Neural Networks

1. Introduction

Event prediction is a complex topic which encompasses a mix of multiple disciplines across

wide ranging applications [3]. Some of them include recommender systems, marketing and

advertising, governance and rule, news and propaganda, etc. [4]. Some examples of emerging

event prediction applications include preemptive disease and medical condition prevention,

patient-drug matching pair diagnosis and administration, cyber security, data privacy and

utility, etc. The social pre-cursors of a large majority of real life events are often staged
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through popular online social media like facebook, twitter, google, etc. These pre-cursors

are often identified as activity through online social medium as information transactions

[5]. Although it may be intuitive to think of a similarity based approach on how an actor

incites other members within a community through matching attributes, such a culmination

of affective sentiments are often times a lot less direct [6].

1.1. Challenges

Although numerous approaches [7], [8], [9], [10], [11], [12], [13] have been developed to address

certain areas of semantic / spatio-temporal event detection and prediction, their methods have

been limited in applications to specific events [5], [9], [13] in question. Furthermore, techniques

to date focuses on the application of batch learning methods which can only be used at static

instances in time [14]. Such approaches are known to be unscalable to continuous (social KG)

data streams and changing environment contexts [15].

In the same vein, many relational learning approaches used in trending studies, also lack

depth and representative power [1]. For example, [7], [8], [9], [10], [11], [12], [13] are methods

developed to date which rely primarily on learning how spatio-temporal dependencies of shal-

low word-feature changes. These semantic patterns are then used as precursors - which are

modeled to predict eventful occurances in a future timeframe. Furthermore, the key critical

key questions uncovered in [1] still remain unanswered.

1.2. Data Model

To address these problems, this paper adopts the Fractal Neural Network (FNN) model which

was developed in [1] and extends its efficacy by adapting the dynamic growth of the fractal

network into a robust adversarial framework. FNNs, encode ground truths of the Relational

Turbulence Theory (RTT) [16] framework into the lowest principle decompositions of our

model. It is able to self-evolve from a meta-learning perspective - in response to random

”anytime-sequenced” data streams of fluctuating information sophistication [17]. Next, we

define what relational turbulence is and explain our motivation.

In this approach, the main motivation is to firstly, characterize Relational Turbulence by

probabilistic measures of Relational Intensity P (γrl), Relational Interference P (ϑrl) and Re-

lational Uncertainty P (ϕrl) [18]. Secondly, extensions on [1] uses the principle of Relational

Turbulence Theory (RTT) [19] to establish a framework of theoretical processes linking evolv-

ing relational features learned over past event occurrences (causals). The main novelty of our

model focuses firstly, on discovering relational intelligence through identifying relational pro-

files on three popular social Knowledge Graphs (KGs): Twitter, Google and Enron email

datasets. Then secondly, leveraging on this discovery to generalize event occurrences for

three major social streaming platforms: Twitter, Google Feed and Live Journal.

1.2.1. Research Objectives

This paper addresses the following important research objectives for event prediction tasks:

• Accurate representations and correlations of complex online social behavior in OSNs for
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generalized event prediction.

• Classification of relational profiles to dynamic social communication patterns in pre-

dicting events.

• Quantification of dynamic errors arising from social disruptions (outliers) in event-

predictive representations.

1.3. Technical Model

The technical model of this paper extends the RFT architecture developed in [1] to effec-

tively represent the dynamism of popular key relational dimensions uncovered from previous

approaches and techniques conducted on online social structures. It is developed from the

principles of self evolving fractals and artificial neural networks in a real-time machine learn-

ing model for active data streams [20], [21]. This current extension of RFT is capable of

representing social structures as a time evolving flow of relational attributes (time-realistic

relationships) between node entities of a network in question with the constant inception of

social shocks. Its objective function describes the turbulence profiles of social graph con-

structs and their resulting communication behavioral patterns across apriori relational state

altering events - to predict likelihood occurrences of tracked topics as events of interest.

Similar to [1], the extended RFT model accepts as inputs, the concurrent key relational

feature states fi between actors Eε from past and present social transactions to predict the

likelihood of an event occurance Eϕ in an evolving state of relational turbulence τij from an

identified social flux Fε within a continuous stream of social transactions [22], [23].

1.4. Contributions

In this study, we examine the dynamic structure of such an shallow ANN known as fractals.

We design a fractal layered structure that maintains a key property of self-similarity across

different varying scales [20]. Fractals generally maintain structural affinity [24] and can grow

to become complex enough to represent high levels of sophistication that are yet trivially

efficient enough to re-create by repeating similar simple shallow architectures in a loop - ad

infinitum. The main scientific contributions of our work are presented as follows:

(i) We extend the RFT method in [1] to continuously adapt to real-time streaming social

transactions to predict occurance of events from tracked topics of interest;

(ii) The RFT model in [1] was extended into an adversarial FNN framework architecture

which is used to significantly reduce event prediction errors and improve accuracy.

(iii) The method adaptively learns from a Fractal Neural Network (FNN) which builds on

key relational fractal structures discovered in a given Online Social Network (OSN) from

tracked topics.

(iv) Our experimental design and detailed results on Twitter, Google and Enron email

datasets at different instances show that RFT is able to offer a good modeling of rela-

tional ground truths. While FNN is able to efficiently and accurately represent evolving

relational turbulence and flux profiles within a given OSN.

(v) The extended RFT model improves the efficacy and efficiency of existing approaches
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towards event prediction through studies and comparisons of experimental results con-

ducted with real-life social networks on Twitter, Googlefeed and LiveJournal datasets.

The remaining part of the paper is organized as follows: Section II presents a brief overview

of related works drawn from social theories and relational structures. Section III discusses

the methodology we have developed for predicting events in OSNs. Section IV introduces our

experimental data, model baselines and design. Section V presents the results and discussion

of this paper that leads to a conclusion and potential future directions in section VI.

2. Related Literature

2.1. Relational Turbulence

Relational Turbulence was first studied in [25]. It was typically characterized as a resultant

state in conflict of interests from competing goals between two or more actors in question [26].

Although conflict does provide the basis of stimulation for communication within a relation-

ship that is centered in a flux, it also correlates to negative consequences in the form of

detrimental event occurrences if left undetected and unchecked [26]. An important discrim-

inator of detecting conflict and hence the resulting turbulence in any relationship model

between networks of actors is the observation and management of relational altering events.

As reciprocated negative expectancy violations grow larger over time, instability in a cumu-

lative relational flux of an OSN increases [1].

Excluding relational expectation management, some detrimental relational altering events

include: geographic displacements (or low proximity measures), conflict escalation (high fre-

quencies of friction), environmental changes (expectation disparities), etc. [27], [28], [29]. Re-

lational Turbulence is briefly defined as changes which occur within a relationship that may

cause friction ( [?]) between actors and their local online community. These changes are mostly

studied as a series of transitions (often abrupt) between actor-environmental states that in-

advertently influences relational characteristics by altering communication flux patterns [30]

of a given relationship in an Online Social Network (OSN). These shifts in relational char-

acteristics during difficult state transitions (altering events) may lead to volatile consequences.

The Relational Turbulence Model (RTM) [18] defines an artificial construct which enables

intelligent predictions of communication behaviors during relationship transitions, in an en-

vironment of continuous online social disruptions. Turbulent relationship development shifts

between continuous and affective communicative states of flux which are affected by the

polarization of sentiments. The extent of such polarizations are characterized by actor inter-

ferences and relational uncertainty as state transition probabilities that can cause conflict [1].

These two prime relational features in OSNs enable the effective detection and prediction of

conflict and event occurrences in sentimental and affective computing. While RTM explains

and predicts relational conflict through communicative behaviors between actors, Relational

Turbulence Theory (RTT) [19] correlates uncertainty and interference to specific behaviors,

actions and sentiments (either hidden or expressed). A summary of research work done on

relational turbulence is shown in Table 1.
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Table 1. Table of related research on relational turbulence.
Study Subject Features

[16] Relational Turbulence Theory Relational Interference, Intensity and Uncertainty,
Expectancy Violation, Engagement, Valance.

[31] Expectancy Violation Sentiment polarity, triadic closure, Emotion Gra-
dient, Relational State Aberrations.

[32] Relational Turbulence Model Relational disruptions, Relational state altering
events, Uncertainty, Associative irritations, Longi-
tudinal analysis.

[33] Theory of Engagement Multi-agent perspective, Engagement theory.

[26] Relational characteristics Reciprocity, Directed information transfer, latent
semantics.

[30] Relational state transitions Relational disruptions, Gradient turning points.

[1] Relational Intelligence Relational Turbulence profile, State transition.

[34] Relational Fractals Sentiment, Confidence, Mentions.

2.2. Event Prediction

As a broad overview, there are two categories of mainstream methods used for predicting

events. The first category is the markovian sequenced model (also known as association rule

based prediction) [35]. In this category, future event occurances are predicted based on past

event association patterns. While this approch is able to capture temporal features relative

to key (anchor) events, it assumes that events are correlated to each other in a fixed sequence.

The second category is the stochastic word distribution model (also known as narrative gener-

ation) [36]. In this category, future event occurances are predicted based on the topic-context

word (semantic) distributions surrounding key actors in question. For example, when the

name ”Donald Trump” and the topic-context ”President of the United States” is mentioned,

there will be major events which are stochastically related (e.g. trade wars, tax tarrifs, mexico

border, etc.). While this approach is able to draw a coreference resolution between word-topic

to events, it overlooks the temporal aspects of such occurances [36].

Recently, there is an emergence of a third category of multi-task learning models [10], [11],

[12], [13] which leverage on correlations of entities in knowledge graphs as pre-cursors to

an event. Although this approach is able to account for temporal and spatial dependences

for event prediction tasks, data sparsity and underlying relational dynamics still remains an

unsolved problem. Essentially, many such approaches turn to learning shallow attributes in

their attempts to describe complex communication behaviors at static “snapshot” instances of

information knowledge graphs [7], [8], [9]. As a result, their predictions generally suffer from

inaccuracies arising from coarse temporal resolutions. A concise list of recent event prediction

approaches are shown in Table 2. In summary, this research differs from existing mainstream

event prediction approaches in the following areas:

(i) Firstly, this research analyses tweets for complex topic detection, classification and

tracking. Existing methods such as [7], [8], [9] bias events towards certain topics in

question (i.e. crisis: such as riots, terrorist attacks, floods, etc.).

(ii) Secondly, this research introduces a new RTT framework as a structured theoretical

process that quantifies the evolution of learned relational features over past causals in

the event prediction task. To the best of our knowledge, there are no existing approaches

which have used a socially relational approach to address the problem of event predic-

tion. Existing techniques such as [37], [38], [39], [9] reduce complex relational features

and states into shallow attributes that result in inaccurate predictions of events.

(iii) Thirdly, this research introduces a new practical extended architecture that is capa-
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ble of leveraging on the design developed in [1] for unsupervised event prediction in

a continuous stream of social transactions. To the best of our knowledge, there is no

one similar architecture developed in mainstream approaches like [40], [41], [37] which

leverages on the efficient adaptive effects of fractal structures toward representing dy-

namic complexities of observed communicative relational behaviors in OSNs for event

prediction tasks.

Table 2. Table of related research on event prediction.
Study Research Modality

[38] Bayesian Method for Event Pre-
diction

emperical bayesian, belief based prediction, re-
gressive binomial event distribution, markovian se-
quenced model

[42] Shallow and Deep Learning for
Event Relatedness Classification

LSTM approach, event relatedness classifica-
tion, representation learning, coreference resolu-
tion model

[43] An Empirical Investigation of Dif-
ferent Classifiers, Encoding, and
Ensemble Schemes for Next Event
Prediction Using Business Process
Event Logs

Ensemble based classification, decision trees, rules
based classifiers, neural network classifiers, bag-
ging, boosting, random subspace, nested di-
chotomies, dagging, multi-task learning model

[44] Lazy event prediction using defin-
ing trees and schedule bypass for
out-of-order PDES

Lazy strategy on defining trees with scheduled by-
pass, hedging, lazy event prediction, multi-task
learning model

[39] Multi-scale temporal memory for
clinical event time-series predic-
tion

Dynamic patient-state model, predictive EHRS
event representation, markovian sequenced model

[37] Predictive Business Process Mon-
itoring via Generative Adversar-
ial Nets: The Case of Next Event
Prediction

Generative Adverserian Networks (GANs), recur-
sive learning, discriminative-generative neural net-
works, multi-taks learning model

[41] Events, Event Prediction, and
Predictive Processing

Active learning models, event maps, tempo-
ral structure, multi-task learning, markovian se-
quenced, coreference resolution model

[40] Computer System and Method
for Creating an Event Prediction
Model

multi-task learning model

[45] Complex event recognition in the
big data era: a survey

Event classification, complexity analysis, multi-
task learning model

[9] Learning Dynamic Context
Graphs for Predicting Social
Events

Knowledge graph, representation learning, graph
convolutional networks, multi-task learning model

3. Preliminaries And Problem Formulation

We begin our problem formulation as follows: given a relational flux Fε, we wish to predict

the probability of an event Eϕ occuring in the topic context Lε of the social transaction.

An important assumption that this study makes is that the order of events are randomly

distributed over the sentiments expressed in any given OSN/s. This key assumption derives

from the fact that most real-life events are weakly dependent on each other from a sequential

occurrence standpoint [23], [35]. Instead, they are highly correlated through key reciprocated

relational sentiments to their common topic supersets of interest [5]. To address this complex

problem in our study, the extended RFT model leverages on important logical and structural

key concepts developed in [1]. A detailed architecture of the FNN designed is given in Figure 3.

Event detection is done from learning relational turbulence profiles over multiple streams

of social transaction data. The main approach is two fold. Firstly, we break down initial

social streams for topic detection. Then, the detected topics are tracked to determine social

interest over time. Secondly, events are identified to be intense topics over a “burstiness”

index. Then, the social stream is re-queried for the identified events of interest. From the

newly acquired social stream, the key relational feature states between individual actor/entity

pairs of the social transaction flux are fed into the FNN as inputs which are then learned to
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produce the correlating relational turbulence profile. The turbulence profile - τij from each

actor pair is then passed through a gated recurrent unit (GRU) and both generator and dis-

criminator FNN in an adversarial framework to accurately predict event occurances as key

relational turbulence scores.

3.1. Events

We begin our approach with the definition of real-life events as bursty time-scaled periods of

highly intense, dense and volatile social transaction/s within a given Online Social Platform

[46]. In our study, we define events as actual occurances of topic-context related real-world

disruptions e within a time period Tε where the number of social transactions N and relational

turbulence τrl scores exceed peak thresholds ThN and Thτ respectively. An event peak signal

is identified by our model, as large transient spectral energy densities of expectancy violations

(EVs) ∂Erl

∂τrl
in Tε which leads to the aberration of relational states within the given OSN

community. These multi-dimensional peaks (e.g. frequency, sentiment, polarity, reciprocity,

etc.) arising from relational turbulence in an online social scene due to the occurrence of an

event carries a unique signature pattern defining the stretch and length to the profile of the

observed burstiness in information exchange within a given social network [47].

3.2. Relational Turbulence Model

The extended RFT model developed in this paper adopts the RTM approach derived in [1].

In the RTM model, relational turbulence P (τrl) is defined by likelihoods of relational intensity

P (γrl), relational interference P (ϑrl) and relational uncertainty P (ϕrl) of the model outputs.

Key contributing relational features at the input of the model are annotated confidence ρij ,

salience ξij and sentiment λij scores. Expressions of relational turbulence in the extesions of

the RFT model are derived from relational intensity, uncertainty and interference. They are

given by the defining equations (6) - (10) in [1].

3.2.1. Relational Turbulence Theory

While the RTM is adequate in offering a cause and effect framework used to model rela-

tional turbulence, it is lacking in three substantial areas. The RTM does not offer distinctive

processes through which key relational reciprocal features arising from actor uncertainty and

interference affect the evolution of relational communication behaviors [19]. Secondly, RTT

establishes correlations between a subset of causal relational features to observed sentimental

and affective social transaction behaviors, which are missing in the RTM framework [19].

Thirdly, RTT establishes a Markovian construct where specific signature evolution patterns

of graphical social transactions are correlated to their corresponding detected event occur-

rences. The RTM however, only models the time specific relational turbulence profile within

an identified relational flux [16].

The RTT framework [19] constrains the three key dyadic relational turbulence parameters

P [γrl, ϑrl, ϕrl] in a mixed contribution model of a relationship. These framework constraints

define that relationship parameters of dyadic actor uncertainty and interference contribute to

episodic a-priors of relational intensity P (γrl), communication polarity sgnrl, communication
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engagement εrl and reciprocal bias χrl. This graphical representation is given in Figure 2.

Communication engagement is defined mathematically as:

εrl ∈ Hom(qτ∈Tχij , γji) (1)

Such that the communication engagement εrl, represents the unique isomorphism εf : χ→ γ.

3.2.2. Expectancy Violation

We determine Expectancy Violations (EVs) as polar mismatches between expected and actual

reciprocates of the Confidence ρij , Salience ξij and Sentiment λij feature scores in actor-actor

relationships of social transactions during event occurances. These violations (however small),

are a contributing factor to temporal representations of relational turbulence - γrl, ϑrl and

ϕrl [1]. Aberration of relational states occur when some EV critical threshold is breached.

This critical threshold differes across specific relationships. The extended RFT model builds

on conflict escalation minimization from equations (1) and (2) in [1] to determine the EV

threshold of interest.

3.3. Topic Detection

The RFT uses topic detection techniques which are derived from two main branches of main

stream topic modeling methods. They are the stochastic and generative models [48]. Gener-

ative models use word distribution kernels over topic mixtures generated by the document.

It defines word co-occurrences to be mutually inclusive over the generative topics of a given

corpora [48]. Mathematically, it is expressed as:

P (Wi ∪ Vj) =
∑
i,j∈D

P (Wi) + P (Vj)− P (Wi ∩ Vj) (2)

Where Wi and Vj represent word co-occurances for all word pairs i, j articulated within a

document corpora D. The main weakness of using this approach is that syntactic word

choice information is not well handled [49]. Stochastic models on the other hand, statistically

infers topics from words in a given corpora. This is achieved from observations of word

distributions over a set of key documents to determine posterior likelihood estimations [48].

Mathematically, it is expressed as:

P (k|Wd,u,n) =
P (Wd,u,n ∨ k)P (k)∑
s∈k P (Wd,u,n ∨ k)P (ks)

(3)

Where k is the topic assignment of the word Wd,u,n in document d over the word passage u

with a co-occurance word count n and s is the topic segment in question. A main drawback

to this approach is that it makes no real assumptions about how distributions over topics and

/ or their word frequency correlations are masked. Thus, making exact word-topic inferences

intractable and inaccurate [50].

3.3.1. Wavelet Transformation

RFT uses wavelet transforms to identify events from a topic mixture signal. Wavelet trans-

formations enable analysis of signal profiles at specific time scales from full time windows of
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observations [51]. The method first starts by defining a mother wavelet ψ(tji). Then, it geo-

metrically reconstructs affinine child wavelets from the ψ(tji) signal form. This is achieved by

adaptively determining scaling and translation factors ν and φ respectively [52]. The process

can be mathematically described by:

ψν,φ(t) =
1

|
√
ν|
ψ(
t− φ
ν

) (4)

Where ν, φ ∈ < and ν 6= 0. Wavelet transformations fall into two broad categories. They are

the discrete (DWT) and continuous (CWT) transforms [5]. While the CWT enables smooth

detection of slow and continuous varying features, DWT provides a more efficient mechanism

of detecting discontinuous signals [47].

3.4. Fractal Neural Network

At the core of the extended RFT structural design, this study adopts the Fractal Neural

Network (FNN) in [1]. This FNN is used in both discriminator and generator networks of our

architecture to determine accurate likelihoods of event predictions from ranked likelihoods of

relational turbulence profiles.

3.4.1. Adversarial Learning

The framework of our system model is structured within a robust adversarial learning ap-

proach [53]. The principle of adversarial training mechanisms leverage on two important

stages of the learning model. The first stage implements a generative neural network (NN)

architecture which is used to create false positives (posteriors) from a bag of input training

samples. This stage is processed in synchronization with calculations of actual truth values

shared from the same bag at the input. The second stage involves the use of a discriminative

NN design which will then estimate an actual output based on a risk / reward mechanism [54].

The discriminative model estimates outputs based on concatenations of inputs which are de-

rived from both generative and real-valued model outputs [55].

3.5. The Model Problem

From a practical viewpoint, wavelet signal structures of an event can be used to match real-

time information exchanges in an active stream efficiently [47]. However, when used to predict

events, it is highly inaccurate [56]. Furthermore, a key assumption we make in this paper

is that the order of events are randomly distributed over the sentiments expressed in any

given OSN/s. This key assumption derives from the fact that most real-life events are weakly

dependent on each other from a sequential occurrence standpoint [23], [35]. Instead, they are

highly correlated through key reciprocated relational sentiments to their common topic su-

persets of interest [5]. Furthermore, the high costs of mainstream turing learning designs used

to generate strong adversarial examples makes training impractical on large scale problems

like Twitter, GoogleFeed or LiveJournal [53].

3.6. Our Model Solution

Our model effectively tackles the problem of topic drifts and establish soft event footprint

evolutions over time. To achieve this, we use the non-parametric mixture model [57] to detect
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topic models over a continuous time stream of social exchanges on Twitter, GoogleFeed and

LiveJournal. Additionally, we have adopted the Discrete Wavelet Transform (DWT) to over-

come the problem of solving for an infinite number of coefficients - which is computationally

intensive [5]. In our architecture, an adapted hybrid FNN is used to drive predictable, accu-

rate and strong estimations from continuous input data streams [55]. Our approach achieves

this objective without the associated heavy computational costs by a dynamic true depth

scaling technique. This mechanism is used to build and collaspe affinine structures in the

FNN design [21].

Fig. 1. Event Prediction System Architecture. The diagram shows The different stages of the

generalized event prediction process. The first stage identifies topic mixtures, the second stage
extracts events from trending topics and the third stage predicts future event occurances.

Fig. 2. The simple RTT framework. The diagram shows the construct of how the simple relational
turbulene theory is designed and their positive and negative valance affecting interdependent

feature entities in relational turbulence.
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Fig. 3. The RFT Baseline Design. The diagram shows the baseline architecture of a simple

convolutional perceptron which was used in the study to build an efficient Fractal Neural Network.

Fig. 4. A GRU Baseline Implementation. The diagram shows the basic design of a Gated Recurrent
Unit used in stage three of the RFT architecture.

4. Model and Methods

A high level system architecture of our model is given in Figure 1. Specifically, in our design,

data is streamed from online social platform sources (Twitter, GoogleFeed and LiveJournal).

In active streaming, the data is continuously pulled from multiple server sources through

a data hash pipe using their respective APIs (for GoogleFeeda, Twitterb and LiveJournal

ahttps://developer.feedly.com/v3/search/
bhttps://developer.twitter.com/en/docs.html
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Fig. 5. Peak Event Signal Scores. The diagram shows a typical event topic signal profile.

Fig. 6. Change of Wavelet Entropy. The diagram shows the wavelet entropy gradient profile of
event topics of interest.

syndicated accountscd). Incoming streams are filtered according to queries of interest and

decoded at the pre-processing stage of our model. This procedure extracts key confidence

ρij , salience ξij and sentiment λij scores in a social transaction using Googles NLP APIe.

Firstly, all Information Retrieval (IR) in the first active stream before pre-processing are

fed into the first phase of our model. This phase handles topic detection from a contextual

corpus of words. The topic model developed in our implementation is derived from a large

text corpora by learning the thematic structure of key vocabulary word embeddings [49].

Our approach uses the non-parametric mixture model as a statistical inference mechanism to

deduce likelihoods of the underlying topic-word distributions and reject anomalous syntactic

word-topic combinations [50]. It is noteworthy of mention that various other word distribution

models like Latent Dirichlet Allocation (LDA), correlated topic models, Pachinko allocation,

etc. may be assumed and used as drop-in replacements [48], [58], [59]. The second phase of our

model performs continuous wavelet transformation on detected topics from the first phase.

This technique is used to decompose the topic mixture signal to uncover unique localized

predicate signals for key anchor words in a time-scaled domain [5]. After signal decomposition,

peak detection is then performed on these topic mention frequencies [47]. Following peak

chttps://fetchrss.com/api
dhttps://www.livejournal.com/syn
ehttps://cloud.google.com/natural-language/
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detection, an LDA inference mechanism based on the Gibbs sampling approach is then used

to detect and identify events from the extracted topics in the first IR text stream [59]. Once

the events have been identified and their unique contextual key word signatures learnt, these

events are then re-queried in a second IR data stream. The continuous information flow

received from this query allows us to focus our application of the RTT framework onto specific

detected events of interest. The second IR stream is then pre-processed from the query. From

the pre-processing phases, the key relational feature vectors ρij , ξij and λij are fed into a

three stage FNN to predict the occurrence of the queried event. In the first stage, relational

turbulence features like Intensity P (γrl), Interference P (ϑrl) and Uncertainty P (ϕrl) are

learnt over the occurrences of past events. Then, in the second stage, output from each first

stage FNN are fed into a Gated Recurrent Unit (GRU) structure where cell states of the Long

Short Term Memory (LSTM) are constantly updated with merged forget and input gates [60].

Finally, in the third stage of the FNN architecture, the GRU cell states containing long term

memory structure of peak turbulence features at the hidden layers are retrieved. They act

as concatenations to turbulence inputs of streaming social transactions about an interesting

event. The discriminator FNN at this stage is then used to predict the likelihood of when an

event will occur.

4.1. The RFT Design

We begin the design of our model with the definition of a soft kernel used to discover a

markovian structure which we then encode into confabulations of fractal sub-structures. For

a given set of data observables as inputs: χ ∈ X and outputs: Ξ ∈ = we wish to loosely define

a mapping such that the source space (X,α) maps onto a target space (=, ω). The conditional

P (χ∨ ω) assigns a probability from each source input χ to the final output space in ω. Each

posterior state-space from in between input to output is generated and sampled through a

random walk process. It is worth noting that markovian random walks are used to build a

more generalized stochastic discovery process in our experiment. However for larger datasets,

any one of the more sophisticated markovian sampling methods (e.g. Gibbs, Monte carlo,

Metropolis-Hastings, Hamiltonian, etc.) can be used as drop-in replacements. An indicator

function which we have chosen to describe the state transition rule is:

Θt+1 = min

{
0

qnc=1
δEc

t+1

δχc
t

(5)

Where δEct+1 is the error change from one hidden feature activity state ht ∈ H onto higher

posterior confabulations. The objective function at each transition seeks to minimize error

gradients to eliminate problems associated with exploding and vanishing gradients during

backpropagation. This can be caused by an excessive generation of layered confabulations

which leads to unnecessary increments in depth from the markovian ANN discovery mecha-

nism. For a general finite state space markovian process, the markov kernel is thus defined

as:

Kern(M) =

{
p : X × ω → [0, 1]

p(χ|ω) =
∮
ω
q(χ,=)ν(δ=)

(6)

Once a unique markovian neural network has been discovered, a Single Layer Convolutional

Perceptrion (SLCP) is proposed as a baseline structure to learn the fractal sub-network from
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pre-existing posterior confabulations. The SLCP baseline structure (Figure 3) changes as

discovered knowledge is progressively encoded during the learning process. Although for sim-

plicity we have used the novel SLCP architecture as our baseline schema; in reality however,

any one baseline model can be used to learn a morphing transposition into a fractal signature

structure. In essence, methods like Progressive Neural Networks (PNNs) where activation

links of neighboring DNN stacks are learned laterally across hidden layers [61] or the wide

use of summarizing information from ensemble methods like distillation [62] are relevant al-

ternatives.

From the viewpoint of a DNN architecture, we can define an input to output transition

broadly as:

Yn = KXn +B (7)

Where n corresponds to the number of layers in the stack, Yn is the expected output, Xn is

the data at the input and B is the network bias. K is a unique signature of transpositions of

hidden activities from source to destination data spaces which we wish to capture and encode

into RFT. For an N-deep neural network, K can be expressed as a chained state of lower to

upper activation weights:
N∏
n=1

UTn σW
T
n (8)

Where T is the target tensor, UT are the upper layer target vector weights and WT are the

lower layer weights. In our model, σ (sigmoid logistic function) was arbitrarily chosen as the

default activation for each neuron. Since posterior hidden activities hn ∈ H are known, then

an error derivative which converges to zero gives:

U = (HHT )−1HTT (9)

Which essentially states that upper layered weights maintain a canonical property of identical

symmetry and reversibility about each hidden layer activity H and the target T . The hidden

layer encoding technique was built using the following optimal maximum entropy constraint:

minP (ψ|φ) −H(P ) =
∑
ψe,ψz

P̄ (φz)P (ψe|φz) logP (ψe|φz) (10)

Where ψe are the feature transposed structure states and φz are the given posterior hidden

feature weights. The transposed structure state ψ is given simply by the mathematical relation

as:
n∑
e=1

ψe =

i∑
z=1

Θzφz ⊕ kzψz + ρz (11)

Where kz is the morphing constraint on the trans-positioned structural states ψz in z poste-

riors and ρz is the normally distributed transpositioned errors as: ρz N(0, Qz). Such that Qz
is the error covariance matrix. The estimation of P (ψ|φ) that minimizes H(P ) is done using

the Lagrange parameters ς. The convex solution is then estimated as:

Pς(ψ|φ) =
1

Dς(z)
exp(

F∑
n=1

ςnfn(z, e)) (12)
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Where n denotes the number of features measured in a dataset. Once feature entropies have

been encoded into the fractal subnetwork, this structure is then used to generate depths

for highly sophisticated model representations. This is done through de-quantization of the

entropy decoded (expanded) model as:

Gk
′
(ψ|φ) = Gk(ψ|φ)× k(ψ, φ) (13)

Where Gk
′
(ψ, φ) is the de-quantized graphical representation of the confabulations to the

sophistication levels of a feature tensor from the previously encoded fractal structure Gk(ψ|φ).

A safe stopping condition is triggered when error gradients approaches zero for expectations

to converge. The theoretically desired condition is given as:

E(Y ) = P (Y |X)∀δE
c
n

δχcn
→ 0 (14)

Where
δEc

n

δχc
n

is the error gradient of each confabulation at every epoch.

4.2. The First Phase

In the first phase, RFT uses topic detection techniques which are derived from two main

branches of main stream topic modeling methods. They are the stochastic and generative

models [48]. Our approach uses the non-parametric mixture model [57] as a statistical infer-

ence mechanism to deduce likelihoods of the underlying topic-word distributions and reject

anomalous syntactic word-topic combinations [50], [63]. Given a continuous stream of con-

textual information exchanges forming the corpora, we assume that each time-batched social

transaction dj ∈ D, contains a unique set of tokens ζi ∈ Z over a Hierarchical Dirichlet Pro-

cess (HDP). Each token atom is defined to be constructed from an ordered pair of word-time

primitives. We further assume that the temporal variation of each word-topic pair follows a

multi-modal distribution given mathematically as:

P (kn,t|ζn,t) = (

S∑
s=1

P (s ∨ ζn)P (knt ∨ ζnt, s)) (15)

Where P (kn,t|ζn,t) is the conditional probability that topic k (an unknown prior) is chosen

for the token ζ. Our topic inference mechanism is based on a Markov Chain Monte Carlo

(MCMC) estimation process built around HDP mixtures [50] to efficiently label topics accord-

ing to a Dirichlet distribution process over a shared relational hierarchy of parent-child topic

segments. We establish that each token atom ζ, is associated to an atom specific decision

δ(ζ) - which maximizes likelihoods of a topic assignment to a token and minimizes errors of

the relationship made with the label. In turn, each δ(ζ) is correlated to the word observed

from the document-token indexed pair. Additionally, each δ(ζ) is also correlated to the time

window of the document-token indexed observation pair. The sampling τji over the time

dirichlet distribution process G(tji) is described mathematically by our model as:

P (τji = tji|t−ji, k) ∝

{
n−jtWji

In a previous time step

α0 Otherwise
(16)
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Where n−jtWji
is the token word Wji frequency , over an observation time window t and α0 is

the scaling factor of the word dirichlet distribution.

4.3. The Second Phase

In the second phase, RFT uses wavelet transforms to identify events from a topic mixture

signal [47]. Wavelet transformations enable analysis of signal profiles at specific time scales

from full time windows of observations [51]. The method first starts by defining a mother

wavelet ψ(tji). Then, it geometrically reconstructs affinine child wavelets from the ψ(tji)

signal form. This is achieved by adaptively determining scaling and translation factors ν and

φ respectively [52]. In this phase, wavelet transformation is used to identify events after a

topic mixture (TM) has been successfully sampled from the previous step. Since each topic

category already contains words with high likelihoods of association with it, we are only

interested in separating specific events from general themes of discussion in our mixture. We

analyse TM signal profiles at specific time scales from the full time window of the document-

token indexed observation pair tji. This is done over all tokens ζi of the social transaction

batch di of interest. The resolution of this transform is adaptively adjusted according to

approximations of sharp discontinuities from forest (wide window) to trees (small window).

These approximations allow us to separate specific events from general themes of discussion.

From equation 5, we then classify token-topic signals in a given time scale as:

Sk(t) =
Nk(t)

N(t)
× log

∑T
x=1N(x)∑T
x=1Nk(x)

(17)

Where Nk(t) is the number of transactions which contain the token ζ referenced by the topic

k and appears within the time window (t − 1 ≤ t ≤ t + 1). N(t) measures the total number

of transactions within that same time window. The fraction Nk(t)
N(t) denotes the salience of a

topic k over the sampling time scale of interest. While the second term on the right measures

the inverse log-linear relationship between the number of times a topic has been referenced

to from a token taken as the target observation. Essentially, the second term acts as a linear

scaling factor to filter out false peaks. This means that topics which have less mentions within

a sample window of transactions are disregarded as general discussion themes (with low signal

- Sk(t) peak scores) while topics with more mentions within that same sample time window

are identified as potential occurring events (with high signal - Sk(t) peak scores) within the

same time window in question. Since events are characterized by short “bursts” of token-topic

mentions over a time window of tweets, we can easily identify if a topic belongs to an event or

general discussion theme by analyzing both signal peak scores Sk(t) and entropy changes of

a wavelet [46], [64]. We use the normalized form (H-measure) of entropy measure to identify

changes in token-topic wavelet entropy across longer observation time frames. This is given

mathematically as:

4H(Sk(t)) =

{
Ht+4−Ht−1

Ht−1
For Ht+4 > Ht−1

0 Otherwise
(18)

Where H is the H-measure of the topic signal Sk(t) and 4H is the H-measure entropy.
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4.4. The Third Phase

In this phase of the model, we apply the three stage FNN architecture to predict the likelihood

of event occurances.

4.4.1. GA-FNN

The macro-framework of our system model is structured within a robust adversarial learning

approach [53]. The principle of adversarial training mechanisms leverages on both generative

and discriminative stages of the learning model. The generative stage uses a generative

Neural Network (NN) design to create false positives (posteriors) from a bag of input training

samples and truth values. The discriminative stage involves the use of a discriminative NN

design which will then estimate an actual output based on a risk / reward mechanism [54]

from both generative and real-valued model outputs [55].

The Generative FNN. For the first stage generative DNN architecture, a Convolutional Re-

current Network (CRN) [65] fractal is used to learn from pre-existing posterior confabulations.

We define an input to output transition broadly as:

Yn = KXn +B (19)

where n corresponds to the number of layers in the stack, Yn is the expected output, Xn is

the data at the input and B is the network bias. K is a unique signature of transpositions

of hidden activities from source to destination data spaces which we wish to capture and

encode into RFT. We determine a safe stopping condition for the growth of confabulation

depth layers. This is triggered when error gradients approaches zero for expectations E(Y )

to converge. The theoretically desired condition is given as:

E(Y ) = P (Y |X) ∀ δEcn
δχcn

→ 0 (20)

Where
δEc

n

δχc
n

is the error gradient of each confabulation at every epoch and P (Y |X) is the

conditional probability of estimation between input X and output Y .

The LSTM Structure. The second stage RFT architecture involves taking outputs from

the first stage FNN framework and remembering them as cells to a larger LSTM structure.

Given a hidden layer ht−1 from a learned FNN architecture, we wish to remember the output

activations and weights of the confabulations at the peak of the episodic social turbulence

attributed to the occurrence of a past event. The design of the LSTM structure is built

with three gated functions that allow pass-through or blocking of convolutions from both

episodic confabulations and current inputs which act as updates to the cell committing these

confabulations to long term memory. This first sigmoid gate resets old, in favor of new

information that is learned from the eventful social transaction stream. The new information

here corresponds to higher peaks in turbulence features learned from the first stage RFT.

Mathematically, this can be written as:

st = σ(Ws.[ht−1, nt]) (21)

Where rt is the output of the reset gate (volatile memory), which is driven by the single layer

neural network weights Ws on the convolutions of both LSTM cell inputs (ht−1) and external



L. Tan, T. Pham, K-H Hang, and S-K Tan 81

confabulations (nt). The next gate is the update gate which acts as both input and forget

gates of traditional LSTM models. The update gate is driven mathematically as:

ft = σ(Wf .[ht−1, nt]) (22)

Where ft is the output of the update gate (persistent memory), which is driven by the single

layer neural weights Wf on convolutions of past LSTM cell memories and current inputs.

This gate decides which new information is important to add and what old information is

unimportant and gets thrown away. Finally, the last gate is the output gate. This gate decides

what the next hidden state should be from memories stored in the LSTM cell. It is given

mathematically as:

ht = (1− ft) ∗ ht−1 + ft ∗ h̃t (23)

where,

h̃t = tanh(W.[St ∗ ht−1, nt]) (24)

Here, h̃t represents the updated cell memory. A detailed structure of our GRU implementation

is given in Figure 6.

The Discriminative FNN. Finally, in the third stage of the RFT architecture, hidden con-

fabulation states remembered by the GRU are then passed onto the last discriminative FNN

architecture which is built on a single layer convolutional perceptron fractal. The confabu-

lation prediction outputs of the social transactions during episodic events from the GRU are

concatenated to the confabulations from inputs of the model in a current social stream of

transaction data calculated from equations 3, 4 and 5. Mathematically, this is represented as:

Ht = A(Wt.(ht ⊕ ht−1)) +B (25)

Where Ht is the next hidden layer activity, A is the activation function, Wt are the hidden

layer weights, ht ⊕ ht−1 is the concatanate of both (event) episodic and current hidden layer

activities and B is the prediction bias. This is given mathematically as:

B =

{
ht−ht−1

ht−1

0
(26)

This bias is translated as gradient changes across the hidden confabulation layers.

5. Experimental Implementation

5.1. Experimental Data

The experiments were conducted on three datasets using RFT and five different baseline algo-

rithms. The datasets are: Twitter, GoogleFeed and LiveJournal. We have chosen these three

datasets because they are widely benchmarked throughout the academic circle for studies in

sentimental computing and can be easily understood by the audience of this paper.

The first is the LiveJournal dataset streamed from syndicated accounts. We use the top

20 syndicated community sites to retrieve real time feeds from the RSS API. We use snopesf,

fhttps://www.snopes.com
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slashdotg, google blogh, reutersi and BBC newsj accounts to capture realtime RSS news feeds

and comment posts on international developing topics of debate. The dataset collectively

contains approximately 1 billion feeds generated from about 300 external sources from the

five chosen syndicated accounts streamed from 03 September 2018 to 31 August 2019. The

data feed stream was broken down using googles NLP API to provide the inputs we require

of our training model.

the second is the Googleknews feed dataset obtained from the repositories of feedly cloud. The

GoogleFeed dataset allows us to demonstrate the capability of RFT in generalizing relational

turbulence profiles across a hetrogeneous graphical structure. The dataset was streamed with

the feedly API and broken down from the extracted feed contents. Specifically, in this in-

stance the feedly cloud - which processes over 50 million feeds per hour was used to extract

GoogleFeed metadata and contains approximately 668522179 entities and 9923167883 dyads

accumulated from 03 September 2018 to 31 August 2019.

The last dataset is streamed from twitter in real-time using the twitter streaming APIl .

In our experiment, our twitter dataset was streamed for 756 million tweets across 253 million

nodes and over 1 billion links - cumulatively from 03 September 2018 to 31 August 2019. The

Twitter4J contains APIsmfor classifying raw tweets that allows us to integrate their classifiers

into our deep learning model. Their plug-in module allows us to stream tweets continuously

over a span of time and their filters allowed us to query tweets by geo-locality so that we were

able to detect interesting evolving events. In addition to the sentiment results obtained from

their model, we cross validated the output against googles NLP API to replicate the most

accurate sentiment scores and magnitudes of context spaces and mentions.

5.2. Experimental Model Baselines

We consider several state-of-the-art methods for comparison with our proposed RFT model.

Since our model is the first in line for this type of adaptive online event predictive approach,

we use modified versions of similar methods along with the baselines we developed earlier for

comparison. Another notable point is although many prediction models exist, not all methods

have the same goal or data features as ours. Therefore we consider only the models which

use similar data to ours for comparison. It should be mentioned that not all the methods

can both predict events and profile communication patterns together. Therefore we compare

only the event prediction outputs between each other. The short description of the competing

methods are given below:

Association Rules Prediction (ARP) [35] is a rule based approach which predicts fu-

ture events from past observations of event sequences. This baseline enables us to directly

ghttps://m.slashdot.org
hhttps://www.blog.google.com
i https://reuters.com
jhttps://www.bbc.com/news
khttps://news.google.com
l https://developer.twitter.com/en/docs.html
mhttp://help.sentiment140.com/api
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model underlying conditional probabilities. For our experiments, we use the Bayesian shrink-

age estimator to adjust the confidence of rule probabilities which are conditionally dependent

on previous event occurances in a sequence. This “adjustable” confidence technique allows

highly accurate, frequently apprearing rules of sequential events to be chosen for the predic-

tion probabilities of an event.

Compositional Neural Network (CoNN) [36] is a model which extracts knowledge of

event sequences from text. This method is built around neural composition representations

of word arguments and predicates to events. In our experimental baseline, word vectors from

news feeds, posts or tweets about an event is fed into the neural network model. Argument

compositions are then generated as hidden layer activities using the tanh function. The higher

event composition layers are then used to produce a coherence score which measures the like-

lihood that two events belong to the same sequence. This measure is then used to rank the

predictions of future events of interest from currently developing events.

Hidden Markov Model (HMM) [66] is a method used to predict future event occurances

based on current latent markovian relationships of observed event development stages. This

baseline method leverages on characteristic patterns of event occurance sequences prior to a

future time frame t+4t. For this baseline model, we extract the sequence of event develop-

ment stages from past news feeds and posts. Using the HMM model, we then characterize the

event development stages using normalized event mentions. We define the burstiness of an

event as the ratio of event mentions to the total number of mentions within a time window tw
of interest. From a 7-day moving average, we then deteremine a state transition probability

matrix to predict the likelihood of a future event occurance.

Hybrid Probabilistic Markovian (HPM) [2] is a mixed probabilistic time-series model

that captures trends and periodicity of associated events. This baseline approach leverages

on an autocorrelation function to classify event time sequences as periodic, partially-periodic,

trend-based or random. In our experiments, we capture historic time series y of detected

peaks Q of an event in question. We then use the time series periodicity determined by lags

in the autocorrelation function to compute the probability of future event peak occurances P

in a temporal frame t of interest. The prediction of an event at a future instance yt is then

calculated as the average of the peak profiles which were historically detected for all t ∈ P .

Generalized Logit Model (GLM) [67] is a logistic regression technique which is built

from semantic knowledge of text sentiment representations. This baseline method directly

models topic distributions of events which are extracted using the Latent Dirichlet Allocation

(LDA) technique. As a three step process, this method first extracts events using Semantic

Role Labeling (SRL). Topic distributions of the extracted event in the text are then discovered

using LDA. Finally, events are predicted using linear regression. In our experiments, we use

the topic distributions about past event occurances from the first phase of our model (after

the pre-processing stage) to predict the likelihood of future occurances. We achieve this using

the baseline logistic regression model with parameters β0...βn estimated from apriori eventful

datasets.
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GDELT (True Value) The GDELT repositoryn is used to choose significant events from

April to August 2019. The dates at which the events took place are used as truth values

against the models prediction. The event topics we have selected from this dataset include:

”One Belt One Road”, ”Terrorist Attack”, ”Trade Tariff Cuts”, ”Mexico Border” and ”Pacific

Hurricane”. Due to space constraints, only three of the chosen five events will be discussed

in the section of experimental results.

Relational Flux Turbulence (RFT) is the model which we have developed in this paper

that builds on the FNN learning framework. Using our model, we deploy the key relational

features of our interest and dynamically adjust depth of the architecture according to the

complexity of learning at the inputs. RFT uses both the RTM inspired framework and FNN

to recursively build a fractal during active online learning, which is then used to predict the

likelihoods of event occurances at the output.

5.3. Experimental Design

Figure 3 describes the inputs into our model. Specifically, the RFT model accepts as inputs,

the confidence of the detected category in every social transaction, the Salience of all de-

tected entities in the transaction, the sentiment scores and magnitudes of entities, mentions

and drifting contexts. These eight relational features form the key independent input into our

RFT fractal neural network (FNN) model. Additionally, the outputs (Relational Intensity

γrl, Relational Interference ϑrl and Relational Uncertainty ϕrl) which represent turbulence

are fed back into the model as recurrent inputs into the neural network to act as memory

retention for the relational turbulence profiles of previous transaction/s, and as good influ-

ential initialization points for new training sequences of extracted sentiments in later social

transactions.

Relational Turbulence was calculated from conditional posteriors of γrl, ϑrl and ϕrl as the

mathematical relation of:

P (τrl) =

n∑
i=1

P (γi|θi)P (ϑi|ϕi)P (ϕi|γi)
NiP (γi)P (ϑi)P (ϕi)

(27)

The inputs were tested across the RFT dynamically stacked Fractal Neural Network (FNN)

and our chosen baseline models. The learning results were compared using both F1 score

and K-fold cross validation to measure both accuracy and performance of the prediction.

We define positive predictions as likelihood scores for the occurance of an event in question,

which have been estimated by RFT and our baseline models to be at 0.7 or higher. The

“truth” at the timeframe (+/-1 day) of this prediction is cross validated against archived

events extracted from GDELT. The actual training data was from 03 September 2018, to 01

April 2019 and the test data from 02 April, 2019, to 31 August, 2019.

nhttps://www.gdeltproject.org/data.html#rawdatafiles



L. Tan, T. Pham, K-H Hang, and S-K Tan 85

5.4. Parameter Settings

In our experiments, we choose our system model parameters based on the combined effect

of several factors - including errors in observational data, choices of calibration methods

and Design Of Experiment (DOE) criterias [68]. We use a hybrid of both global and local

Sensitivity Analysis (SA) approaches to determine and specify the best performing param-

eters for experimentation based on a predefined behavior threshold for our model. Firstly,

we generate a sample set of parameters at 0.1% intervals within realistic operating ranges

of each parameter setting. For example, for learning rate, we generate a set of parameters

0.0, 0.1, 0.2, 0.3, ..., 10.0 across a feasible space. Then, we use the PSUADE [69] open source

software to analyze input-output relationships of statistical and sensitivity metrics. These

metrics are obtained from the varying attribution of output distributions due to changing

model parameters with inputs being kept constant [70].

As determined by our approach, our experiments were conducted on our training model

with a learning rate set to 1.1, a sliding window set to 3, an error tolerance set to 0.1 (10%),

a data outlier threshold set to 1.0, with scaling set to 10, a vanishing gradient error threshold

at 0 and an exploding gradient error threshold set to 100. Finally, our trust region radius

parameter was set to 5 and our softmax temperature regularization parameter at 1.2.

6. Analysis and Discussions

6.1. Experimental Findings

The tests were run across the baselines and our RFT model. For clarity and simplicity of

explainations, approximately every 10000th running data from a chosen testing output sample

set is plotted on a graph and displayed for discussion purposes. Additionally because of space

constraints, only the F1 score results of experiments conducted on the chosen events are

shown. The results are displayed in Figure 7 - 12:

Fig. 7. Figure of Live Journal Event Prediction.
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Fig. 8. Figure of Google Feed Event Prediction.

Fig. 9. Figure of Twitter Event Prediction.

6.2. Performance Measurements

The F1-score test was conducted on the results obtained from the experiments. We chose this

benchmark because importantly, the F1 score measures both contributions of precision and

recall as important metrics to access the performance of the RFT prediction to the baseline

models prediction of future events. Specifically, the F1 score is given as:

F1 =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(28)

Where

Precision =
(TruePositives)

(TruePositives+ FalsePositives)
(29)

And

Recall =
TruePositives

TruePositives+ FalseNegatives
(30)
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Where precision in our experimental design corresponds to the accuracy of predicting actual

true positives and recall measures against the dependability of the predictions.

6.3. Testing Results

Fig. 10. Table of F1 score between baseline models and RFT event prediction for the Twitter
validation dataset averaged over k cross validations.

Fig. 11. Table of F1 score between baseline models and RFT event prediction for the LiveJournal

validation dataset averaged over k cross validations.

Fig. 12. Table of F1 score between baseline models and RFT event prediction for the GoogleFeed

validation dataset averaged over k cross validations.
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Fig. 13. Table of K-fold cross validated MAPE for all learning models.

Finally, during the experimentation, the full datasets obtained from the different sources

(twitter, google and live-journal) were partitioned into k-subsamples. One of the subsamples

was retained as the validation set for each run and the validation set was chosen in a round

robin fashion for subsequent experimentation runs. A noteworthy point of mention is that K

fold cross validation is used in our experimentation design to obtain a good estimate of the

prediction generalization. This testing technique does not scale well to measurements of model

precision. How accurately a learning model is able to predict an expected output is based

on the F1-scores [71]. K-fold validation was performed over all data streaming sources learnt

and predicted by the RFT framework across the Mean Absolute Percentage Error (MAPE)

measurement of each run. Mathematically, MAPE can be expressed as:

δMAPE =
1

N

N∑
i=1

|Ei(x)− Yi(t)
Ei(x)

| (31)

Where Ei(x) is the expectation at the output at data input set i and Yi(t) is the corresponding

prediction over N total subsamples. The tabulation of the K-fold cross validation used in our

experimentation is given in Figure 13.

6.4. Investigation Of Results

As can be seen from the graphs, our RFT model measures comparably well to the other

baseline models for future event occurrences. Additionally, across all sources of information

streams, it is capable of measuring high F1 scores over events which have been recognized by

our framework from a mixed set of detected topics.

As can be readily observed from Figures 10 to 12, prediction over events like terrorist at-

tack and mexico border do not fare as well as other events like one belt one road. This can

intuitively be attributed to the fact that terrorist attacks, mexico border topics and their

associated events have either not occurred or that have a high degree of uncertainty in their

occurances. As such, positive examples for such past occurrences have been sparse and diffi-

cult to acquire and train our model adequately with.

Generally however, it can be observed that from Figure 13, as the number of sub-sample

windows increases over the dataset, the MAPE over all data sources decreases considerably.

This means that a longer continuous training sample set will produce more accurate results

from the total bag size of samples. Thus, it can be intuitively inferred that the longer the

time frame spent on learning a continuous stream of social exchanges, the more accurate the

prediction of events will be for topics which are currently tracked.
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6.5. Parameter Influence

RFT is a complex architecture which contains several critical hyperparameters. We study

these parameters from two key perspectives of the model. 1) the FNN dynamic depth scaling

and 2) the regularization. Our validation and verification (V&V) strategy involves varying

one parameter while fixing others in turn - to evaluate their influences. Our results show that

RFT is capable of stabilizing performance over a specified range of parameter settings.

The first parameter we evaluated was the dynamic depth scaling threshold of our FNN

model. We varied this across the range from 1 to 20. The tabulated Precision, Recall and F1

scores from the predictions of events (measured against GDELT) were plotted on the graph in

Figure 14. As can be seen from the results, RFT generally predicts more accurately as scaling

thresholds are gradually increased from 1 to 9. The performance of the results stabalizes

after a threshold of 10. Specifically, we obtained the best results when the scaling threshold is

tuned to 10. A slight dip in performance after this threshold is indicative of overfitting since

more depth in the model creates more complexity. Hence, a scaling threshold of 10 offers the

best model performing results.

The second parameter we analyzed was the effect of regularization (which controls overfit-

ting by penalizing the model if weights become too large or many) on the models prediction

performance. We fix the scaling threshold parameter to 10 and adjusted the regularization pa-

rameter from 0 to 3 in increments of 0.1. An illustration of the resulting prediction Precision,

Recall and F1 scores are given in Figure 15. We observe that generally, peak performance

scores tend to fall within a tight range between 1 to 1.5. The results suffer when regular-

ization is tuned outside this range, which is indicative of both underfitting and overfitting of

data. Hence, it proves that a regularization of parameter setting around the region of 1.2 is

sufficient to stabilize the performance of our model results.

Fig. 14. Performance on different dynamic depth scaling thresholds.
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Fig. 15. Performance on different regularization parameters.

6.6. Ablation Study

An ablation study was done on the key input parameters to the RFT model. Our approach

verifies the influence of these parameters on prediction performance by occluding the re-

lational parameters (confidence ρij , salience ξij and sentiment λij scores) in turn. Figure

16 shows our results. As mentioned in the problem formulation: with the consideration of

relational turbulence (which relates to relational reciprocity bias, sentimental and affective

communication patterns, state altering events and role-recognition behaviors), RFT is capable

of making accurate predictions of event occurances. As evidenced by the significant decreases

in model prediction performance in Figure 16, we note that ρij , ξij and λij are all important

contributing parameters to measures in Precision, Recall and F1.

Fig. 16. Ablation of our proposed RFT model.

7. Conclusion

In conclusion, our research provides new insights into event prediction from a relational in-

telligence perspective that results in more accurate predictions over time. Our results show

that the FNN model is capable of learning adaptively to the complexity of information re-

ceived in real-time. Our study uncovers three pivotal long-term objectives from a relational

perspective. Firstly, relational features can be used to strengthen medical, cyber security
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and social applications where the constant challenges between detection, recommendation,

prediction, data utility and privacy are being continually addressed. Secondly, in fintech ap-

plications, relational predicates (e.g. turbulence) are determinants to market movements -

closely modeled after a system of constant shocks. Finally, in artificial intelligence applica-

tions like computer cognition, robotics and neuromorphs, learning relational features between

social actors enables machines to recognize and evolve.
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