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Indexing the Web of Data offers many opportunities, in particular, to find and explore
data sources. One major design decision when indexing the Web of Data is to find

a suitable index model, i.e., how to index and summarize data. Various efforts have

been conducted to develop specific index models for a given task. With each index
model designed, implemented, and evaluated independently, it remains difficult to judge

whether an approach generalizes well to another task, set of queries, or dataset. In
this work, we empirically evaluate six representative index models with unique feature

combinations. Among them is a new index model incorporating inferencing over RDFS

and owl:sameAs. We implement all index models for the first time into a single, stream-
based framework. We evaluate variations of the index models considering sub-graphs

of size 0, 1, and 2 hops on two large, real-world datasets. We evaluate the quality of

the indices regarding the compression ratio, summarization ratio, and F1-score denoting
the approximation quality of the stream-based index computation. The experiments

reveal huge variations in compression ratio, summarization ratio, and approximation

quality for different index models, queries, and datasets. However, we observe meaningful
correlations in the results that help to determine the right index model for a given task,

type of query, and dataset.
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1. Introduction

Graph indices are well-established to efficiently manage large heterogeneous graphs like the

Web of Data. In general, one can distinguish instance-level indices and schema-level indices

for the Web of Data. Instance-level indices focus on finding specific data instances [1, 2, 3],

e. g., searching for a specific book by its title such as “Towards a clean air policy”. In

contrast, schema-level indices (short: SLI ) support structural queries, e. g., searching for data

instances with the property dct:creator and RDF type bibo:book [4]. An SLI model defines

how and which combinations of types and properties are indexed, i. e., how data instances are

summarized and which queries are supported by the index.

In the past, various SLI models have been developed for different tasks such as data

exploration [5, 6, 7, 8], query size estimation [9], vocabulary terms recommendation [10],

related entity retrieval [11], data search [4], and others. The task of data search is to find

(sub-)graphs on the Web that match a given schema structure. Given a structural query as
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shown in Listing 1, an SLI can return URIs of data sources ?ds with data instances containing

bibliographic metadata.

Listing 1: Structural query to find datasources ?ds containing information about books that

have a creator that is an agent.

SELECT ?ds WHERE {
?ds rdf:type bibo:book ;

dct:creator foaf:Agent .

}

This use of SLIs for data search on the Web of Data is illustrated in Figure 1. In a first

step, an SLI is queried to identify relevant data sources, which then in a second step are

accessed via HTTP get requests to download the actual data instances. Search systems like

LODatio [4], LODeX [5], Loupe [6], and LODatlas [7] rely on SLI to offer a search for relevant

data sources or exploration of data sources.

Fig. 1. Finding data sources on the Web using a schema-level index (SLI). A structural query

is executed over an SLI to identify relevant data sources (1). Subsequently, the data sources are
accessed to retrieve actual data instances (2).

The problem is that all SLI models were designed, implemented, and evaluated for their

individual task only, using different queries, datasets, and metrics. Our hypothesis is that

there is no SLI model that fits all tasks and that the performance of the specific SLI depends

on the specific types of queries and characteristics of the datasets. However, so far only

very limited work has been done on understanding the behavior of SLI models in different

contexts. With each SLI model evaluated independently in a specific context, it remains

difficult to judge whether an approach generalizes well to another task or not. In other words,

it is not known which SLI model can be used for which contexts, tasks, and datasets.

This paper presents a systematic comparison of SLI models and shows how different SLI

models, queries, and datasets influence the results of querying on the Web of Data [12]. We

conduct an extensive empirical evaluation of representative SLI models. To this end, we

have for the first time defined and implemented the features of existing SLI models in a

common framework available on GitHub. Based on the discussion of related works, we chose

six SLI models with unique feature combinations, which were developed for different tasks, to

understand and compare their behavior for the data search task. We empirically investigate

the behavior of each selected SLI model in three variants, where we index sub-graphs of 0, 1,

and 2 hop lengths.
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The empirical evaluation consists of two sets of experiments. In a first set of experiments,

we analyze the relative size of the computed SLI compared to the original dataset (compression

ratio) and the number of schema elements in the SLI compared to the number of data instances

in the dataset (summarization ratio). The second set of experiments quantifies the quality

of a stream-based computation of the SLI for large datasets obtained from the Web of Data.

The stream-based approach is designed to scale to graphs of arbitrary sizes by observing the

graph over a stream of edges with fixed window size. Inherently, this approach introduces

inaccuracies in the SLI computation by potentially extracting incomplete schema structures

due to limited window size [13]. Our experiments show huge variations in compression ratio,

summarization ratio, and approximation quality for the SLI models. However, we also observe

strong positive and negative correlations between the three metrics. These insights shed light

on the behaviors of SLI models for different datasets and queries that help to determine the

right SLI model for a given task and dataset.

The remainder of this paper is structured as follows. Subsequently, we discuss the features

of the schema-level index (SLI) models reported in the literature. We formalize how data

instances are summarized by SLIs in Section 3. In Section 4, we introduce the experimental

apparatus, i. e., our framework and the datasets. The results of our experiments are presented

in Section 5. Finally, we discuss our main findings, before we conclude.

2. Related Work: Overview of Schema-level Index Models and their Features

Our discussion of related works focuses on different models for schema-level indices (SLI).

As introduced above, SLIs support the execution of structural queries over the Web of Data.

Structural queries such as the example in Listing 1 consist of a combination of types and

properties.

In the past, various SLI models were defined, which capture different schema structures

and are defined using different theoretical approaches [14]. Table 1 provides an overview of

SLI models reported in the literature and the specific features they support. These features

are the use of property sets [9, 11, 13, 8, 5, 6, 10, 15], use of type sets [13, 8, 5, 6, 10, 15], use

of neighbor information [11, 13, 8, 5, 6, 10, 15], use of path information [9, 11, 13, 8, 5, 6, 15],

use of k-bisimulation [15], use of incoming property sets [9, 15], use of OR combination of

feature [15], use of transitively co-occurring (related) properties [15], and use of inferred

information from RDF Schema properties [8, 15]. In addition, we propose inferencing over

owl:sameAs as a new feature. Below, we discuss the SLI models presented in Table 1 from

top to bottom. We present their task, schema structure, and feature combination.

Characteristic Sets [9], illustrated in Figure 2a, was developed to optimize cardinality esti-

mations for join-queries in RDF databases. Formally, the SLI model is defined as sets of data

instances using a first-order-logic expression over triples. Characteristic Sets summarize data

instances along common incoming properties (the incoming property set) and outgoing

properties (the property set). Related to Characteristic Sets is the SLI model SemSets [11],

illustrated in Figure 2b, which was developed to discover semantically similar sets of data

instances in knowledge graphs to improve keyword-based ad-hoc retrieval. SemSets is defined

using set operators. The SemSets model summarizes data instances that share the same out-

going properties, which are linked to a common resource. Thus, the model uses property sets

and include neighbor information.
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Table 1. Nine index models (left column) and their features (top row). Features marked with X

are fully supported, (X) are partially supported, and - are not supported.
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Characteristic Sets [9] X - - X - X - - - -
SemSets [11] X - X X - - - - - -
Weak Property Clique [15] X - - X X X X X X -
ABSTAT [8] X X X X - - - - (X) -
LODex [5] X X X X - - - - - -
Loupe [6] X X X X - - - - - -
SchemEX [13] X X X X - - - - - -
TermPicker [10] X X X - - - - - - -
SchemEX+U+I X X X X - - - - X X

Goasdoué et al. [15] introduce compact graph summaries for RDF graphs. They propose

so-called Property Cliques formalized as equivalence relations, which can capture different

schema structures. Property Cliques summarize data instances based on the co-occurrence

of related properties. In their work, two properties are related, if they co-occur in a

data instance. Thus, also pointed out by the authors, the relationship of being related is

transitive [15]. Furthermore, Goasdoué et al.use property sets and incoming property sets.

They propose so-called strong equivalence relations, where the related incoming and outgoing

properties are the same, and so-called weak equivalence relations, where the incoming or the

outgoing properties are the same (the OR combination). They also support RDF Schema

inferencing to compute their summaries. The weak equivalence version of the Property Cliques

is the only index model that uses transitively co-occurring (related) properties and summarizes

instances based on the same property sets, or the same incoming property sets, or both (OR

combination). In the following, we call this variant of the compact graph summaries Weak

Property Clique (illustrated in Figure 2c).

ABSTAT [8], LODeX [5], Loupe [6], and SchemEX [13] summarize data instances based

on a common set of RDF types (the type sets) and properties linking to resources with the

same type set (illustrated in Figure 2d). Thus, they use neighbor information in combination

with type sets. ABSTAT, LODeX, and Loupe were developed to explore datasets. ABSTAT’s

schema structure has no formal definition and is only informally defined in a textual descrip-

tion. In terms of the SLI model features, ABSTAT [8] can use inferencing over the RDFS

type hierarchies to compute so-called minimal patterns. A minimal pattern is the set of most

specific RDF types associated with the instances. All super-types of these most specific types

are removed. This feature is also supported by Goasdoué et al. [15], who additionally take
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(a) Characteristic Sets [9] summarize data instances
based on a common set of incoming and outgoing
properties.

(b) SemSets [11] summarize data instances based on a
common set of properties linked to the same resources.

(c) Weak Property Cliques [15] summarize data in-
stances based on at least one related incoming prop-
erty and/or at least one related outgoing property.

(d) SchemEX [13], ABSTAT [8], LODeX [5], and
Loupe [6] summarize data instances based on a com-
mon type set and a common set of properties linked
to resources sharing the same type set.

(e) TermPicker [10] summarizes data instances based on a common type set, a common property set, and a
common type set linked over all properties.

Fig. 2. Illustration of different schema structures captured by different schema-level index models

reported in the literature.

sub-properties as well as RDFS domain and range into account. Similarly, the SLI model

Loupe is also only informally specified, which—for some aspects—leaves room for interpreta-

tions. The Loupe model supports three so-called Class, Property, and Triple Inspector that

allow different types of queries. The Class Inspector considers only type sets, the Property

Inspector only property sets, and the Triple Inspector a combination of type sets and property

sets. The Triple Inspector extracts triples of the form < subjectType, predicate, objectType >

from the input graph. Thus, the schema structure captured by Triple Inspector is equiva-

lent to the SLI models ABSTAT and LODeX. In contrast to ABSTAT and Loupe, the SLI

model of LODeX computes clusters over the RDF types and selects a representative RDF

type per cluster. SchemEX was evaluated for the data search task on snapshots of the Web of

Data using a stream-based schema extraction approach. SchemEX was defined as stratified

1-bisimulation [16].

TermPicker [10], illustrated in Figure 2e, was developed to make data-driven recommen-

dations of vocabulary terms. TermPicker summarizes data instances based on a common type

set, a common property set, and a common type set of all property-linked resources. Thus,
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in contrast to, e. g., SchemEX, TermPicker does not take path information into account,

i. e., it does not matter via which properties these data instances are connected. Therefore, in

order to model TermPicker one needs to be able to aggregate the information of neighboring

data instances.

Furthermore, the index model SchemEX+U+I (short for: SchemEX with Unions of

sameAs instances and RDFS Inferencing) extents the common schema structure of ABSTAT,

LODeX, Loupe, and SchemEX, by providing support for inferencing over owl:sameAs as well

as using all RDFS information, i. e., types, properties, domain, and range.

Bisimulation is an approach to determine whether two graphs are equivalent by considering

the traversal over a graph as operating on state transition systems and defines an equivalence

relation over states [16]. Two states are equivalent (or bisimilar) if they change into equivalent

states with the same type of transition. A stratified k-bisimulation reduces the path length

to k hops as it is defined with k = 1 in SchemEX [13]. Tran et al. [17] model k-bisimulation as

height parameterization that can be applied on SLI. Thus, we decided to use k-bisimulation

as a feature rather than a separate index model. Tran et al.determine that the parameter is

typically k ∈ 0, 1, 2.

In summary, from the discussion of the related works, we can state that there exists a

variety of SLI models that capture different schema structures and are suitable for different

tasks. SLI models are designed, implemented, and evaluated independently for their specific

tasks.

3. Summarizing Data Instances with Schema-level Indices

We define the foundational concepts of data graph, data instances, and summarization of

instances using schema-level indices (SLI). A RDF data graph G is defined as G ⊆ VU ∪
VB×P × (VU ∪VB ∪L), where VU denotes the set of URIs, VU the set of blank nodes, P ⊆ VU

the set of properties, and L the set of literals. Furthermore, there exists a subset VC ⊆ VU∪VB

that contains all RDF classes. A triple is a statement about a resource s ∈ VU ∪ VB in the

form of a subject-predicate-object expression (s, p, o) ∈ G.

We define a data instance Is ⊆ G to be a set of triples, where each triple shares a

common subject URI s. We call the set of all c ∈ VC with (s, rdf:type, c) ∈ Is the type set

of Is. Furthermore, we call the set of all p ∈ P with (s, p, o) ∈ Is the property set of Is.

In our example in Figure 3, we visualize the type sets of the instances as squares above the

corresponding URI. The remaining triples are visualized as directed edge, e. g., (s-1, p-1, o-1).

SLI summarize data instances Is based on their common schema. The specific features

used to compute the schema of a data instance are defined in the SLI model. For example,

Characteristic Sets uses property sets and incoming property sets of each instance only, while

most other index models also support to take RDF types into account. For a detailed discus-

sion of the features in SLI models, please refer to Section 2. Data instances with the same

schema can be uniquely identified by their common schema. This unique schema identifier,

which summarizes the data instances, is called the schema element. Schema elements are

stored as keys in the SLI and can be used, e. g., to retrieve all summarized data instances. In

Figure 3, the schema-level index contains one schema element (SE-1).

For tasks such as searching in the Web of Data, one is interested in the data sources of

the summarized instances (compare the motivating illustration in Figure 1). To model where
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Fig. 3. Computing the SchemEX index for a decentralized RDF data graph. Both data instances

Is-1 and Is-91 (right) are summarized by the same schema element SE-1 (left).

data instances have been found on the Web of Data, we define the data source Ds of an

instance Is as the set of URIs ds that identify documents on the Web that contain triple

(s, p, o) about instance Is. Common RDF Crawlers provide this information using the notion

of quads (s, p, o, ds) [18]. For data search, this means that the SLI does not need to store

URIs of the summarized data instances directly, but merely needs to store the information

about the URIs to the data sources where these instances have been observed. For example,

the data instances in Figure 3 can be found in ds-4 and ds-7. Thus, intuitively, a SLI for data

search is a lookup table that contains information about schema structures of data instances

on the Web and where they are located. For another task such as cardinality estimation one

would lookup the number of summarized data instances instead of their location.

In the Web of Data exists the idea of inferencing implicit information, e. g., using RDFS or

owl:sameAs. For example, the semantics of a triple (p-1, rdfs:subPropertyOf , p-2) ∈ G states

that for any instance Is with (s, p-1, o), we can infer the additional triple (s, p-2, o). In the

following, we assume that inferencing over RDF or owl:sameAs adds the respective types and

properties to the corresponding type sets and property sets of each instance.

4. Experimental Study

We implement all features from the related work (see Section 2) into a single framework. Our

framework allows flexibly combining these features to define all of the existing as well as new

SLI models.

4.1. Choice of Schema-level Index Models

We select six representative index models based on our analysis in Section 2. These SLI

models are Characteristic Sets, Weak Property Clique, SemSets, TermPicker, SchemEX, and

SchemEX+U+I. We select Characteristic Sets, Weak Property Clique, SemSets, TermPicker

since they provide unique feature combinations. Furthermore, we select SchemEX since the

SLI model shares the same base schema structure with LODex, Loupe, and ABSTAT (see

Table 1). Finally, we select SchemEX+U+I since it uses owl:sameAs and full RDFS reasoning.

This covers also the RDFS type hierarchy inferencing of ABSTAT and the RDFS reasoning
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provided by the compact graph summaries. For each of the six selected SLI models, we apply

the k-height parameterization feature proposed by Tran et al. [17]. Reasonable values for the

height parameterization k are 0, 1, and 2 [17]. Thus, in total, we compare 18 unique index

models.

4.2. Datasets

We use two datasets crawled from the Web of Data. The first dataset is called TimBL-11M.

It contains about 11 million triples crawls in a breadth-first search starting from a single

seed URI, the FOAF profile of Tim Berners-Lee [13]. The TimBL-11M dataset is a graph

with 673k data instances distributed over 18k data sources. Each instance has on average

13 outgoing properties (standard deviation (SD): 275), 3 incoming properties (SD: 848), 3

types (SD: 40), and is defined in 3 data sources (SD: 40). The latter means that, on overage,

triples with a common subject URI can be found in 3 distinct data sources, which makes the

challenge for data search specifically hard. Overall, 3, 919 unique properties and 2, 738 unique

RDF types appear in the TimBL-11M dataset.

The second dataset DyLDO-127M contains 127M triples [19]. The Dynamic Linked Data

Observatory (DyLDO) provides regular snapshots from the Web of Data. In contrast to

TimBL-11M, which uses only a single seed URI, the DyLDO dataset is populated by crawling

in breadth-first search about 95k representative seed URIs of the Web of Data [19]. The

crawling of these seed URIs is restricted to a crawling depth of two hops. We use the first

snapshot of the DyLDO dataset, as it is with 127M triples the larged one. The DyLDO-127M

dataset contains 7M data instances distributed over 154k data sources. Each instance has

on average 17 outgoing properties (SD: 6503), 7 incoming properties (SD: 635), a single type

(SD: 17), and is defined in 2 data sources (SD: 17). Overall, 15k unique properties and 31k

unique types appear in the DyLDO-127M dataset.

Both datasets are reasonably large with 11M triples and 127M triples, while still allowing

to compute a gold standard for the stream-based index computation. A gold standard is

created by loading the entire dataset into the main memory and computing the indices with

no window size limit. No pre-processing was conducted on the datasets, except removing

triples that do not follow the W3C standards.

5. Experiment 1: Compression and Summarization Ratio

5.1. Description

We evaluate the index size for the selected indices over the two datasets mentioned above. The

size of an index refers to the number of triples when stored as an RDF graph. We compare

the number of triples in the index to the number of triples in the dataset (compression

ratio). Furthermore, we compare the number of schema elements in the index to the number

of data instances in the dataset (summarization ratio). This ratio gives an idea of how

well the defined schema structure can summarize data instances on the Web of Data. For

the compression and summarization ratios, we use exact indices. This means we loaded the

complete data graph into the main memory before we started the index computation process.
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Table 2. Results from the analysis of the compression ratio and summarization ratio of

the six selected SLI models (with height parameter k ∈ {0, 1, 2}). #t is the number of triples
in millions (M) in the SLI and in brackets below the ratio compared to the number of triples

in the dataset (compression ratio). #e is the number of schema elements in thousands (T)

in the SLI and in brackets below the ratio compared to the number of instances in the dataset
(summarization ratio). As datasets, we use the TimBL-11M (top) and DyLDO-127M datasets

(bottom).

k = 0 k = 1 k = 2

Index
Model

#t #e #t #e #t #e

T
im

B
L

-1
1
M

Character
-istic Sets

na
(na)

na
(na)

0.7M
(6.5%)

9.6T
(1.4%)

1.6M
(14.6%)

37.2T
(5.5%)

Weak Prop
-erty Clique

na
(na)

na
(na)

1.9M
(17.9%)

74
(< 0.1%)

1.1M
(9.9%)

50
(< 0.1%)

SemSets 0.3M
(2.9%)

2.8T
(0.4%)

7.6M
(69.2%)

139.0T
(20.6%)

7.6M
(69.2%)

139.0T
(20.6%)

SchemEX 0.3M
(2.9%)

2.8T
(0.4%)

0.8M
(6.9%)

12.0T
(1.8%)

1.4M
(12.5%)

27.7T
(4.1%)

TermPicker 0.3M
(2.9%)

2.8T
(0.4%)

0.7M
(6.5%)

10.8T
(1.6%)

1.8M
(16.0%)

37.3T
(5.5%)

SchemEX
+U+I

0.4M
(3.8%)

3.1T
(0.5%)

0.8M
(7.1%)

11.3T
(1.7%)

1.8M
(15.9%)

31.0T
(4.6%)

D
y
L

D
O

-1
2
7
M

Character
-istic Sets

na
(na)

na
(na)

0.6M
(0.5%)

23.0T
(0.3%)

2.1M
(1.7%)

112.8T
(1.6%)

Weak Prop
-erty Clique

na
(na)

na
(na)

14.8M
(9.0%)

394
(< 0.1%)

25.1M
(19.7%)

102
(< 0.1%)

SemSets 4.1M
(3.2%)

46.6T
(0.7%)

45.3M
(35.6%)

1733.5T
(25.0%)

45.3M
(35.6%)

1733.5T
(25.0%)

SchemEX 4.1M
(3.2%)

46.6T
(0.7%)

15.7M
(12.3%)

254.5T
(3.6%)

19.8M
(15.6%)

431.1T
(6.1%)

TermPicker 4.1M
(3.2%)

46.6T
(0.7%)

11.1M
(8.7%)

238.4T
(3.4%)

25.4M
(19.9%)

559.1T
(7.9%)

SchemEX
+U+I

8.5M
(6.7%)

53.0T
(0.8%)

19.9M
(15.7%)

249.5T
(3.5%)

22.9M
(18.0%)

466.9T
(6.6%)

5.2. Results

The results of the experiments regarding the compression ratio and summarization ratio are

documented in Table 2. As one can see, there is a huge variety in terms of how well indices

compress and summarize the data. For the TimBL-11M dataset, SemSets’ compression ratio

(with k = 1) is about 10 times larger than all other indices except for Weak Property Cliques
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(only about 5 times larger). For the DyLDO-127M dataset, SemSets’ compression ratio (with

k = 1) is up to 75 times larger. Additionally, there is no increase in index size from k = 1 to

k = 2, but a more than ten-times increase from k = 0 to k = 1. A similar increase appears

for the summarization ratio. SemSets is the only index that uses neighbor information but

not neighbor type sets, i. e., they compare the object URIs o of each (s, p, o) triple. In

contrast, the other indices either ignore objects or consider their type sets only. SemSets

has a summarization ratio of 20% to 25%, i. e., on average 4 to 5 data instances share the

same schema structure. The smallest index, Characteristic Sets, has a summarization ratio of

0.3%, i. e., about 330 data instances share the same schema structure. A notable exception is

the Weak Property Clique, which shows the most condensed summarization (summarization

ratio of less than 0.1%). However, the combination of either incoming or outgoing related

properties in Weak Property Cliques leads to a considerably large compression ratio. Weak

Property Clique indices are more than twice the size of Characteristic Sets indices.

When considering the semantics of RDFS and owl:sameAs in SchemEX+U+I, the index

size increases compared to SchemEX by about 3% more triples. Despite being a larger index in

terms of the number of triples, for k = 1 fewer schema elements are computed when including

the semantics of RDFS and owl:sameAs. For k = 0 and k = 2, SchemEX+U+I requires more

schema elements than SchemEX to summarize the data instances.

In summary, including the semantics of owl:sameAs and RDF Schema increases the size of

the index. However, it can reduce the number of schema elements. Furthermore, using weak

equivalences leads to a handful of schema elements with a considerably large size summarizing

all data instances.

6. Experiment 2: Stream-based Index Computation

6.1. Description

In this experiment, we are interested in how well queries of varying complexity can be sup-

ported by the indices if the SLI is computed over a stream of graph edges. Motivated from

stream-databases, the idea is to consider the triples in the datasets as a stream that is ob-

served in windows of sizes 1k, 100k, and 200k. This allows us to scale the computation to in

principle arbitrary sized input graphs [13]. However, the approach produces approximation

errors since only a fraction of the data graph is kept simultaneously in the main memory,

while the remainder is not yet known or inaccessible. Thus, we potentially extract incomplete

schema structures.

6.2. Pre-processing vs. On-the-fly Processing in SchemEX+U+I

Regarding the index model of SchemEX+U+I, we evaluate two variants in this experiment:

The RDFS inferencing requires an additional data structure during the computation process,

the so-called schema graph [20]. This schema graph is constructed from the triples using

RDFS range, domain, subClassOf, or subPropertyOf. With the domain, range, and hierar-

chical types/properties information, we infer additional types and properties for the remaining

data instances. In one version called SchemEX+U+oI, the RDFS information is extracted

and inferred on-the-fly. Here, we construct the schema graph simultaneously to the index
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computation. The advantage is that only one pass over the dataset is needed. However, since

the schema graph is built while the index is computed information may be missing for the in-

ferencing. In the other version called SchemEX+U+pI, we first extract all RDFS information

in a pre-processing step to construct the schema graph. The advantage is that the inferencing

of triples is conducted on the complete schema graph only. The drawback is that two passes

over the dataset are needed.

6.3. Queries

A central challenge for this experiment is the choice of queries to be executed over the indices.

Here, we follow the work by Konrath et al. [13] who conducted a data-driven query generation

for the evaluation of approximate graph indices. This means the queries are generated from

the actual data instances in the datasets, i. e., their combination of types and properties.

We distinguish two types of queries, simple queries (SQ) and complex queries (CQ). Simple

queries search for data instances that have a common type set (or in the case of SemSets a

common set of objects). Analyses of existing query logs show that most SPARQL queries in

search systems are simple queries [21]. In contrast, complex queries search for data instances

that match the complete schema structure defined by the specific index model, e. g., include

property paths over 2 hops for Characteristic Sets with k = 2.

6.4. Measures

We execute the simple and complex queries on the SLI computed with fixed window size and

on the gold standard SLI. For our data search task, the results of the queries are the two sets

Dgold and Dwindow, which contain the corresponding data source URIs. Following Konrath

et al. [13], the approximation quality is measured by comparing Dgold and Dwindow using the

F1-score.

6.5. Results

Figure 4 shows the approximation quality in terms of F1-score for the selected index models.

Table 3 shows the results as a table. For indices with a height parameter k = 0, the simple

queries and the complex queries are alike. Moreover, Characteristic Sets and Weak Property

Cliques do not use type information (or object information). Thus, simple queries are not

available for these index models.
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(a) F1-scores for TimBL-11M and k = 0. (b) F1-scores for DyLDO-127M and k = 0.

(c) F1-scores for TimBL-11M and k = 1. (d) F1-scores for DyLDO-127M and k = 1.

(e) F1-scores for TimBL-11M and k = 2. (f) F1-scores for DyLDO-127M and k = 2.
Fig. 4. F1-score for simple queries (SQ) and complex queries (CQ) and for window sizes (1k, 100k,

200k). The left column shows the values for the TimBL-11M dataset and the right column the
DyLDO-127M dataset, respectively. The influence of the height parameter k ∈ {0, 1, 2} can be

seen in the rows from top to bottom.
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From the results of our experiment, we can state that simple queries consistently show

higher F1-scores than complex queries. TermPicker and Weak Property Cliques are the

only indices that have a higher F1-score on the DyLDO-127M dataset than on the TimBl-

11M dataset. As described in Section 2, TermPicker is the only index not using the path

information feature. This restriction is the only difference in the schema structure compared

to SchemEX. Still, TermPicker has a 50% lower F1-score than SchemEX on the TimBL-11M

dataset.

Regarding the complex queries, the F1-scores of Weak Property Cliques are the highest

in the experiments with k = 1 and 2. For k = 2, Weak Property Cliques have between

.12 and .54 higher F1-scores compared to the other indices. SemSets only have a small

drop in F1-score from k = 1 to k = 2. SchemEX+U+oI consistently has a lower F1-score

than SchemEX. For SchemEX+U+pI, we extracted the RDF Schema information in a pre-

processing step. Compared to SchemEX+U+oI, SchemEX+U+pI has consistently higher

F1-scores. Furthermore, for window sizes 100k and 200k, SchemEX+U+pI has higher F1-

scores than SchemEX (except for k = 2 for TimBL-11M).

We also observe an influence of the characteristics of the crawled dataset on the approxi-

mation quality. All indices have on average a .15 lower F1-score on the DyLDO-127M dataset

compared to the TimBL-11M dataset. In particular, simple queries achieve much lower F1-

scores. On average, simple queries have .25 lower F1-scores and complex queries have .04

lower F1-scores on the DyLDO-127M dataset compared to the TimBL-11M dataset. Further-

more, larger window sizes consistently improve F1-scores. In contrast, on-the-fly inferencing

lowered the F1-scores in our experiment compared to no inferencing.

7. Discussion

Key insights from our experiments are: (1) SLI models perform very differently in terms of

compression ratio, summarization ratio, and approximation quality depending on the queries

as well as the characteristic of the dataset. (2) The approximation quality of an index com-

puted in a stream-based approach depends on three factors: First, we observe an influence

of the characteristics of the crawled dataset. Second, simple queries consistently outperform

complex queries. Third, a larger window size typically improves the quality only marginally.

Regarding the first insight, we conducted a detailed analysis to understand the relationship

between compression ratio and summarization ratio. We computed the Pearson and Spearman

correlation coefficient for the n = 32 SLI reported in Table 2. Results of the Pearson correla-

tion indicated that there was a significant relationship between compression ratio and sum-

marization ratio, r(30) = .84, p < .0001, and as well as for Spearman, rs(30) = .64, p < .0001.

Furthermore, there is a significant negative correlation between summarization ratio and ap-

proximation quality of a stream-based computation approach. We computed the Pearson and

Spearman correlation coefficient for the three cache sizes 1k, 100k, and 200k. We compared

the reported F1-scores for the complex queries (for k = 0, we used the simple queries) for each

cache size (Figure 4) to the summarization ratio of the corresponding gold standard index

(Table 2). For all three cache sizes, we found a negative correlation coefficient with p < .05

(see Table 4).

From the statistical analysis, we can see that a lower summarization ratio leads to a

higher F1-score. This means index structures that summarize well, i. e., summarize many
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Table 4. Results of correlation analysis between summarization ratio and approximation quality

(F1-score). Pearson and Spearman coefficients and respected p-values for n = 32 SLI (Table 2)
for three cache sizes with a degree of freedom df = 30.

Coefficient 1k 100k 200k

Pearson −.35 p < .05 −.38 p < .04 −.38 p < .04
Spearman: −.74 p < .0001 −.74 p < .0001 −.75 p < .0001

data instances to the same schema element, can be computed with high accuracy in a stream-

based approach. When we compute correct schema elements in the stream-based approach,

for index models with a low summarization ratio, we assign more data instances to the correct

schema element than for index models with a high summarization ratio.

Note that the extreme summarization ratio of Weak Property Cliques also produces the

highest F1-scores. This can point to a explanation for the observed correlation. With only a

handful of schema elements in the index (see Table 2), it is more likely that a data instance

is summarized by the correct schema element. This results in an overall higher F1-score.

We also observe an influence of the characteristics of how the data has been crawled.

First, all indices have on average a .15 lower F1-score on the DyLDO-127M dataset compared

to the TimBL-11M dataset. We explain this observation by the different crawling strate-

gies. The TimBL-11M dataset was crawled starting from a single seed URI. In contrast,

the DyLDO-127M dataset was crawled using more than 95, 000 seed URIs from 652 unique

pay-level domains [19]. Furthermore, the crawling depth is limited to two hops. Because of

this difference in the crawling strategy, data instances bare different characteristics in both

datasets. First, the DyLDO-127M dataset contains nearly 4-times more unique properties and

about 11-times more unique types as the TimBL-11M dataset (see Section ). Moreover, the

TimBL-11M contains fewer data sources, and data instances are defined in fewer data sources

than in the DyLDO-127M dataset. This could be one possible explanation for the overall bet-

ter performance on the TimBL-11M dataset. The dataset characteristic also influences the

size of the index. On average, the compression ratio of indices computed for the TimBL-11M

dataset is 14.9% and for the DyLDO-127M dataset, it is 10.5%. Additionally, data instances

in the DyLDO-127M dataset have more variety in the number of outgoing properties, but

less variety in the number of types. However, the indices using types (SchemEX, TermPicker,

SchemEX+U+I) consistently achieve better compression and summarization ratios on the

TimBL-11M dataset. The evaluated indices not using types (Characteristic Sets, W-Property

Cliques, SemSemts) achieve better compression and summarization ratios on the DyLDO-

127M dataset. Thus, the complexity of the combination of type sets and properties seems to

be predominately impacted by the number of properties rather than the number of types.

Finally, we observe that inferencing RDF Schema information on-the-fly (SchemEX+U+oI)

leads to lower F1-scores than inferencing in a pre-processing step (SchemEX+U+pI). For

SchemEX+U+oI, the schema graph information used for inferencing is incomplete until the

last triple using an RDFS property is processed. Thus, for SchemEX+U+oI inferencing is an-

other source for approximation errors. However, while including the semantics of owl:sameAs

and RDFS increases the size of the index, it reduced the number of schema elements in some

experiments, i. e., it achieves a better summarization ratio.
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8. Conclusion

Our empirical evaluations reveal huge variations in compression ratio, summarization ratio,

and approximation quality for different index models, queries, and datasets. This confirms our

hypothesis that there is no single schema-level index model that equally fits all tasks and that

the performance of the SLI model depends on the specific types of queries and characteristics

of the datasets. However, we observed meaningful correlations in the results that help to

determine the right index model for a given task, type of query, and dataset.
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Pérez. Loupe - an online tool for inspecting datasets in the Linked Data cloud. In ISWC Posters
& Demos, volume 1486. CEUR-WS.org, 2015.
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