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Active learning is a promising approach to alleviate the expensive annotation cost for
making training data on named entity recognition (NER) tasks. However, since existing
active learning methods on NER tasks implicitly assume the full annotation scheme
of which the unit of an annotation request is the whole sentence, the efficiency of the
data instance selection is limited. In this paper, we propose a new active learning
method based on a partial annotation scheme, which selects a part of the sentences to
be annotated and asks human annotators to label a specific part of the target sentences.
In the experiment, we show that the partial annotation scheme can quickly train the
proposed point-wise prediction model compared to the existing active learning methods
on NER tasks.
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1. Introduction

Named entity recognition (NER) is one of the fundamental processes in natural language pro-
cessing that automatically extracts named entities (e.g., the name of a person, an organization,
a location). NER brings a basic semantic awareness into natural language applications such
as information retrieval and question answering [1]. Particularly, in recent years, a growing
number of digitalized text information is available across many different specialized domains
such as patents, recipes, posts in a programming forum, papers in a specific research field,
etc. In this situation, there are increasing potential needs to create a custom NER model for
processing named entities in each domain adequately because specialized domain has its own
terminology that cannot be recognized by general NER models.

One of the primary issues in the training of a custom NER model is the cost for making
training data, as known as annotation corpus. Annotation corpus for NER is a collection of
sentences along with annotations of named entity tags on phrases in the sentences. These
annotations need to be provided by domain experts through an annotation interface (Fig. 1
(Left)). Since the annotation task requires domain knowledge and time-consuming work for
reading the whole sentence to find out all the named entities, the cost for making training
data on NER tasks is expensive.

One of the promising approaches to reduce the annotation cost is active learning. Active
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Fig. 1. (Left) In annotation task for NER in the full annotation scheme, human annotators are
asked to check a whole sentence. (Right) In the partial annotation scheme, human annotators
are asked to check a specific short part in sentences.

learning is a method that examines the current behavior of a machine learning model and
chooses a data instance that is expected to be the most useful for training the machine learning
model [2]. By controlling the annotation request order of the sentences, the performance of a
machine learning model is known to be significantly improved compared with the performance
of the model trained by the same number of sentences annotated in random order. Active
learning methods for NER models have been proposed to date [3, 4]. However, these methods
have a potential issue that may miss an opportunity to achieve better performance due to
its implicit assumption on the annotation scheme; the existing active learning methods are
proposed under a full annotation scheme, i.e., the algorithm chooses a sentence and asks
human annotators to check the whole sentence in an annotation request. Especially when the
sentence is long, the granularity of data instance that an active learning method can choose
is coarse. Even if a current NER model needs to learn a specific phrase in a sentence, we
have to ask human annotators to check the whole sentence that may contain terms that can
be well recognized already by the current model.

To address this potential issue, we consider the partial annotation scheme that asks human
annotators to check a short part of the target sentences at each request (Fig. 1 (Right)). Un-
der this scheme, we propose a new active learning method that selects a part of the sentences
to be annotated. The fine-grained annotation request is expected to make the annotation
cost lower for achieving the same performance compared to the active learning on the full
annotation scheme. The challenge of actualizing this scheme is to relax the constraint on the
structure of the training data. In fact, sentence is the unit of training data instance that is
assumed by the major NER models. In other words, we cannot train such models by using
partially annotated sentences. The proposed method in this paper avoids this problem by
adopting point-wise prediction model [5] that can be trained by using partially annotated
sentences.

This paper is composed as follows. In Section 2, we introduce research on the relationship
between NER and active learning and introduce some papers on applying active learning to
the specific named entity recognition task. In Section 3, we describe the method of extracting
named entities by point-wise prediction and applying it to active learning. In Section 4 and
5, we explain a comparison experiment between the existing method and our method after an
experiment to show the effectiveness of active learning for point-wise prediction. In Section
6, we discuss the conclusions and future work.



Koga Kobayashi and Kei Wakabayashi 321

(a) Full annotation corpus

(b) Partial annotation corpus

Fig. 2. Example of annotation corpus

2. Related Work

2.1. Named entity recognition

The NER tasks are typically formulated as a sequence labeling task that predicts the labels
corresponding to each word. For representing the information specifying named entities,
various tag formats (e.g., IOB2, IOE2, and IOBES) have been proposed. In this paper, we
adopt the IOB2 format. The IOB2 format represents the role of each word by using an entity
type tag with a prefix “I”, “B”, or “O”. “B” indicates “Begi” which means the first word of
the named entity phrase. “I” is “Inside” which means the second or later word of the named
entity phrase. “O” stands for “Other” indicating the word is not a part of named entity
phrases. Fig. 2(a) shows an example of sequence labels in the IOB2 format with two entities:
“Jose Soler Puig” as a person’s name (PER) and “Cuban” as a miscellaneous entity name
(MISC). The entity types such as PER and MISC are defined for each domain or task.

In this paper, we consider two kinds of annotated corpus; full annotation corpus and
partial annotation corpus. In a full annotation corpus, the labels y are given to all the words
x (see Fig. 2(a)). Contrarily, in a partial annotation corpus, only some words are labeled (see
Fig. 2(b)). As a fully annotated corpus for NER in a general domain, there is a well-known
CoNLL-2003 corpus [6] that consists of news articles annotated with four entity types: person,
organization, location, and miscellaneous named entity.

Florian et al. [7] used a combination of multiple machine learning models and achieved a
high performance of 88.76% in F1 value with the CoNLL-2003 corpus. McCallum et al. [8]
considered named entity recognition as a sequence labeling task and proposed a named entity
recognition method that uses conditional random fields (CRF). Recently, Ronan et al. [9]
proposed a method that uses convolutional neural networks (CNN) for word sequences. Since
then, named entity recognition models that use deep learning have become mainstream.
Huang et al. [10] proposed a model that substitutes bidirectional long short-term memory
(LSTM) for the CNN encoder of Ronan’s model. Lample et al. [11] modeled character and
word-level information using bidirectional LSTM. Ma et al. [12] proposed a model that com-
bines bidirectional LSTM with a CNN and CRF and achieved an F1 value of 91.21% with the
CoNLL-2003 corpus. Because this model uses CNN for character-level information, a better
performance was achieved without pretreatment of data designed by hand. However, these
methods aim to construct a named entity recognition model using a full annotation corpus as
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training data and cannot use a partial annotation corpus. Because of this, annotators have
to label all the words in a sentence [13]. CRF in which a partial annotation corpus can be
used through margin likelihood have also been proposed, but the training time is very long.
For that reason, applying active learning to these models is impractical because it requires
repeated learning [14].

2.2. Active learning

Active learning is a method for achieving better accuracy with a smaller annotation effort.
In the active learning, a machine learning model analyzes an unlabeled dataset and selects a
data instance that seems to be the most informative for the current machine learning model.
The true label of the selected instance is annotated by an oracle (typically an annotator)
who knows the answer. We refer to the action of asking the oracle as a “query” or “request.”
The instances labeled by the oracle are added to the training dataset, and the model are
trained again by using them. Useful labeled data is collected by repeating this process. While
there are several active learning scenarios [2], this study uses pool-based active learning.
Pool-based active learning selects a data instance for model training in situations in which a
large amount of unlabeled data is collected and stored. In scenarios such as pool-based active
learning, queries are made based on the evaluation of the information metrics of each instance.
A number of query strategies for computing information metrics have been proposed.

Uncertainty sampling [15] is a method to make an inquiry of label of the data instance that
has the most uncertain prediction based on the current model. There are various methods of
selecting the uncertainty labels. First, the simplest strategy, least confident, is when x is the
sentence and y∗ is the labels having the highest posterior probability.

ϕLC(x) = 1− Pθ(y
∗|x) (1)

When |x| = |y∗| = 1, it is regarded as a multi-class classification model. This is the case of
the point-wise prediction model.

Another strategy is the margin sampling strategy, which is based on the difference between
two labels predicted to be the most probable.

ϕM (x) = −
(
Pθ(y

∗
1 |x)− Pθ(y

∗
2 |x)

)
(2)

Unlike the least confident strategy, margin sampling accounts for ambiguities other than the
most probable label sequence; thus, the amount of information that is taken into account is
larger than the least confident strategy.

Another query strategy is query by committee (QBC) [16], which uses multiple models of
C = {θ(1), . . . , θ(C)}. The commission that is composed of models predicts the label for each
instance and considers the instances in which many different prediction labels have the most
useful information. QBC also suggests metrics such as vote entropy [16] and the Kullback-
Leibler divergence [17] to assess the degree of discrepancy. There are some other strategies
that have been proposed; expected model change [18] is a strategy to query about the data
instance that is expected to make the largest impact on the parameter update, and expected
error reduction [19] is a strategy to query about the instance that reduces generalization
errors.
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2.3. Efficient training of NER models

The creation of training data for NER models requires expensive cost because it requires the
expert knowledge and annotation. Therefore, various methods have been proposed to train
NER models efficiently. Patra et al. [20] developed a NER model that can be trained using
only information on whether a sentence contains named entities in order to reduce the effort
for annotating the position of phrases that indicate named entities. Nguyen et al. [21] used
crowdsourcing to develop a NER model that aggregates annotations from multiple workers
and allows for training without expert annotator. Lison et al. [22] developed a model that
can aggregate predictions provided by multiple NER models trained in different domains, so
that predictions can be made with high performance even when there are no training data in
the domain to be annotated. A number of studies have also been conducted to apply active
learning to NER.

Settles et al. [3] proposed a method of applying active learning to conditional random
fields to solve the sequence labeling task. Yanyao et al. [4] have shown that training CNN
is faster than training LSTM in deep learning models when multiple named entities need to
be extracted. They proposed a CNN-CNN-LSTM model that combines a character CNN, a
word CNN, and an LSTM. However, since this model cannot use a partial annotation corpus
for training, annotators have to label all the words in a sentence. Therefore, annotators need
to label words that are ineffective for training the model, which increases the cost. We in this
paper aims to reduce annotation costs in the partial annotation scheme by applying active
learning to point-wise prediction model that can be trained by using a partial annotation
corpus.

3. Method

3.1. Named entity recognition with point-wise prediction

In this paper, we extend the point-wise prediction method proposed by Neubig et al. [23]
to extract named entities. This section describes point-wise prediction models. Let x =

⟨x1, x2, . . . , xT ⟩ be a sentence and y = ⟨y1, y2, . . . , yT ⟩ be a corresponding label (tag) sequence.
In point-wise prediction models, the likelihood of the sequence of labels is not considered like
in conditional random fields; instead, point-wise prediction models regard this task as a multi-
class classification problem for each yi. Machine learning models such as logistic regression
models, support vector machines, and decision trees were developed to deal with multi-class
classification.

In this study, we adopt a multi-class logistic regression model as the model for point-
wise prediction. Multi-class logistic regression model estimates a single label y ∈ Y where
Y = {1, 2, . . . ,K}. In multi-class logistic regression models, we use the following equation to
determine the probability that the class label is yi when the input is x.

P (yi|x) =
exp

(
wT

yi
f(x)

)∑
y′∈Y exp

(
wT

y′f(x)
) (3)

f(x) is a feature vector of which kth element is the value of the kth feature function fk(x)

that is defined later. w is a weight vector that corresponds to the feature vector; the weight
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Fig. 3. Information to look up when estimating the label of xi (m = 2).

vector is trained to fit the training data. When training data (x(1),y(1)), . . . , (x(n),y(n))

where (x(j),y(j)) = (⟨x(j)
1 , x

(j)
2 , . . . , x

(j)
Tj

⟩, ⟨y(j)1 , y
(j)
2 , . . . , y

(j)
Tj

⟩) is given, the weight vector w

is optimized by maximizing the log-likelihood function l(w|x,y). The log-likelihood can be
defined as the logarithm of the product of P (y

(j)
i |x(j)) for all sentences j and positions i in

the sentence as below:

l(w|x,y) = log

n∏
j=1

Tj∏
i=1

P (y
(j)
i |x(j);w) =

n∑
j=1

Tj∑
i=1

logP (y
(j)
i |x(j);w) (4)

Since the likelihood is a convex function, the weight vector w can be calculated efficiently by
using the gradient descent method.

For extracting features on point-wise prediction, we define window width m. The label
yi at position i in a sentence is predicted by using features extracted from the surrounding
words xi−m, . . . , xi+m (see Fig. 3). The following equation is obtained by rewriting multi-class
logistic regression in our method.

P (yi|x;w) = P (yi|xi−m, . . . , xi+m;w) =
exp

(
wT

y f(xi−m, . . . , xi+m)
)∑

y′∈Y exp
(
wT

y′f(xi−m, . . . , xi+m)
) (5)

We define the feature functions f = f1, . . . , fK by using “feature templates.” Neubig et
al. [23] defined feature templates for the point-wise prediction in the domain of Japanese
word segmentation. We modify them for the domain of English NER. The feature templates
defined in the proposed method are as follows.

• Surface:
Features based on one-hot encoding of the pairs of (position, vocabulary) that appear
in xi−m, . . . , xi, . . . , xi+m.

• Word type:
Information about the word type is extracted from xi−m, . . . , xi, . . . , xi+m and used as
the feature. In this paper, we use whether the word begins with a capital letter or
consists of only uppercase letters as a feature obtained from the word type.

• Part of speech:
Features based on one-hot encoding of the pairs of (position, part of speech) that appear
in xi−m, . . . , xi, . . . , xi+m.

In addition, in the Mori et al. [5] method, a classifier is created for each candidate part
of speech of each word, and the part of speech is estimated using the one-to-many method
(one-versus-rest). However, our method extracts named entities by using one classifier. We do
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Algorithm 1 Active learning by point-wise prediction
Require: Labeled data L, unlabeled data U , query strategy ϕ(·), batch size B

repeat
θ ⇐ train(L)
for b = 1 to B do
x∗
b ⇐ arg max

x∈U
ϕ(x)

L ⇐ L ∪ {⟨x∗
b , label(x

∗
b)⟩}

U ⇐ U − {x∗
b}

end for
until

not create a classifier for each label because of the method of labeling unknown words. Mori
et al. [5] used point-wise prediction for morphological analysis tasks. Nouns made several
appearances in the morphological analysis tasks. Therefore, words that did not appear in the
learning corpus or dictionary could be regarded as nouns. On the other hand, in named entity
recognition, the preliminary experiment proved that the extraction performance remarkably
decreased when the ”O” tag and another specific tag were given to the unknown word. Thus,
we use one multivalued classifier for all words.

3.2. Application to active learning

Point-wise prediction can be trained by using a partial annotation corpus, so that we can adopt
the partial annotation scheme when we apply active learning with the point-wise prediction
model. The active learning used in this study utilizes pool-based active learning. Pool-based
active learning is an active learning method that assumes there is a small amount of labeled
data L and a large amount of unlabeled data pool U . In the pool-based method (based on
the prediction of the current model), the data instance that seems to be the most useful for
training is selected from the pool and the label is queried of the annotators. The annotators
label the instance, and the model is updated accordingly. By repeating these steps, the model
is trained. “Sequential active learning” is a strategy that updates the model for each time we
obtain a new labeled instance. This method forces the annotator to wait while the model is
learning. To reduce the waiting time, the proposed method adopts “batch active learning”
that selects and queries multiple unlabeled data instances at a single step.

Pool-based active learning is generally represented by Algorithm 1. First, the algorithm
trains the model using the function train(·) for the labeled data L. Next, label queries are
made to the annotator B times from the pool U based on the query strategy ϕ(·) described
in Section 2. The queried data instance is added to L as labeled data and removed from U .
The model is repeatedly trained in this loop. Algorithm 1 is regarded as batch active learning
when B > 1 and sequential active learning when B = 1.

Existing models such as CRF and LSTM-CNN-CRF cannot be trained with partially
annotated training sentences unless the entire sentence is tagged. Therefore, when active
learning is applied, the labels for the all words included in the sentence have to be queried as
shown in Fig. 4. On the other hand, when active learning is applied to point-wise prediction,
some of the words in the sentence can be separately inquired, as shown in Fig. 5. Active
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Fig. 4. Label queries in existing models. The existing model calculates the least confident sentence
and selects the sentence to be annotated based on it.

Fig. 5. Label query in point-wise prediction. Since the point-wise prediction can be used to
compute the word-by-word least confidence, we can determine the targets to be annotated on a
word-by-word basis.

learning with the point-wise prediction models can query more important words than the
existing methods when the same number of words are annotated this way. Consequently, the
proposed method is expected to be trained more efficiently.

Here, we explain the annotation scheme in the proposed method. Annotators cannot
determine whether the ”B” tag or the ”I” tag should be attached unless they check the
entire phrase. Thus, we consider a method in which the range of the whole named entity
is annotated by showing several surrounding words. The procedure of this “word-by-word
query” is as follows: First, the word xi is selected based on the query strategy. Next, if xi

is in the middle of a named entity, an instance of xi−1 is queried of the annotator so that
the entire named entity can be annotated. This query is continued until the beginning of the
named entity can be seen. If xi is at the beginning of the named entity or in the middle of
the named entity, this function queries xi+1, the next instance in the sequence, until the end
of the named entity appears (see Fig. 6).

4. Experiment

4.1. Dataset

In this study, we used the CoNLL-2003 English [6] named entity dataset. CoNLL-2003
includes a training set and two test sets. According to the regulation of CoNLL-2003 compe-
tition, each set was divided into training data, validation data, and test data. We divided the
training data for training the model into two parts: a small amount of labeled data L and a
large amount of unlabeled data pool U . Initial training uses only a small amount of labeled
data. The validation dataset was used to search the hyperparameters of the deep learning
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Fig. 6. Example of the label query process. Label queries with point-wise prediction annotate over
the selected words.

model. In the evaluation, we measured the performance of the named entity recognition for
the test data.

4.2. Procedure of experiment

We conducted two experiments to examine the effectiveness of the point-wise prediction mod-
els with active learning in the partial annotation scheme. In the first experiment, we verified
the effectiveness of active learning for NER by point-wise prediction. We compared the ran-
dom query strategy with the least confident query strategy for point-wise prediction.

In the second experiment, we compared the proposed method with existing methods. We
selected the conditional random field and the LSTM-CNN-CRF named entity recognition
model proposed by Ma et al. [12] as existing methods. We compared the performance of
these methods with the proposed method, the point-wise prediction model, by F1 values.
Regarding the hyperparameters of LSTM-CNN-CRF, we set the mini-batch size for training
to 10 and the number of epochs to 50.

We chose uncertain sampling as the query strategy. The point-wise prediction model and
the conditional random field use the least confidence described in Eq. (1). For the LSTM-
CNN-CRF model (for which it is difficult to calculate the probability of the whole sequence),
we used margin sampling [24] described in Eq. (2). In all methods, we set up batch-type
active learning that queries about 5,000 words at once. In the point-wise prediction, 5,000
words were queried based on the query strategy from all the words in the unlabeled data.
On the other hand, the conditional random field and the LSTM-CNN-CRF model could not
label words individually. Therefore, labels were added for each sentence, and the batch was



328 Partial Annotation Scheme for Active Learning on Named Entity Recognition Tasks

Fig. 7. Example for evalation. In this case, the accuracy is 100%, the recall is 50%, and the F1
value is 66.7%

terminated when the number of labeled words exceeded 5,000.
We performed active learning under simulated conditions using a corpus whose correct

answer was known without manual annotation. Therefore, the correct label was always given
to words that were queried. In the evaluation, we define a correct extraction of named entity
as an extracted phrase that perfectly matches with the start position and the end position
of the named entity specified in the ground truth (i.e., CoNLL-2003 dataset). The number
of “O” tags that match to the ground truth are not counted as the correct extraction. For
example, in Fig. 7, the extraction of the named entity ”Jose Soler Pulg” was correct because
it matched ”PER.” Since the model predicted “O” for the word “Cuban” that has “B-MISC”
in the ground truth, the extraction for this named entity failed. Therefore, the accuracy is
100%, the recall is 50%, and the F1 value is 66.7%.

5. Result

5.1. Applying active learning for point-wise predictions

We compared the point-wise prediction models with and without active learning. In the
point-wise prediction model without active learning, the words are selected and queried in
random order. Fig. 8 shows the relationship between the extraction performance and the
number of words annotated by the simulated annotator. The model using active learning
obtained the maximum possible extraction performance with only 10% of the training data
pool. Therefore, applying active learning to point-wise prediction reduces the amount of
labeled data required, i.e., the burden on the annotator.

5.2. Performance comparison of named entity recognition using active learning

Fig. 9 shows the relationship between F1 values and the number of annotated words when
active learning was applied to the existing methods and the proposed method. The proposed
method had a higher extraction performance than the existing method when there was a small
amount of labeled data.

Other methods outperformed the proposed method when the number of annotated words
exceeded about 40% of the training data pool. This is the limitation of the proposed method
that is caused by the simple architecture of the point-wise prediction model compared with
the sentence-wide NER models. We used the margin sampling only for the LSTM-CNN-CRF
model. If we apply the margin sampling to point-wise prediction, the performance may be
further improved.
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Fig. 8. Experimental results of the query strategy for point-wise prediction.

Fig. 9. Experimental results of the existing method and the proposed method.

5.2.1. Detailed performance evaluation of the proposed method and CRF

This chapter then provides a more detailed comparative study of the proposed method with
the CRF model that is representative of the sentence-wide sequence labeling methods. First,
we examine the F1 scores for the named entities labels of each model.

The CoNLL-2003 dataset contains four named entity types: ”PER” for the name of a
person, ”LOC” for the name of a place, ”ORG” for the name of an organization, and ”MISC”
that is a tag assigned to the other named entities. Fig. 10(a) and 10(b) show the relationship
between the number of words annotated and the F1 score for each named entity type by
the CRF and the proposed method, respectively. Comparing these two figures, there is no
significant difference in the prediction performance of PER, ORG and MISC tags between
the proposed method and CRF. However, the improvement in performance of the proposed
method for LOC tags is much faster than that of CRF. This is probably because the LOC
tags tend to start with a capital letter and the same named entity appears more frequently
than other tags.

Next, we examine the detailed evaluation metrics such as recall, precision and F1 score
for each model. Fig. 11(a) and 11(b) show the relationship between the number of annotated
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(a) CRF method (b) Proposed method

Fig. 10. F1 values of each tag

(a) CRF method (b) Proposed method

Fig. 11. Detailed performance

words and the recall, precision and F1 scores of the CRF and the proposed method. In the
result of the CRF, the recall is consistently greater than the precision regardless of the number
of annotated words. The difference between precision and recall was large at first, but as the
learning converged, the difference becames smaller. In contrast, for the proposed method, the
precision is greater than the recall. The difference between precision and recall was almost
the same for the proposed method, but it became larger as the learning progressed. This is
because the proposed method does not take into account the transition of the predicted tag
results, thus the model is not affected by the very frequent tag transition that of “O” to “O”
tag transition, i.e., it does not use the property that words that are not named entity are
likely to continue.

6. Conclusion

We proposed a new active learning method on the partial annotation scheme that asks human
annotators to label a specific part of sentences. The proposed method adopts the point-wise
prediction model that can be trained by using partially annotated sentences. The experimental
results show that the proposed method can be trained more quickly than the existing active
learning methods based on the full annotation scheme. This property is useful when we have



Koga Kobayashi and Kei Wakabayashi 331

a limited budget to develop training data and need to train a custom NER model quickly on
the target domain.

The limitation of the proposed method is the upper limit of the performance due to the
simple architecture of the point-wise prediction model. When we obtained a sufficient amount
of labeled sentences, the NER models based on neural networks outperform the point-wise
prediction model. A subject we should address in future work is to overcome this limitation.
One potential idea is to switch from the proposed active learning method to neural network
models by bridging the gap of the annotation data structure. Another solution is to develop
a neural network model that can be trained by using a partial annotation corpus.
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