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The demands for graph data analysis methods are increasing. RankClus is a framework

to extract clusters by integrating clustering and ranking on heterogeneous graphs; it
enhances the clustering results by alternately updates the results of clustering and rank-

ing for the better understanding of the clusters. However, RankClus is computationally

expensive if a graph is large since it needs to iterate both clustering and ranking for
all nodes. In this paper, to address this problem, we propose a novel fast RankClus

algorithm for heterogeneous graphs. To speed up the entire procedure of RankClus,

our proposed algorithm reduces the computational cost of the ranking process in each
iteration. Our proposal measures how each node affects the clustering result; if it is

not significant, we prune the node. Furthermore, we also present a parallel algorithm
by extending our proposed algorithm by fully exploiting a modern manycore CPU. As a

result, our extensive evaluations clarified that our fast and parallel algorithms drastically

cut off the computation time of the original algorithm RancClus.

Keywords: Graph, Clustering, Ranking

1. Introduction

Graphs are one of the most fundamental data structures that represent schema-less and

complicated relationships among data entities. They are now widely used not only in the

Web-based applications and systems, but also in the various application domains including

computer graphics, biological analysis, healthcare, and so on. As the graphs are increasing,

graph analysis becomes essential data mining tools in the Web communities. Ranking and

clustering are the most representative graph mining methods, and they play essential roles in
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Table 1. Semantic clusters of the given conference list.

DB SIGMOD, VLDB, PODS, ICDT, EDBT
IR SIGIR, TREC, ECIR, JCDL, ECDL

Table 2. Top-10 conference ranks by using Table 1.

Rank Conference

1 SIGMOD
2 VLDB
3 EDBT
4 SIGIR
5 PODS
6 TREC
7 ECIR
8 ICDT
9 JCDL
10 ECDL

the many applications [1]. The ranking, such as PageRank [2], HITS [3] and ObjectRank [4],

is a method to evaluate the importance of each node in a graph based on an arbitrary ranking

function. On the other hand, the clustering, e.g., modularity-based [5, 6] and density-based

algorithms [7, 8], groups nodes based on some proximity metrics so that similar nodes are

assigned in the same group, and dissimilar nodes should belong to the different groups.

The clustering and the ranking are usually used independently; however, they often fail

to capture a better understanding of the real-world datasets; the clustering without consid-

ering the ranking causes inappropriate or sometimes slightly biased analytical results, and

vice versa. Here, we show an example of the inappropriate analytical results on the real

bibliographic dataset due to independent use of the ranking and the clustering:

Example 1 (The ranking without considering the clustering)

Suppose that we have a conference relationship network taken from DBLP bibliographic

database a; nodes represent the ten conferences, i.e., SIGMOD, SIGIR, VLDB, TREC, PODS,

ECIR, ICDT, JCDL, EDBT, and ECDL; and edges show citation relationships among papers

published in the conferences. Note that, as shown in Table 1, the conferences are semantically

separated into two clusters, i.e., DB cluster and IR cluster, but we do not know this clustering

result.

By using the conference relationship network, we applied the traditional graph ranking

algorithm, e.g., PageRank [2]. Table 2 shows the ranking result. As we can see from Table 2,

the DB conferences and IR conferences are intermingled in the ranks. This is because that

the ranking algorithm, which we used, did not take care of the conference clusters shown in

Table 1. This result is not helpful for a better understanding of the relationships of inner/inter

research domains.

As shown in Example 1, the independent use of the clustering and the ranking fails to capture

how large impacts each node have for each domain (cluster). Thus, it is a significant problem

to explore how to integrate the clustering and the ranking methods.

ahttp://dblp.uni-trier.de/
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Table 3. Top-5 ranks in DB.

Rank Conf.

1 SIGMOD
2 VLDB
3 EDBT
4 PODS
5 ICDT

Table 4. Top-5 ranks in IR.

Rank Conf.

1 SIGIR
2 TREC
3 ECIR
4 JCDL
5 ECDL

To address the above problem, Sun et al., proposed RankClus algorithm [9] that success-

fully integrates the clustering and the ranking on the heterogeneous graphs. By performing the

clustering and the ranking one after another, RankClus achieves better clustering and rank-

ing results than the independent use of them. Specifically, RankClus first takes randomly

partitioned clusters, and then it computes how high rank each node has for each cluster

by performing the authority-based ranking algorithm [3]. After that RankClus re-construct

clusters based on the assumption that a node has a higher rank score corresponding to an

appropriate cluster; otherwise, it has a lower rank score. By following the above assumption,

RankClus performs the traditional clustering [10, 11] by using how high rank scores each node

has for the clusters. By performing ranking and clustering iteratively, the qualities of ranking

and clustering are mutually enhanced. As a result, RankClus successfully achieves accurate

and efficient graph data analysis compared with competitive algorithms. Here, we show an

example of how RankClus can improve the analysis results on the dataset used in Example 1.

Example 2 (RankClus results using the ten conference network.)

Again, suppose that we use the same ten conference network dataset described in Example 1.

By performing RankClus algorithm on the dataset, we can obtain the ranking results shown

in Table 3 and Table 4 automatically. As we can see from the results, RankClus handles how

substantial impacts each node have for each domain (cluster). Moreover, assigned ranks lead

us to a better understanding of the relationships of the nodes in each cluster. Thus, by using

RankClus, we can obtain fine-grained results from the complex datasets.

Although RankClus is useful to enhance graph analysis results, it is, however, computa-

tionally expensive since RankClus needs to iterate both the ranking and the clustering until

clusters do not change significantly. Notably, in each ranking procedure, RankClus needs

to generate subgraphs as many as the number of clusters, and it then needs to iteratively

perform the ranking procedure for all nodes included in each subgraph until all rank scores

converge. Clearly, these procedures incur high computational costs, and thus it is difficult to

apply RankClust to the heterogeneous graphs.

To overcome the performance limitation in RankClus, we present an efficient algorithm [12]

for speeding-up RankClus on large-scale heterogeneous graphs. To speed up the entire pro-

cedure of RankClus, we focused on the computational costs of the ranking procedure since

it is the primary bottleneck in RankClus. Our proposed algorithm attempts to reduce the

runtimes of the ranking procedure by incrementally pruning nodes that do not significantly

affect the final ranking and clustering results.

Contribution: In summary, our contributions in this paper are shown as follows:

• We first derive a novel measure, named change rate of rank score, that evaluates how the



140 Fast and Parallel Ranking-based Clustering for Heterogeneous Graphs

rank score increase/decrease compared to that in the previous iteration; if a node has

a low change rate of the rank score, we determine that the node not have a significant

impact on the final ranking and clustering results (Section 3.2).

• Then, by using the change rate of the rank score, we present a fast algorithm that

approximates the RankClus results within short runtime (Section 3.3).

• For further improving the clustering speed, we extend our algorithm so that it fully

utilizes thread-based parallelization on a modern manycore processor (Section 3.4).

• Finally, we conducted experiments on the various datasets, and we experimentally con-

firmed that our fast and parallel algorithms achieve faster analysis than the original

RankClus algorithm while keeping the high accuracy (Section 4).

Our extensive evaluations showed that our proposed method without parallelization re-

duces more than 30% of runtimes of the original RankClus algorithm [9] while keeping its

clustering qualities. Also, our multi-threading algorithm further cuts off at most 22% of the

computation time consumed by our proposed algorithm. Even though RankClus is effec-

tive in enhancing various applications, it has been challenging to apply RankClus to large

datasets due to its performance limitations. However, by providing our efficient approaches,

our algorithms will help to improve the effectiveness of a broader range of applications.

Organization: The rest of paper is organized as follows: In Section 2, we briefly describe

the backgrounds of this paper. In Section 3, we present our fast and parallel algorithms, and

we then report the results of our experimental evaluations in Section 4. After that, in Section

5, we review the related work, and we finally conclude this paper in Section 6.

2. PRELIMINARIES

In this section, we define the notations and introduce the background of this paper. Table 5

shows the notations and their definitions used in this paper. We first show the data model of

RankClus in Section 2.1 that is followed by the full descriptions of RankClus.

2.1. Data Model

We briefly introduce the data model of RankClus.

2.1.1. Bi-type Information Network:

RankClus takes a bi-type information network as an input data model that is a popular data

model among various heterogeneous graphs. The formal definition of the bi-type information

network is shown as follows:

Definition 1 (Bi-type Information Network) Given two node sets X = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn}, where m and n are the numbers of nodes in X and Y , respectively;

graph G〈V,E〉 is called a Bi-type Information Network on types X and Y . V and E are a node

set V(G) = X ∪Y and an edge set E(G) = {〈oi, oj〉|oi, oj ∈ X ∪Y } in the graph, respectively.

Let woi,oj be the weight of edge 〈oi, oj〉, we denote the adjacency matrix of edges by

W(m+n)×(m+n) = {woi,oj}. For convenience, we decompose the adjacency matrix into four
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Table 5. Definitions of main symbols.

Notation Definition

G A given graph.
V A set of nodes included in G.
E A set of edges in G.
Gi A subgraph given by Xi.
Vi A set of nodes included in Gi.
Ei A set of edges included in Gi.
Pk A set of prunable nodes included in Gk.
Xk X A set of nodes included in cluster k.
X A set of target type nodes.
Y A set of attribute type nodes.
N A number of nodes included in V.
m A number of nodes included in X.
n A number of nodes included in Y .
K A number of clusters.
T A number of threads invoked in our parallel algorithm
W (m+ n)× (m+ n) adjacency matrix.
~rX m× 1 rank score vector of target type node set X.
~rY n× 1 rank score vector of attribute type node set Y .
πi,k Posteriori probability of node xi when it belongs to cluster k.

D(i, k) Distance between node xi and cluster k.

R(t)(j, k) Change ratio of node xj for subgraph Gk in the t-th iteration.
λR Change-ratio parameter.
λI Stability parameter.

blocks: WXX , WXY , WY X and WY Y . Each block indicates a subgraph of the given bi-type

information network among subscript types. W thus can be written as follows:

W =

(
WXX WXY

WY X WY Y

)
Figure 1 is an example of the bi-type information network that represents a conference-author

collaboration network. Let X and Y be sets of conferences and authors, respectively; we can

introduce the matrix WXY as follows:

WXY (i, j) = pij , for i = 1, 2, . . . ,m; and j = 1, 2, . . . , n,

where pij is the number of papers that the author yj published in the conference xi.

Similarly, WY Y is define as follows:

WY Y (i, j) = aij , for i = 1, 2, . . . ,m; and j = 1, 2, . . . , n,

where aij is the number of papers that the author yi has written with author yj . WY X is

equal to WT
XY because the relationship between conferences and authors is symmetric. Since

there is no connection between conferences, WXX = O.

2.1.2. Target type and Attribute type:
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Fig. 1. Example of the Bi-type Information Network: This graph represents a conference-author

relationship network. If author yi has ever published a papers on conference xi, we links between
xi and yi. Also, we link between yi and yj if yi has been a co-author of yj , and vice versa.

Fig. 2. Example of the subgraph construction using Figure 1: In this example, we set K = 2
and partition X = {x1, x2, x3, x4} into two subsets {x1, x2} and {x3, x4}. Then, we construct a

subgraph for each subset.

RankClus defines two types of nodes, target type and attribute type, on X and Y ; RankClus

performs clustering only for the target type nodes, and it uses attribute type nodes as support

information for the clustering. Recall the example of the bi-type information network shown

in Figure 1. In Figure 1, RankClus clusters groups of conferences based on WXY and WY Y

if we set X and Y as target type and attribute type, respectively.

2.2. RankClus Algorithm

The goal of RankClus is to determine clusters of the target type nodes by using the attribute

type nodes. In order to improve the clustering quality, RankClus iteratively performs the

clustering and the ranking one after another. In this section, we briefly introduce the algorithm

of RankClus.

In RankClus algorithm, we have the following observation: “the node tends to have a

high rank score only for the clusters what the node belongs.” By following this observation,

RankClus constructs a feature vector from the rank scores for each node. Specifically, if we

have K clusters, each node can take K rank scores in the algorithm, and thus RankClus

constructs K-dimensional vector for each node by using the K rank scores. After obtaining

the feature vectors, RankClus performs the clustering procedure. Briefly, the workflow of

RankClus algorithm is shown in the below:

(1) Randomly assign initial K clusters for the target type nodes X, and constructs K
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subgraphs.

(2) Computes rank scores of all nodes in X and Y for each subgraph.

(3) Construct K dimensional feature vector for each target type node by using the rank

scores obtained in (2).

(4) Update the cluster assignments of the target type nodes by using the K dimensional

vector obtained in (3).

(5) Repeat (2) to (4) until the clusters converge.

The workflow of RankClus algorithm can be divided into two parts: ranking part, i.e., (1)

and (2), and clustering part, i.e., (3) and (4). We detail the ranking part and the clustering

part in the Section 2.2.1 and Section 2.2.2 , respectively.

2.2.1. Ranking part

The goal of the ranking part is to determine the rank score of each node in X ∪ Y for each

corresponding clusters.

RankClus first randomly partitions the target type nodes X into K clusters, and it then

constructs K subgraphs. By letting Xi be the subset of X included in the i-th cluster

(1 ≤ i ≤ K), each of the subgraphs is defined as Gi = 〈Vi,Ei〉, where Vi = {Xi ∪ Y } and

Ei = {〈oi, oj〉|oi, oj ∈ Xi ∪ Y 〉}; clearly, we have G =
⋃K

i Gi. Figure 2 shows an example of

the cluster assignment. In this example, we partition X into two clusters, i.e., {x1, x2} and

{x3, x4}, and then construct corresponding subgraphs.

After constructing the subgraphs, RankClus computes the rank score of each node in X∪Y
for each subgraph Gi based on authority-based ranking function [3]. Let ~rX(x) and ~rY (y) be

the rank score of node x in X and node y in Y , respectively. For each subgraph Gi, RankClus

obtains the rank scores based on the authority-based ranking function by using the following

definitions:

Definition 2 (Authority Ranking) Let ~rX(i) and ~rY (i) be the rank score of xi ∈ X and

yi ∈ Y for a subgraph Gk, respectively; ~rX(i, k) and ~rY (i, k) is given from following equations.

~rX(i, k)=α

m∑
j=1

WXY (i, j)~rY (j, k),

~rY (i, k)=α

m∑
j=1

WXY (i, j)~rX(j, k) + (1− α)

n∑
j=1

WY Y (i, j)~rY (j, k),

where α ∈ [0, 1] is a balancing parameter. Note that RankClus sets WXY (i, j) = 0 if an edge

〈oi, oj〉 /∈ Gi; otherwise, WXY (i, j) = woi,oj .

As shown in Definition 2, ~rX and ~rY have mutual recursion formula, so RankClus needs to

iterate the equations in Definition 2 until ~rX and ~rY converge. As a result, Definition 2 incurs

O(t|E|), where t is the number of iterations.

2.2.2. Clustering part
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In this part, RankClus refines K clusters, i.e., K partitions of X, used in the ranking part

based on the rank score ~rX . RankClus first estimates posterior probability πi,k that represents

a probability of target type node xi belonging to cluster k by using the rank score ~rX . Then,

RankClus constructs K-dimensional vector sxi
= {πi,1, πi,2, . . . , πi,K} for each xi ∈ X, and it

finally performs centroid-based clustering to update the K clusters. Here, we briefly review

each procedure in the below.

Estimate the posterior probability πi,k: RankClus estimates the posterior probability

πi.k based on the mixture generative model [13]; πi.k is the probability that node xi belonging

to cluster k, where k = 1, . . . ,K.

Since πi,k = p(k|xi) ∝ p(xi|k)p(k), RankClus here needs to compute p(xi|k) and p(k).

RankClus first regards p(xi|k) as the conditional rank of xi in cluster k, which RankClus

has already know in the ranking part. That is, RankClus obtains p(xi|k) = ~rX(i, k), where

~rX(i, k) is a rank score for subgraph Gk from Definition 2. Then, it estimates p(k), which

represents the probability of an edge 〈x, y〉 (x ∈ X and y ∈ Y ) belongs to cluster k, by using

EM-algorithm [14]. As a result, RankClus obtains the following posterior probability for each

pair of xi and cluster k.

Definition 3 (Posterior probability πi,k) Let πi,k be the posterior probability of node xi
belonging to cluster k, πi,k is defined as follows:

πi,k = p(k|xi) =
~rX(i, k)p(k)∑K
l=1 ~rX(i, l)p(l)

,

where p(k) is the probability estimated by EM-algorithm.

Update K clusters: After estimating the posterior probability πi,k, RankClus updates K

clusters. First, it constructs K-dimensional feature vector sxi
= {πi,1, πi,2, . . . , πi,K} for each

xi. Then, RankClus determines K cluster centroids based on the following definition.

Definition 4 (Cluster centroid) Let ~sXi
be a vector that represents a cluster centroid of

cluster Xi; ~sXi
is defined as follows:

~sXi =

∑
x∈Xi

~s(x)

|Xi|
.

Next, RankClus evaluates each target type node xi ∈ X by using the following the distance

measure:

Definition 5 (Distance) Let D(i, k) be the distance between node xi and cluster Xk, D(i, k)

is defined as follows:

D(i, k) = 1−
∑K

l=1 ~sxi
(l)~sXk

(l)√∑K
l=1 (~sxi

(l))
2
√∑K

l=1 (~sXk
(l))2

.

Finally, RankClus updates K clusters by assigning xi ∈ X into a cluster Xk that shows the

largest D(i, k) value among K clusters.

As shown in Definition 3, estimating the posterior probability is not costful since we can

get ~rX(i, k) and p(k) in O(1). Also, updating K clusters requires O(mK) times that is

relatively smaller computational costs than the ranking part. Thus, the clustering part does

not have a dominant cost in the RankClus algorithm.
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Algorithm 1 RankClus
Input: G = 〈V,E〉, and K
Output: Xi(i = 1, 2, · · · ,K), ~rX , and ~rY for each Xi

// Step 0: Initialize
1: t = 0.
2: Generate initial K clusters X

(t)
1 , X

(t)
2 , . . . , X

(t)
K .

3: repeat
// Step 1: Ranking for each cluster

4: Construct subgraphs G(t)
i from X

(t)
i , and Y .

5: for i = 1 to K do
6: for each xj ∈ Xi and ys ∈ Y do
7: Compute rank score ~rX(j, i) and ~rY (s, i) by Definition 2.
8: end for
9: end for

// Step 2: Get new attribute
10: for i = 1 to K do
11: for each xj ∈ Xi do
12: Estimate πj,i by Definition 3.
13: end for
14: Determine a centroid vector ~sXi

by Definition 4.
15: end for

// Step 3: Assign xj to cluster
16: for each xj ∈ X do
17: for i = 1 to K do
18: Compute a distance D(j, k) by Definition 5.
19: end for
20: Obtain k0 = arg min

k
D(j, k).

21: X
(t+1)
k0

= X
(t+1)
k0

∪ {xj}.
22: end for
23: t = t+ 1.
24: until No clusters are updated.

2.2.3. Algorithm

We review the RankClus algorithm. The pseudo-code of RankClus is shown in Algorithm1.

Algorithm 1 takes a bi-type information network G and a number of cluster K as inputs.

Specifically, we can separate Algorithm 1 into the following steps:

• Step 0: Initialization.

RankClus generates the initial K cluster of target type nodes in a random manner.

• Step 1: Ranking.

RankClus computes rank scores of all nodes based on the current cluster structures.

• Step 2: Estimating the posterior probabilities.

RankClus estimates the the posterior probabilities πi,k based on Definition 3 for all

combinations of the target type nodes and the clusters.

• Step 3: Updating clusters.

RankClus evaluates the distance from each target node x to each cluster centroid, and

then it assigns the node to the nearest cluster.

• Repeat Step 1, 2 and 3 until all clusters converge.
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2.3. Computational cost of RankClus

RankClus repeatedly performs the ranking process, the calculation of EM algorithm, and the

clustering process on all the given objects, so the computational cost greatly increases as the

number of data increases. As we described in Section , the time complexity for the ranking

process is O(t1|E|), where t1 is the number of iterations of ranking, and |E| is the number of

links. In clustering step, we need O(K|E| + K + mK) to estimate the mixture model, and

O(mK2) to perform the cluster assignment process. Thus, the time complexity of the whole

process is O(t(t1|E| + t2(K|E|+K +mK) + mK2)), where t is the number of iterations of

the whole algorithm, and t2 is the iteration number of estimating the mixture model. This

incurs high computational cost for large graphs.

3. PROPOSED METHOD

The goal of this paper is to reduce the computational cost of RankClus while keeping the

clustering quality of the original RankClus algorithm [9]. To reduce the cost, we focus on the

ranking part shown in Section 2.2.1 since it consumes a dominant part of the computation

time. In this section, we first overview the central idea underlying our proposal and then give

a full description of our proposed algorithm.

3.1. Observation

The basic idea of the proposed method is to reduce the computational cost for the ranking

part. From Definition 2, the original RankClus algorithm needs to compute ~rX(i, k) and

~rY (i, k). As discussed in Section 2.2.1, this computation incurs an expensive costs since the

algorithm iterates this computation for all pairs of the nodes in X ∪ Y and the subgraphs

until ~rX(i, k) and ~rY (i, k) converge. Thus, it is essential to reduce the number of nodes in

X ∪ Y whose rank score should be computed in each iteration.

To reduce the number of nodes to be computed, we have an important observation about

the rank score that has not been stated and utilized in the existing works.

Observation 1 In the ranking part, the rank score of each node does not significantly fluctu-

ates. The rank score becomes almost converged value within early few iterations even though

the original RankClus algorithm continues large number of iterations.

For example, consider a bi-type information network dataset, which represents author-conference

relationships taken from the DBLP bibliographic database. The dataset has 20 conferences

as the target type nodes and 5,639 authors as the attribute type nodes. We set the number

of clusters at K = 4 and performed the original RankClus algorithm on the dataset. Figure 3

shows how the rank scores fluctuate as the iteration proceeds on this dataset. By following

Algorithm 1, the original RankClus algorithm performed five iterations until all rank scores

converge; however, as we can see from Figure 3, most of the rank scores converged in the

early iterations. That is, the original RankClus algorithm consumes unnecessary computa-

tional costs for the converged rank scores since it iteratively updates rank scores for all nodes

regardless of whether the scores converged or not.

As we described in Section 2.2.2, the nodes with almost converged rank scores do not

affect clustering results in the clustering part. This is because that the posterior probability

used in the clustering part is composed of only the converged rank scores. Therefore, if the
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Fig. 3. Fluctuations of the rank scores in each iteration

nodes have almost converged rank scores, we can exclude nodes from the iterative rank score

computations without significantly sacrificing the clustering quality.

3.2. Change rate of rank score

Based on the observation described in Section 3.1, our proposed method prunes unnecessary

nodes whose rank scores almost converged from the ranking part. In order to specify the nodes

with converged rank scores, we employ a new measure, named change rate R, that evaluates

how the rank score increase/decrease compared to the previous iteration. The change rate

shows how much the rank value has changed from the previous iteration. The formal definition

is shown as follows:

Definition 6 (Change Rate) Let R(t)(j, k) be the change rate of node xj for subgraph Gk

in the t-th iteration. The change rate R(t)(j, k) is defines by the following equation.

R(t)(j, k) =
r(t)(j, k)

r(t−1)(j, k)
,

where r(t)(j, k) is ~rX(j, k) in the t-th iteration if the node is a target type node; otherwise

r(t)(j, k) is ~rY (j, k) in the t-th iteration.

As we can see from Definition 6, the change rate R evaluates the diference of the rank score

between t-th and (t−1)-th iteration. Clearly, from the observation, the almost converged rank

score does not increase/decrease its score compared with the score in the previous iteration.

Hence, we can specify the nodes with almost converged rank scores by using the change rate

R for each node.

To determine the almost converged rank score, we introduce two user-specified parameters,

change-ratio parameter λR and stability parameter λI . The change-ratio parameter λR is a

threshold of the change rate R; if a node has R < λR, our proposed method regards the rank

score of the node almost converged. The stability parameter λI is a threshold to determine

whether a node should be pruned or not; our proposed method prunes a node if it has almost

converged rank scores (i.e., R < λR) more than λI times. Formally, our proposed method

prunes the following nodes.
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Algorithm 2 Proposed method: Sequential Algorithm

Input: G = 〈V,E〉, Cluster Number K, λR, and λI
Output: Xi(i = 1, 2, · · · ,K), ~rX , and ~rY for each Xi

// Step 0: Initialize
1: t = 0.
2: Generate initial K clusters X

(t)
1 , X

(t)
2 , . . . , X

(t)
K .

3: Construct subgraphs G(t)
i from X

(t)
i , and Y .

4: repeat
// Step 1: Ranking for each cluster

5: for i = 1 to K do
6: for each xj ∈ Xi and ys ∈ Y do
7: Compute rank score ~rX(j, i) and ~rY (s, i) by Definition 2.
8: Compute R(t)(s, k) by Definition 6.
9: end for

10: end for
// Step 2: Get new attribute

11: for i = 1 to K do
12: for each xj ∈ Xi do
13: Estimate πj,i by Definition 3.
14: end for
15: Determine a centroid vector ~sXi

by Definition 4.
16: end for

// Step 3: Assign xj to cluster
17: for each xj ∈ X do
18: for i = 1 to K do
19: Compute a distance D(j, k) by Definition 5.
20: end for
21: Obtain k0 = arg min

k
D(j, k).

22: X
(t+1)
k0

= X
(t+1)
k0

∪ {xj}.
23: end for

// Step 4: Pruning
24: for i = 1 to K do
25: Construct subgraphs G(t+1)

i from X
(t+1)
i and Y .

26: Obtain Pi by Definition 7.

27: V(t+1)
i = V(t+1)

i \Pi.
28: end for
29: t = t+ 1.
30: until No clusters are updated.

Definition 7 (Prunable Nodes) Let Pk be a set of nodes that are pruned from Gk, and

t be the number of iterations when the ranking part terminated. The prunable nodes Pk is

defined as follows:

Pk = {u ∈ Vk|Θ(u, k) ≥ λI},

where Θ(u, k) = |{R(t)(u, k)|R(t)(u, k) < λR for t = 1, . . . , t}|; that is, Θ(u, k) is the number

of R(t)(j, k) less than λR when t changes from 1 to t.

In our proposed method, we prune the prunable nodes Pk for each subgraph Gk after the

clustering part, so then it starts the next ranking part by using the reminder nodes.

3.3. Algorithm

Our proposed method reduces the number of nodes computed in the ranking part by using the

change rate R and the prunable nodes P shown in Definition 6 and Definition 7, respectively.
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The pseudo-code of our proposed method is shown in Algorithm 2.

Although our proposed method requires two additional user-specified parameters λR and

λI , it is fundamentally based on the original RankClus algorithm described in Algorithm 1.

However, different from the original algorithm, our proposed method additionally computes

the change rate R in Step 1 (line 8), and based on the change rate R, we add one more step,

named Step 4 in lines 24-28. In Step 4, we identify the prunable nodes Pk for each subgraph

Gk based on Definition 7 and the change rate R. After detecting the prunable node sets,

our proposed method updates each subgraph Gk by removing Pk from Vk. As a result, we

reduce the size of each subgraph and performs the next ranking part on the subgraphs. As

well as the original algorithm is shown in Algorithm 1, our proposed method terminates if

the clustering result does not update.

3.4. Multi-threading algorithm

For further improving the computational efficiency of Algorithm 2, we here extend our al-

gorithm so that it utilizes multi-threading techniques on a manycore CPU. Specifically, we

employ thread-based parallelization into loop-blocks that compute ranks of nodes by pruning

unnecessary nodes based on Definition 7. As shown in the previous section, our proposed

algorithm needs to perform several computation steps for all clusters, i.e., Xt
1, Xt

2, . . . , Xt
K ,

except for (Step 3) in Algorithm 2. Thus, we apply task-wise parallelization for the steps to

reduce the computation time of Algorithm 2. To balance task granuralities among threads, we

divide the set of clusters {Xt
1, X

t
2, . . . , X

t
K} into equally sized T subsets in (Step 1), (Step 2),

and (Step 4) in Algorithm 2, where T is a number of thread invoked in our parallel algo-

rithm. After dividing the set of clusters, we finally assign each subset into a thread, and our

algorithm computes the clusters in a task parallel manner.

Algorithm 3 shows the pseudocode of our multi-threading (parallel) algorithm, which is an

extension of Algorithm 2 [12]. As we can see from Algorithm 3, the workflow is the same as

that of Algorithm 2. Unlike our sequential algorithm in Algorithm 2, our parallel algorithm

employs task-wise parallelization to compute multiple clusters simultaneously. Specifically,

(line 5) in Algorithm 3, we assign each cluster into thread invoked in our algorithm since

the ranking computation step is the most time-consuming part in RancClus algorithm as

we discussed in Section 2.3. We also apply the task-wise parallelization into (Step 3) and

(Step 4); that is, Algorithm 3 also performs our pruning technique described in Section 3.2

in the parallel computation manner. By dynamically removing prunable nodes, our parallel

algorithm attempts to reduce computation times consumed in the succeeding iterations.

4. Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of our proposed methods.

We designed our experiments to demonstrate that:

• Efficiency: Our proposed method shown in Algorithm 2 achieves faster computation

time compared with the original RankClus algorithm; our proposal successfully avoids

computing the rank scores of unnecessary nodes in the ranking part (Section 4.2).

• Accuracy: Although Algorithm 2 leads approximated clustering results, it does not

sacrifice the clustering quality; our method outputs highly accurate clusters compared
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Algorithm 3 Parallel proposed method
Input: G = 〈V,E〉, Cluster Number K, λR, and λI
Output: Xi(i = 1, 2, · · · ,K), ~rX , and ~rY for each Xi

// Step 0: Initialize
1: t = 0.
2: Generate initial K clusters X

(t)
1 , X

(t)
2 , . . . , X

(t)
K .

3: Construct subgraphs G(t)
i from X

(t)
i , and Y .

4: repeat
// Step 1: Ranking for each cluster

5: for i = 1 to K do in thread-parallel
6: for each xj ∈ Xi and ys ∈ Y do
7: Compute rank score ~rX(j, i) and ~rY (s, i) by Definition 2.
8: Compute R(t)(s, k) by Definition 6.
9: end for

10: end for
// Step 2: Get new attribute

11: for i = 1 to K do in thread-parallel
12: for each xj ∈ Xi do
13: Estimate πj,i by Definition 3.
14: end for
15: Determine a centroid vector ~sXi

by Definition 4.
16: end for

// Step 3: Assign xj to cluster
17: for each xj ∈ X do
18: for i = 1 to K do
19: Compute a distance D(j, k) by Definition 5.
20: end for
21: Obtain k0 = arg min

k
D(j, k).

22: X
(t+1)
k0

= X
(t+1)
k0

∪ {xj}.
23: end for

// Step 4: Pruning
24: for i = 1 to K do in thread-parallel

25: Construct subgraphs G(t+1)
i from X

(t+1)
i and Y .

26: Obtain Pi by Definition 7.

27: V(t+1)
i = V(t+1)

i \Pi.
28: end for
29: t = t+ 1.
30: until No clusters are updated.

with those of RankClus (Section 4.3).

• Effectiveness: The multi-threading algorithm introduced in Algorithm 3 effectively

reduces the computation time of our proposed algorithm by increasing the number of

threads; our parallel algorithm reduces the running time of Algorithm 2 under large T

settings (Section 4.4).

• Applicability: Case-studies on real-world datasets shows that our algorithms output

reasonable clustering results even though our proposal approximates the clustering re-

sults of RankClus. That is, our proposal can be a better alternative for the original

algorithm (Section 4.5).

4.1. Experimental Setup
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We compared the proposed method with the original RankClus algorithm [9]. All algorithms

were implemented in C++11 (gcc 4.8.5) using -O2 option, and we also used OpenMP for

our parallel algorithm shown in Algorithm 3. All experiments were conducted on a CentOS

server with an Intel (R) Xeon (R) E5-1620 3.50 GHz CPU and 128 GB RAM. Unless otherwise

stated, we set the parameter α used in Definition 2 as 0.95, λR = 0.8, and λI = 5.

4.1.1. Dataset

We evaluated the algorithms on both synthetic and real-world datasets that are detailed in

the below.

Synthetic dataset We evaluated the algorithms on five synthetic datasets that are gen-

erated in the existing work [9]. Each dataset has 45 target type nodes and 2,000 attributed

type nodes, and the target type nodes can be divided into three clusters, i.e., K = 3; the

three clusters X1, X2, and X3 have 10, 20, and 15 target type nodes, respectively. Based on

the above settings, we generated five bi-type information networks by varying two parameter

settings, P and T . Let Y be the set of attributed type nodes, P = [P1, P2, P3] represents the

number of edges included in each subgraph; P1, P2, and P3 are the number of edges in X1∪Y ,

X2 ∪ Y , and X3 ∪ Y , respectively. T = [T11, T12, T13;T21, T22, T23;T31, T32, T33] denotes the

probability that an edge is generated between two clusters; Tij is the probability of linking

from cluster i to j. The detailed setting of the five synthetic datasets, which are generated

by [9], are listed as follows:

• Dataset 1 (Medium separated & Medium density)

P = [1000, 1500, 2000],

T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset 2 (Medium separated & Low density)

P = [800, 1300, 1200],

T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset 3 (Medium separated & High density)

P = [2000, 3000, 4000],

T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset 4 (Highly separated & Medium density)

P = [1000, 1500, 2000],

T = [0.9, 0.05, 0.05; 0.05, 0.9, 0.05; 0.1, 0.05, 0.85]

• Dataset 5 (Highly separated & Low density)

P = [800, 1300, 1200],

T = [0.9, 0.05, 0.05; 0.05, 0.9, 0.05; 0.1, 0.05, 0.85]
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Fig. 4. Runtimes on synthetic datasets. Fig. 5. Runtimes by varying λR.

Real-world dataset In addition to the synthetic datasets, we also used a real-world dataset

for evaluating the effectiveness of our proposed algorithms. In this paper, we constructed

an author-conference bi-type information network named DBLP dataset that is extracted

from the DBLP bibliographic database b. We collected publication lists of 20 representative

conferences from DBLP, and we extracted 5,639 authors who have been published at least

two papers on the 20 conferences. If an author has published papers on a conference, we link

the author and the conference by an edge with a weight value, which represents many papers

the author published at the conference. Also, if two authors have been co-authors, we connect

the two authors by an edge; we set many papers coauthored with the two authors as a weight

value for each edge. We did not set any edges among the 20 conferences.

4.2. Efficiency

We compared the running time of the proposed method compared with the original RankClus

algorithm by using the five synthetic datasets described in Section 4.1.1. Figure 4 shows the

results of each algorithm on the synthetic datasets. As we can see from the results, our

proposed method successfully reduces more than 30% of the computation time consumes by

the original RankClus algorithm.

We also evaluated the effect of the user-specified parameters, λR and λI . In this evaluation,

we fixed one of the two parameters and varied the other one on Dataset 3. Figure 5 shows

the runtimes when we varied λR from 0.5 to 1.1 with fixed λI value (i.e., λI = 5). As

shown in Figure 5, the computation time gradually decreased as the size of λI increases.

This is because that, as shown in Figure 3, most nodes typically decrease their rank scores

as iteration proceeds. Thus, by setting λR values around 1, our proposed method can prune

such nodes in the early iterations. As well as λR, we also evaluated the effect of λI values on

Dataset 3. Figure 6 shows the runtimes when we vaired λI from 2 to 8 with fixed λR value

(i.e., λR = 0.8). As shown in Figure 6, the runtime gradually increased as the size of λI
becomes large. Clearly, large λI values require more strict pruning conditions than small λI
values, hence the size of prunable nodes |Pk| becomes small as λI increases.

bhttps://dblp.uni-trier.de/
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Fig. 6. Runtimes by varying λI .
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Fig. 7. NMI on synthetic datasets.

Fig. 8. NMI by varying λR Fig. 9. NMI by varying λI .

The results shown in Figure 4, 5, and 6 confirm that the superiority to the original

RankClus algorithm in terms of runtimes.

4.3. Accuracy

We experimentally confirm the accuracy of the clustering results produced by the proposed

method. In order to evaluate the accuracy of clustering results, we employed NMI (Normal-

ized Mutual Information) [15] that is an information-theoric measurement. NMI measures

clustering accuracy by comparing the ground truth and a clustering result. NMI takes a value

between 0 and 1; NMI returns 1 if the two clusters are completely same while it outputs 0 if

the two clusters are different. In this evaluation, we compared the ground truth clusters of

each synthetic dataset and their corresponding clustering results produced by our proposal

and the original RankClus algorithm. Figure 7 shows the results of the five synthetic datasets.

As we demonstrated in Figure 7, our proposed method shows very similar NMI values com-

pared with the original RankClus algorithm even though our proposal dynamically prunes

nodes from the ranking part. That is, our proposed method does not significantly degrade
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Fig. 10. Effects of the number of thread in Algorithm 3 on DBLP-dataset

the clustering accuracy compared with those of the original algorithm.

As well as Section 4.2, we also evaluated the effect of the parameters, λR and λI . Figure 8

and Figure 9 show how NMI value changes by varying λR and λI , respectively. In Figure 8,

we fixed λI = 5, and varied λR from 0.5 to 1.1. Similarly, in Figure 9, we fixed λR = 0.8,

and varied λI from 2 to 8. As we can see from Figure 8, our proposed method keeps high

accuracy (i.e., NMI ≥ 0.8) for all parameter settings except for λR = 1.1. By using the change

rate measure shown in Definition 6, our proposed method prunes only the nodes whose rank

score have already converged. Thus, our pruning technique does not significantly affect the

clustering quality. In contrast, as shown in Figure 9, the NMI values gradually increase by

setting larger λI values. This is because that the nodes can be pruned before their rank scores

enough converge if we set small λI values since the rank scores drastically fluctuate in the

early iterations. Hence, it is reasonable to set relatively large values for λI .

From Figure 7, 8, and 9, we confirmed that our algorithm shows good accuracy compared

with the original algorithm even though our proposal employs node pruning techniques.

4.4. Effectiveness of our multi-threading approach

We conduct an experimental analysis to evaluate the effectiveness of our multi-threading tech-

nique shown in Algorithm 3. In this evaluation, we compared the running time of RankClus

with that of our parallel algorithm in Algorithm 3 on DBLP dataset. For our proposed algo-

rithm, we varied the number of threads T from 1 to 4 to test the effectiveness of thread-based

parallelization. Note that the parallel algorithm is equivalent to Algorithm 2 if we set T = 1.

Figure 10 shows the running time comparisons between RankClus and our algorithm. In

Figure 10, T = 1, T = 2, T = 3, and T = 4 in x-axis indicate our parallel algorithm using

1 thread, 2 threads, 3 threads, and 4 threads, respectively. In the case of T = 1, our proposed

method uses only the node pruning technique described in Section 3.2. As shown we can

see in Figure 10, our proposed method shows faster clustering time compared with RankClus

as well as the results in Section 4.2. Furthermore, we can observe from the figure that our

parallel algorithm successfully reduces the running time by increasing the number of threads.

These results indicate that our parallelization approach is effective in reducing the running
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Table 6. Clustering and ranking results on the DBLP dataset.

Rank Cluster 1 Cluster 2 Cluster 3 Cluster 4
1 SIGMOD KDD SIGIR NIPS
2 VLDB ICDM TREC ICML
3 EDBT SDM ECIR UAI
4 PODS PAKDD JCDL COLT
5 ICDT PKDD ECDL
6 ECML

time of RankClus.

4.5. Case-study on real-world DBLP dataset

To demonstrate the impact of our algorithm on real-world applications, we give a case study of

its clustering performance on DBLP dataset. In this case study, we regard the 20 conferences

as the target type nodes, and we performed our proposed method on the real-world dataset

by setting the number of clusters as K = 4.

Table 6 shows the clusters and the ranks of the 20 conferences extracted by our proposed

algorithm. As we can see from the table, our proposed method detected reasonable clustering

and ranking results from the real-world dataset even though our algorithm produces approx-

imated results as we stated in Section 4.3. Specifically, Cluster 1, 2, 3, and 4 in Table 6

represent the groups of database, data mining, information retrieval, and machine learn-

ing, respectively. For a particular interest, our proposed method groups ECML into Cluster 2

(data mining) instead of Cluster 4 (machine learning) even though ECML stands for Europian

Conference on Machine Learning. The reason is apparent; ECML has been collocated with

PKDD since 2008, and thus the target scopes and authors of ECML and PKDD significantly

overlapped. Hence, our algorithm regards ECML as a member of the data mining cluster.

These results imply that our algorithm can be another option for the research community for

clustering large heterogeneous graphs.

5. Related Work

Since ranking and clustering are the fundamental graph mining tools, various approaches [16]

have been studied for some decades. Here, we review some of the successful algorithms from

the ranking and clustering perspectives.

5.1. Ranking algorithm

The ranking is a graph mining method to evaluate the importance of each node included

in a graph; PageRank [2] and HITS [3] are the most representative ranking algorithms that

employ random-walk based graph analysis. The main idea underlying PageRank is that a

node that has many edges connected with important nodes should be more important. On

the other hand, HITS focuses on the two types of nodes, authority and hub: the authority

is a node that propagates importance to its neighbor nodes, while the hub is a node that

mediates between authority nodes. Based on the above ideas, PageRank and HITS estimate

the importance of all nodes by iteratively performing random-walks on all nodes included in
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the graph. Although they are successful in a wider range of Web-based applications, PageRank

and HITS have two limitations. First, they can not handle heterogeneous graphs; it is thus

difficult to apply PageRank and HITS to the bi-type information networks shown in Section

2. Second, they do not consider the clusters for estimating the importance; hence, PageRank

and HITS output ranking results without splitting nodes into their corresponding clusters.

In order to perform the ranking on heterogeneous graphs, ObjectRank [17, 4] has been

proposed. However, as well as PageRank and HITS, this method does not capture the cluster

structures included in the graph, and so, it fails to compute cluster-aware ranking results.

Similarly, to adequately capture the cluster structures for the ranking, Manifold Ranking [18]

is one of the promising ways for homogeneous graphs. Different from our proposed method,

Manifold Ranking, however, can not compute heterogeneous graphs; it is thus difficult to

apply it to the bi-type information networks.

5.2. Clustering algorithm

The problem of finding clusters in a graph has been studied for some decades. Graph parti-

tioning algorithms [19, 20] are natural choices for this problem. Since cluster structures are

highly complex, several clustering algorithms have been recently introduced. Here we review

some of the more successful methods.

Modularity-based algorithm [21, 5, 6] is one of the most popular algorithms for finding

clusters included in graphs. The main idea of modularity-based algorithms is to find groups of

nodes that have a lot of inner-group edges and few inter-group edges. Since they can compute

large graphs efficiently, they are used in various applications such as Web analysis, biological

data analysis, network security and so on. However, despite the efficiency of the algorithms,

it is recently pointed out that these methods fail to fully reproduce the ground-truth [22]. To

overcome the above limitation, structural graph clustering algorithms [23, 24] have recently

proposed. The structural graph clustering is an extension of the traditional density-based

clustering method DBSCAN [25]. Thus the structural graph clustering can successfully find

clusters as well as hubs and outliers in a graph, and as a result, it typically produces better

clustering results than those of the modularity-based algorithms.

Although the above approaches are used to understand the cluster structures in a graph,

their applications are limited in homogeneous graphs; that is, they can not handle multiple

types of nodes like a bi-type information network in their clustering procedure. In contrast,

RankClus [9], proposed by Sun et al., is the state-of-the-art ranking-based clustering algo-

rithm on heterogeneous graphs. However, as we described in Section 2, RankClus requires

high computational costs. In this paper, we proposed an efficient algorithm for RankClus

by providing an efficient node pruning technique shown in Section 3. As a result, as we ex-

perimentally confirmed in Section 4, our proposed method achieved faster clustering while

keeping the clustering quality of RankClus.

6. Conclusion

In this paper, we proposed two algorithms to improve the efficiency of RankClus algorithm

for large heterogeneous graphs. The first one is the node-pruning algorithm that reduces

unnecessary nodes computed in the ranking part of RankClus to avoid iterative computations

for all nodes and edges. In order to find the prunable nodes, we employed an evaluation
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criterion named change rate, and our algorithm drops nodes whose change rate score becomes

stable during the iterative computations. The second algorithm is a multi-threading method

that is an extension of our node-pruning algorithm. In the node-pruning algorithm, we need

to perform the ranking and the clustering for all clusters iteratively. Thus, we employed task-

wise parallelization to speed up the node-pruning in our parallel algorithm. Our extensive

evaluations using both synthetic and real-world datasets showed that our proposed node-

pruning method is faster than RankClus while keeping the clustering accuracy of the original

RankClus algorithm. Furthermore, we experimentally confirmed that our parallel algorithm

successfully reduces the running time of the node-pruning method by increasing the number

of thread invoked in the algorithm. RankClus now plays an essential role in current and

prospective Web-based systems and applications in various disciplines. By providing our

efficient algorithms, it will help to improve the effectiveness of future applications.
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