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This paper addressed the problem of finding clusters included in graph-structured data
such as Web graphs, social networks, and others. Graph clustering is one of the fun-

damental techniques for understanding structures present in the complex graphs such

as Web pages, social networks, and others. In the Web and data mining communities,
the modularity-based graph clustering algorithm is successfully used in many applica-

tions. However, it is difficult for the modularity-based methods to find fine-grained

clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth.
In this paper, we present a novel modularity-based algorithm, CAV, that shows better

clustering results than the traditional algorithm. The proposed algorithm employs a

cohesiveness-aware vector partitioning into the graph spectral analysis to improve the
clustering accuracy. Additionally, this paper also presents a novel efficient algorithm

P-CAV for further improving the clustering speed of CAV; P-CAV is an extension of
CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive

experiments on synthetic and public datasets demonstrate the performance superiority

of our approaches over the state-of-the-art approaches.
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1. Introduction

Graph is a fundamental data structure that represents schema-less and complecated rela-

tionships among data entities [1]. Due to recent advances in Web-based applications and

systems, large-scale graphs are now ubiquitous; for instance, social networks (e.g., Facebook

and Twitter) are the representative ones. To understand such large-scale graphs, graph clus-

tering [2, 3, 4] (a.k.a. community detection) is one of the most important techniques in various

research areas such as social network analysis [5] and Web sciences [6]. The graph clustering

divides a graph into several groups of nodes, so-called clusters, whose nodes are highly con-

nected inside. By using graph clustering, we can discover the structures and representative

examples hidden in the given graph.

The problem of finding clusters in a graph has been studied for some decades in database

and Web communities. Graph partitioning algorithms [7, 8] and supervised approaches [9]

are the natural choices for this problem. Since graph structures in the real-world applications

are highly complex, modularity-based algorithm, proposed by Newman and Girvan [10], at-
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tracts a great deal of attention for extracting such clusters. The modularity-based algorithm

detects a set of clusters that maximize a clustering metric modularity [10]. The modularity

evaluates the fraction of edges inside clusters as compared to edges between clusters; the

better clustering results are achieved with higher modularity scores. By finding clusters that

maximize the modularity, we can extract reasonable groups of nodes from a given graph. Due

to the effectiveness of the modularity, the modularity-based algorithms have been applied in

many applications including Web-based applications and systems such as event detection on

SNSs [11], route reccomendation [12], brain analysis [13] and so on.

Although the modularity is useful for many applications, it has a serious problem, so-called

resolution limit problem [14]. Recent research pointed out that the modularity measure is not

a scale-invariant measure [15], and thus it is difficult for modularity maximization methods to

find fine-grained (small) clusters hidden in large graphs. Since the sizes of graphs are recently

increasing [16], the resolution limit problem causes a critical deterioration in the quality of

Web-based applications and systems [17].

To address the problem, several algorithms have been proposed in the physics community.

Since the modularity implicitly assumes that each node can interact with every other node,

it is more reasonable for real-world graphs to assume that each node interacts just with its

local neighborhood nodes [18]. Based on the above observation, Muff et al., and Li et al., first

proposed localized modularity measure [18] and modularity density measure [5], respectively.

Unlike the original modularity [10], these methods compute the fraction of edges within a

cluster w.r.t. the subgraph including the cluster and its neighbor clusters. Although these

approaches certainly succeeded in avoiding the resolution limit problem for the small graphs

(e.g., less than 102 nodes), Costa [19] recently pointed out that they are still affected by the

resolution limit problem for large graphs. That is, the methods tend to produce only large

clusters if a given graph is large. For further improving the clustering quality on large graphs,

several algorithms, i.e., SFO [20] and ZN [21], recently proposed; however, they also suffer

from the resolution limit of the modularity. Hence, it is still a challenging task to capture

fine-grained clusters from large-scale graphs.

1.1. Our approach and contributions

We focus on the problem above to efficiently find highly accurate clusters included in large-

scale graphs. In this paper, we present a novel algorithm, namely cohesiveness-aware vector

partitioning CAV [22] to avoid the resolution limit problem of the modularity. Our proposed

approach CAV is designed to capture cohesiveness of each cluster during the modularity

maximization procedure; it extracts sets of nodes as clusters such that each of which shows

(1) high modularity and (2) high cohesiveness within a cluster simultaneously. As a result, our

proposed method CAV detects more accurate clusters than those of traditional modularity

maximization algorithms [20, 21].

Although CAV is capable of detecting fine-grained clusters, it requires expensive compu-

tational costs to compute large-scale graphs [22]. This is because that CAV needs to compare

the all pairs of nodes to evaluate a cohesiveness for each node during the clustering procedure.

This exhaustive procedure entails O(n3) times to obtain a clustering result from a given graph,

where n is many nodes in the graph. Thus, it is still difficult for CAV to handle large-scale

graphs.
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For further improving our previous approach, we additionally propose an extension of CAV,

namely P-CAV, as a parallel algorithm for the cohesiveness-aware vector partitioning. As we

described earlier, our previous approach CAV needs to perform exhaustive computations to

evaluate the cohesiveness. To reduce such expensive computational costs, we fully utilize mul-

tiple physical cores equipped on a modern CPU chip. That is, our proposed algorithm P-CAV

is a thread-parallel algorithm that performs on a many-core CPU. By parallelizing the exhaus-

tive cohesiveness computations on a many-core CPU, we attempt to achieve improvement of

clustering speeds.

As a result, our proposed algorithms CAV and P-CAV have the following attractive char-

acteristics:

• Accurate: Our cohesiveness-aware vector partitioning CAV is considerably more ac-

curate than the state-of-the-art algorithms [20, 21]. Moreover, our extension algorithm

P-CAV always returns the same clustering results as those of CAV [22], which returns

highly accurate clustering results. That is, P-CAV does not sacrifice the high cluster-

ing accuracy of CAV, and it successfully moderates the resolution limit effect of the

modularity-based graph clustering.

• Efficient: Compared with our näıve approach CAV, P-CAV achieves higher speed clus-

tering by using the above approach for cohesiveness computations; P-CAV successfully

moderates the expensive costs of the cohesiveness computations. Furthermore, our pro-

posed algorithm P-CAV shows near-linear speeding up as increasing of the number of

threads. P-CAV is also scalable to the sizes of graphs.

• Easy to deploy: Our proposed methods CAV and P-CAV do not require the number

of clusters before performing the cluster analysis. This property allows users to deploy

the graph clustering algorithm into real-world applications easily.

Our extensive experiments showed that P-CAV runs at most 27 times faster than CAV

without sacrificing the clustering quality. Also, P-CAV and CAV achieve 60% higher accuracy

in the best cases than those of the state-of-the-art modularity-based methods [20, 21]. These

characteristics and results confirm the practicality of our algorithm for real-world applications.

Even though the modularity-based algorithms are useful in enhancing application quality, it

has been difficult to apply the algorithms to real-world applications due to their resolution

limit problem. However, by providing our fast and highly accurate approaches that suit the

identification of clusters on large-scale graphs, our proposed algorithms CAV and P-CAV will

help to improve the effectiveness of a wider range of applications.

The rest of this paper is organized as follows: Section 2 describes a brief background of

this work. Section 3 and 4 introduce our proposed approaches CAV and P-CAV, respectively.

After that, we report the experimental results in Section 5. In Section 6, we briefly review

the related work, and we conclude this paper in Section 7.

2. Preliminary

In this section, we formally define the notations and introduce the background of this paper.

Let G = (V,E) be an unweighted and undirected graph, where V and E are a set of nodes and

edges, respectively. We assume that graphs are undirected and unweighted only to simplify
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Table 1. Definitions of main symbols.

Notation Definition

G A given graph
V A set of nodes in G
E A set of edges in G
C A set of clusters
O A set of outliers
n The number of nodes, i.e., n = |V |
m The number of edges, i.e., m = |E|
ω A user-specified parameter, ω ∈ [0, 180]
µ A user-specified parameter, µ ∈ N and µ ≥ 2
A An adjacency matrix of G
B An modularity matrix of G
λl l-th eigenvalue of B
U A matrix whose l-th column is the eigenvalues of λl
di Degree of node i
ri A node-vector of node i defined by Definition 2
Nω

i ω-neighborhood of node i given by Definition 3
Pi A cluster-partition of node i given by Definition 5

the representations. Other types of graphs such as directed and weighted, can be handled

with only slight modifications. Table 1 lists the main symbols and their definitions.

2.1. Modularity

Modularity, introduced by Newman and Girvan, is widely used to evaluate the cluster struc-

ture of a given graph from global perspective [10]. Modularity is a quality metric of graph

clustering that measures the differences in graph structures from an expected random graph.

The main idea of modularity is to find a group of nodes that have a lot of inner-group edges

and few inter-group edges. Formally, modularity Q is defined as follows:

Definition 1 (Modularity Q) Let gi be a cluster to which node i belongs, the modularity

Q is defined as

Q =
1

2m

∑
ij

{
Aij −

didj
2m

}
δgi,gj , (1)

where δgi,gj is a Kronecker delta. It returns 1 if gi = gj; otherwise, 0.

As we can see from Definition 1, the modularity Q is a sum of subtractions
{
Aij − didj

2m

}
δgi,gj

for all pairs of clusters such that gi = gj . In each subtraction, Aij represents the fraction

of edges included in a cluster gi (or gj). On the other hand,
didj

2m is the expected fraction of

edges when we assume the graph to be a random graph. Thus, the modularity Q increases

if a clustering result has a larger fraction of edges for each cluster than those of a random

graph. That is, well-clustered graphs will have large modularity scores, and optimal clustering

is achieved when modularity is maximized. In this paper, we denote Q(C) to represent a

contribution of cluster C for the modularity Q.
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Fig. 1. Example graph: The graph in Figure 1 is consist of three groups, C1, C2,and V0; C1 and

C2are clusters extracted by a modularity-based clustering, and V0 represents the rest of C1and C2

in the graph.

2.2. Resolution limit problem of modularity

Based on Definition 1, modularity-based graph clustering algorithms [20, 21, 23] explore

a set of clusters that optimizes the modularity Q. However, despite the efficiency of the

approach, recent research pointed out that modularity is not a scale-invariant measure. Thus,

it is difficult for modularity maximization methods to find small clusters hidden in large-scale

graphs; that is, these methods fail to fully reproduce the ground-truth. This serious weakness

of modularity Q is famously known as the resolution limit problem [14]. In this section, we

here theoretically discuss how the modularity Q fails to find fine-grained clusters on graphs.

In order to simplify the discussion, we suppose that we have a graph shown in Figure 1.

The graph in Figure 1 is consisted of three groups, C1, C2, and V0. C1 and C2 are clusters

such that Q(C1) > 0 and Q(C2) > 0, respectively; V0 represents the rest of the graph. As

shown in Figure 1, C1 and C2 have l internal edges within each of them, and C1 (or C2) are

connected by lin and lout edges with C2 (or C1) and V0, respectively.

Let us consider to construct C3 by merging C1 and C2, and we have a gain of modularity Q

asQ(C3)−Q(C1)−Q(C2). Now, we expect C1 and C2 should be separated by the modularity Q

optimization, i.e., Q(C3) < Q(C1) + Q(C2). In this case, from Definition 1, we should have

the following condition:

l >
2ma

(a+ b+ 2)2
, (2)

where a = lin
l and b = lout

l . Since a + b < 2 if Q(C1) > 0 (or Q(C2) > 0) from the

literature [24], we finally have the following condition by rearranging Inequation (2):

l >

√
m

2
− 1 ≈

√
m

2
. (3)

This condition means that C1 and C2 should be merged into C3 until the number of edges
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included in a cluster C1 (or C2) exceeds
√

m
2 even though

√
m
2 edges are the greater part of

E. As Fortunato et al., proved that the above resolution limit problem is observed in various

real-world graphs, and in some extreme cases, the modularity maximization grows l ≈
√

2m.

From the above reasons, the modularity-based algorithm fails to extract fine-grained clusters

from large graphs that have large m.

3. Näıve Algorithm: (CAV)

Our goal is to efficiently detect fine-grained clusters from a given graph so as to avoid the

resolution limit. In this section, we introduce our näıve algorithm, named CAV (Cohesiveness-

aware Vector Partitioning) [22], that is designed to moderate the resolution limit effect for

the modularity-based graph clustering. We first overview the ideas underlying CAV and then

give a full description of the graph clustering algorithm.

3.1. Overview of CAV

The basic idea underlying CAV is to capture the cohesiveness of each cluster during the

modularity Q maximization. If nodes have enough cohesiveness, our proposed method groups

them into the same cluster; otherwise, it excludes the nodes from clusters. As discussed in

Section 2, the modularity Q has a serious weakness; the modularity Q merges two nodes into

the same cluster even though the nodes have sparse connections between them. This weakness

entails clusters with low cohesiveness, especially for large graphs, since the clusters contain

nodes as members of them regardless of cohesiveness. Thus, by integrating the cohesiveness

into the original modularity maximization techniques, CAV attempts to improve the clustering

quality.

To avoid the resolution limit, CAV employs the following two approaches:

(1) Node-vector extraction: CAV first constructs a node-vector for each node in the

given graph by performing the spectral analysis on the modularity Q. CAV rewrites Defini-

tion 1, and transforms the modularity maximization problem into the node-vector partitioning

problem.

(2) Cohesiveness-aware vector partitioning: We now have a node-vector represen-

tation for each node i through the spectral analysis on the modularity Q. Thus, in this phase,

we design the cluster detection as the problem of finding a division of the node vectors so that

it shows better clustering accuracy than the traditional modularity-based algorithm. In order

to enhance the clustering quality, we introduce a heuristic vector partitioning algorithm that

is based on the cohesiveness of node-vectors. By performing the node-vector partitioning,

CAV detects nodes with dense edge connections as a cluster and excludes sparsely connected

nodes as outliers.

These simple ideas have three main advantages:

First, CAV can output accurate clusters. Our ideas successfully avoid the resolution limit

of modularity-based graph clustering by introducing the cohesiveness into the vector parti-

tioning problem. As we described in Section 2, the modularity Q increases when two adjacent

nodes are merged into the same cluster even if the edge connections are sparse between the

two nodes. In contrast, our proposed method excludes such sparsely connected nodes from the

clusters; thus it can achieve more cohesive clustering results than the traditional modularity

maximization. In Section 5.3, we experimentally confirm that how CAV successfully achieves
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highly accurate clustering results for large graphs.

Second, CAV outputs robust clusters. This is because that our proposed method extracts

unique clusters once the parameters and a graph are determined while the spectral algorithms

do not ensure uniqueness of the clusters. We theoretically discuss the robustness of our

proposal in Theorem 1.

Last, CAV can detect all clusters by traversing all nodes only once even though it does

not require the number of clusters before performing the clustering procedure. Due to the

uniqueness of the clustering results, our proposal can extract all clusters from the given

graph without iteratively computing all nodes as similar to the traditional spectral algorithms

(Theorem 2). Furthermore, it automatically determines the number of clusters included in

the given graph. Thus our proposed method can achieve better clustering results compared

with the spectral algorithms.

3.2. Node-vectors extraction

We first construct a p-dimensional node-vector [21] for each node from Definition 1 through

spectral analysis. For ease of the analysis, we introduce a symmetric n × n matrix B whose

element Bij is defined by the following equation:

Bij = Aij −
didj
2m

. (4)

Clearly, the matrix B is symmetric, thus we can rewrite Definition 1 by applying the eigen-

vector decomposition to B. Specifically, we hold the following equations:

Q =
1

2m

∑
ij

n∑
l=1

λlUilUjlδgi,gj (5)

=
1

2m

∑
ij

n∑
l=1

λlUilUjl

∑
s

δs,giδs,gj (6)

=
1

2m

n∑
l=1

λl
∑
s

[∑
i

Uilδs,gi

]2
, (7)

where λl is an eigenvalue of B and Uil is an element of the orthogonal matrix U whose

columns are the corresponding eigenvectors. In Equation (5), we assume that the eigenvalues

are numbered in decreasing order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λn.

As we can see from Equation (5), the modularity Q is a sum over eigenvalues λl times the

non-negative quantities
∑

s [
∑

i Uilδs,gi ]
2
. Thus, we can obtain the largest modularity Q by

summing only the terms corresponding to the positive eigenvalues since the negative eigen-

values never increase the modularity Q shown in Equation (5). That is, we can approximate

Equation (5) by the following equation.

Q =
1

2m

p∑
l=1

λl
∑
s

[∑
i

Uilδs,gi

]2
(8)

=
1

2m

k∑
s=1

p∑
l=1

[∑
i

√
λIUilδs,gi

]2
, (9)
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where s represents a cluster, and an integer value p is the number of positive eigenvalues.

From Equation (8), we finally define a p-dimensional node-vector for each node as follows:

Definition 2 (Node-vector) Let ri ∈ Rp be a p-dimensional node-vector of node i, the l-th

element (1 ≤ l ≤ p) of ri is as follows:

ri[l] =
√
λlUil. (10)

Note that, from Definition 2, we finally rewrite the modularity Q as follows:

Q ≈ 1

2m

k∑
s=l

p∑
l=1

(∑
i∈s

ri[l]

)2

=
1

2m

k∑
s=1

∣∣∣∣∣∑
i∈s

ri

∣∣∣∣∣
2

, (11)

where the notation i ∈ s denotes the node i is in cluster s. From the above equation, we can

consider the modularity-based clustering as the problem of finding k clusters that maximize

Equation (11).

3.3. Cohesiveness-aware vector partitioning

We detect clusters included in the given graph by using the set of node-vectors that we

have derived in the previous section. As we described in Section 3.2, we can approximately

maximize the modularity Q by finding a division of the set of node-vectors. This is because

that the modularity Q never takes negative values for any partitions of the node-vectors since,

as shown in Equation (11), the modularity Q is a sum of non-negative quantities
∣∣∑

i∈s ri
∣∣2.

Thus, it is essential to find a division of the node-vectors so that the partition avoids the

resolution-limit problem [14] of the modularity Q.

To detect a proper partition of node-vectors, we present a heuristic algorithm, named

cohesiveness-aware vector partitioning, that focuses on the cohesiveness among the node-

vectors. Generally, traditional spectral algorithms [7, 21] partition the node-vectors into k-

disjoint groups without regarding the cohesiveness of node-vectors included in each partition.

In contrast, our approach extracts only groups of node-vectors as clusters if the node-vectors

have enough cohesiveness; otherwise, it excludes the node-vectors from clusters. In order

to evaluate the cohesiveness between the two node-vectors, we first introduce the following

definition.

Definition 3 (ω-neighborhood) Given a user-specified parameter ω ∈ [0, 180], ω-neighborhood

of node i, denoted by Nω
i , is a set of nodes defined as follows:

Nω
i =

{
j ∈ V

∣∣∣∣ 180

π
arccos

(
rTi rj
|ri||rj |

)
≤ ω

}
. (12)

Definition 3 indicates that Nω
i is a set of node-vectors, each of which has a vectorial angle

less than ω with node-vector ri.

From Definition 3, our approach then detects core-vector, which plays a seed of a partition

construction, by finding ω-neighborhood for all node-vectors. In order to specify core-vector

metrics, we introduce a user-specified parameter µ; it is a parameter for controlling the
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minimum size of a partition. Our approach regards a node-vector ri as a core-vector when it

has |Nω
i | ≥ µ.

Definition 4 (Core-Vector) Given a minimum partition size µ ∈ N s.t. µ ≥ 2, node-vector

ri is a core-vector iff |Nω
i | ≥ µ.

Once our approach finds a core-vector ri, it expands a partition (cluster) from the core-

vector ri. Specifically, the node-vectors included in Nω
i are assigned to the same partition as

the core-vector ri. If a node-vector rj ∈ Nω
i is also a core-vector, our approach again expands

the partition from rj ; Finally, it stops expanding the partition from rj when the partition has

no unvisited core-vectors. As a result, our approach detects the following cluster-partition,

which represents a cluster of ri, defined as follows:

Definition 5 (Cluster-Partition) Let Pi be a cluster-partition what a node i belongs, the

cluster-partition Pi is given by the following equation.

Pi = {w ∈ Nω
j |j ∈ Pi ∧ |Nω

j | ≥ µ}, (13)

where the cluster-partition Pi is initially set to Pi = {i}.
Our approach continues the above partition expansion until no core-vectors can be found in

the given graph.

After terminating the partition expansions, we can identify non-partitioned node-vectors

that do not belong to any cluster-partitions defined in Definition 5. From Definition 3, 4, and 5,

the non-partitioned node-vectors clearly have weaker cohesiveness than the node-vectors in the

cluster-partitions since they are not included in any ω-neighborhood. That implies that the

nodes, which correspond to the non-partitioned node-vectors, have sparse connections with

the other nodes. Thus, in this paper, we regard the non-partitioned node-vectors as outlier

nodes, and our approach assigns a singleton partition for each non-partitioned node-vector.

Finally, our approach returns the following clustering results:

Definition 6 (Clusters) Let k be the number of cluster-partitions, the a set of clusters,

denoted by C, is given as follows:

C = {P1, P2, . . . , Pk | |Pi| ≥ 2}. (14)

That is, from Definition 6, our approach returns only cluster-partitions as clusters while

it excludes the singleton partitions, which contain a non-partitioned node-vector, from the

clustering result.

3.4. Algorithm

Our algorithm CAV enhances the clustering results of the traditional modularity maximization

methods by introducing the cohesiveness of node-vectors in each cluster. The pseudocode of

CAV is shown in Algorithm 1. Algorithm 1 takes undirected and unweighted graph G and

two user-specified parameters, ω and µ, and it outputs a set of clusters C and outliers O. The

main part of CAV is twofold: (1) extracting node-vectors given by Section 3.2 (lines 1-13),

and (2) cohesiveness-aware vector partitioning given by Section 3.3 (lines 14-31).
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(1) Extracting node-vectors (lines 1-13): The goal of this phase is to construct a

node-vector defined in Definition 2 for each node. First, CAV applies the eigenvalue decompo-

sition to a matrix B given by Equation (4), and it obtains all eigenvalues and corresponding

eigenvectors (lines 1-6). Then, it finds p eigenvalues that are greater than 0 (line 7). Fi-

nally, our method construcs the node-vector ri for each node i by using p eigenvalues and

corresponding eigenvectors by following Definition 2 (lines 8-13).

(2) Cohesiveness-aware vector partitioning (lines 14-31): In this phase, CAV

outputs a set of clusters and outliers, denoted by C and O, respectively. CAV first initializes

C and O as ∅ (line 14), and then it starts to detect cluster-partitions. In this cluster-partition

detection procedure shown in (line 15-25), CAV performs the following steps until it finds all

cluster-partitions included in G: (a) It makes initial cluster-partition Pi = {i} (line 16).

(b) It checks node-vector ri whether it is a core-vector (i.e., |Nω
i | ≥ µ) or not by following

Definition 4 (lines 18-19). (c) It expands the partition Pi if ri is a core-vector (lines 19-22).

(d) It continues (b) and (c) if unvisited nodes are included in Pi. (e) It stores Pi into C

if Pi satisfies Definition 6 (lines 24-26), otherwise, it removes Pi. After termination of the

above cluster detection, CAV assigned a singleton-partition for each node corresponding to a

non-partitioned node-vector (lines 28-29). It saves the nodes into a set of outliers O (line 30),

and CAV finally outputs a set of clusters C and outliers O.

As a result, our cohesiveness-aware vector partitioning approach has the following attrac-

tive properties:

Theorem 1 Let Pi be a cluster-partition included in C, which are produced by CAV, Pi

is uniquely determined by the given graph G, and two user-specified parameters, ω and µ.

Proof: From Definition 5, each cluster-partition has at least one core-vector. If the number

of core-vectors included in Pi is equal to 1, Theorem 1 clearly holds since Pi = Nω
i . Hence,

we discuss whether Theorem 1 also holds when Pi has multiple core-vectors. As shown in

Definition 5, a core-vector rj should have at least one another core-vector rk in Pi since any

of two core-vectors, say rj and rk, can not be in the same cluster-partition by Definition 5

if both j /∈ Nω
k and k /∈ Nω

j hold. This deduction implies that we can reach all core-vectors

included in Pi from an arbitrary core-vector by traversing the inclusion relations between

nodes corresponding core-vectors and ω-neighborhood of them. Thus, in the case of multiple

core-vectors, Theorem 1 holds since all core-vectors are reachable and Pi =
⋃

j∈Ci
Nω

j by

Definition 5, where Cj is a set of core-vectors included in Pi.

Theorem 2 CAV can find all cluster-partitions by traversing all node-vectors only once.

Proof: As we proved in Theorem 1, all core-vectors in the same cluster-partition are reachable

by tracing the inclusion relations. That is, CAV can detect exactly same cluster-partitions

by any ordering of the traversing node-vectors, so once a node-vector traversed, we do not

need to compute the node-vector again. Therefore, CAV can find all cluster-partitions by

traversing all node-vectors only once.

4. Parallel Algorithm: Parallel Cohesiveness-aware Vector Partitioning (P-CAV)
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Algorithm 1 Näıve Algorithm: CAV

Input: A graph G = (V,E), and parameters, ω and µ;
Output: A set of clusters C and a set of outliers O;
. (1) Extracting node-vectors

1: Obtain B by Equation (4);
2: for each i ∈ V do
3: for each j ∈ V do
4: Get Bij =

∑n
l=1 λlUilUjl by eigenvalue decomposition;

5: Get p = |{λ1, λ2, . . . , λn | λi > 0, 1 ≤ i ≤ n}|;
6: for each i ∈ V do
7: for l = 1 to p do
8: ri[l] =

√
λlUil from Definition 2;

9: Obtain ri = (ri[1], ri[2], . . . , ri[p])
T ;

. (2) Cohesiveness-aware vector partitioning
10: C = ∅, O = ∅;
11: for each unvisited node i ∈ V do
12: Pi = {i}, and Mark i as visited;
13: for each unvisited node j ∈ Pi do
14: Obtain Nω

j by Definition 4;
15: if |Nω

j | ≥ µ then
16: Pi = Pi ∪Nω

j ;

17: Mark j as visited;

18: if |Pi| ≥ 2 then
19: C = C ∪ {Pi};
20: for each non-partitioned node-vector ri do
21: Pi = {i};
22: O = O ∪ {Pi};
23: return C and O;
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In this section, we present a parallelized algorithm for the cohesiveness-aware vector parti-

tioning (P-CAV), which is an extension of CAV [22].

4.1. Overview of P-CAV

The major drawback of CAV is its expensive computational cost for large-scale graphs. That

is, as shown in Algorithm 1, CAV needs to compute all pair of node vectors to evaluate the

cohesiveness of each node; this computation entails O(n3) times for the clustering. Thus, in

this section, we present an extended approach of CAV, named P-CAV (Parallel Cohesiveness-

aware Vector Partitioning).

The basic idea underlying P-CAV is to reduce the computational cost for the cohesiveness

computations from algorithmic and parallel processing perspectives. Specifically, we employ

a thread-parallel node-pruning method that drops unnecessary and redundant computations

from the cohesiveness computations. By avoiding such unnecessary and redundant compu-

tations, P-CAV attempts to mitigate the expensive cost for the cohesiveness-aware vector

partitioning.

Algorithm 2 shows the pseudocode of P-CAV. Differ from Algorithm 1, P-CAV employs

parallelized algorithms for detecting clusters from a set of node-vectors (lines 14-32). Once P-

CAV obtains all node-vectors from a given graph, it first detects all core-vectors by performing

thread-parallel node pruning (lines 10-18). After extracting the core-vectors, P-CAV then

constructs clusters (lines 19-35). As we can see from Algorithm 2, the core-vector detection

and the cluster construction are performed by the thread-parallel manner.

4.2. Thread-parallel Node Pruning

As we described in Section 4.1, P-CAV first performs core-vector detection in a thread-parallel

manner. Actually, the core-vector detection step is the most time-consuming one since the

näıve algorithm CAV needs to compute all pairs of node-vectors in V . Thus, to speed up

the core-vector detection step, we propose a thread-parallel node pruning technique that

dynamically reduces unnecessary computations of pairs of node-vectors.

For efficiently detecting the unnecessary and redundant computations, P-CAV maintains

an integer value, named similar-degree (sd), for each node-vector taken from the node-vector

extraction. Formally, sd is defined as follows:

Definition 7 (Similar-Degree) The similar-degree of node u, denoted sd[u], is the number

of node-vectors in V that have been determined to be included in ω-neighborhood of node u,

i.e., v ∈ Nω
u for v ∈ V and u 6= v.

Definition 7 indicates that node u should be a core-vector once sd[u] reaches µ since if sd[u] ≥ µ
then we clearly hold Nω

u ≥ µ. That is, we do not need to compute cohesiveness of a node u for

detecting a core-vector once the node has a similar-degree value that exceeds the user-specified

parameter µ.

Based on Definition 7, P-CAV detects core-vectors from the node-vectors by a thread-

parallel algorithm with node pruning. The pseudocode of the thread-parallel node pruning is

shown in Algorithm (lines 10-18). Algorithm 2 (lines 10-18) detects all core-vectors included

in V by using the node-pruning technique in a thread-parallel manner. As we can see from
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Algorithm 2 Parallel Algorithm: P-CAV

Input: A graph G = (V,E), and parameters, ω and µ;
Output: A set of clusters C and a set of outliers O;
. (1) Extracting node-vectors

1: Obtain B by Equation (4);
2: for each i ∈ V do
3: for each j ∈ V do
4: Get Bij =

∑n
l=1 λlUilUjl by eigenvalue decomposition;

5: Get p = |{λ1, λ2, . . . , λn | λi > 0, 1 ≤ i ≤ n}|;
6: for each i ∈ V do
7: for l = 1 to p do
8: ri[l] =

√
λlUil from Definition 2;

9: Obtain ri = (ri[1], ri[2], . . . , ri[p])
T ;

. (2) Thread-parallel Node Pruning
10: C = ∅, O = ∅;
11: for each node-vector ri do in thread-parallel
12: for each node-vector rj do
13: Get sd[i] by Definition 7;
14: if sd[i] < µ then
15: Compute a cohesiveness between ri and rj ;
16: else
17: Regard ri as a core-vector by Definition 4;
18: break;

. (3) Thread-parallel Cluster Construction
19: Assign each core-vector ri as a singleton partition Pi;
20: for each partition Pi do in thread-parallel
21: for each partition Pj do
22: if find(i) 6= find(j) then
23: if rj /∈ Nω

i then Compute a cohesiveness between ri and rj ;
24: if rj ∈ Nω

i then Pi = Pi ∪ Pj by union(i, j);

25: for each non-core-vector ri do in thread-parallel
26: for each core-vector rj do
27: if ri /∈ Nω

j then Compute a cohesiveness between ri and rj ;
28: if ri ∈ Nω

j then Pi = Pi ∪ {i};
29: for each Pi do
30: if |Pi| ≥ 2 then
31: C = C ∪ {Pi};
32: for each non-partitioned node-vector ri do
33: Pi = {i};
34: O = O ∪ {Pi};
35: return C and O;
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Algorithm 2 (line 11), P-CAV first assigns each node-vector to each thread. In the thread,

P-CAV computes pairs of node-vectors only if the assigned node-vector such that it has not

determined as a core-vector. By following Definition 7, if sd[u] ≥ µ then the node-vector of

node u satisfies the core-vector condition shown in Definition 4. Meanwhile, if sd[u] < µ,

P-CAV needs to compute pairs of node-vectors to determine whether the node-vector of

node u is core-vector or not. Hence, once P-CAV determines a node-vector is core-vector, it

stops to compute the cohesiveness between the node-vector and the other ones (lines 17-18 in

Algorithm 2).

4.3. Thread-parallel Cluster Construction

P-CAV finally constructs clusters over multiple threads. In order to maintain clusters among

multiple threads, P-CAV employs union-find tree [25]. The union-find tree efficiently main-

tains a set of nodes-vectors partitioned into disjoint clusters by using two fundamental op-

erators, called find(u) and union(u, v). find(u) looks up a cluster what does a node-vector of

node u belong, and union(u, v) merges two node-vectors of node u and v into the same cluster.

We can efficiently look up and merge clusters since both operators run at most Ω(A(n)) times,

where A is Ackermann function.

Algorithm 2 (lines 19-35) shows the pseudocode of the thread-parallel cluster construction.

P-CAV first constructs clusters composed of core-vectors extracted by the previous step (lines

19-24 in Algorithm 2). After that, P-CAV attaches node-vectors, which are not core-vectors,

to the clusters (lines 25-28). To avoid conflicts of union operators among multiple threads, P-

CAV utilizes the atomic operation compare-and-swap (CAS) [26] before merging two clusters.

Finally, P-CAV extracts a set of clusters C (lines 29-31), and it classifies the reminder node-

vectors as outliers (lines 32-34).

5. Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of our proposed approaches,

CAV and P-CAV. We designed our experiments to demonstrate that:

• High Accuracy: CAV and P-CAV outperform the state-of-the-art algorithms SFO [20]

and ZN [21] in terms of clustering accuracy.

• Efficiency: P-CAV is more efficient than our näıve algorithm CAV on large-scale

graphs.

• Scalability: P-CAV is scalable to the number of threads and edges.

5.1. Experimental setup

We compared the effectiveness of four algorithms including our proposed methods CAV and

P-CAV.

• CAV [22]: Our proposed algorithm that we described in Section 3. Unless otherwise

stated, we set ω = 20 and µ = 2.
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• P-CAV: Our proposed algorithm that we described in Section 4. This algorithm is

a thread-parallel extension of our previous approach CAV shown in Section 3. Unless

otherwise stated, we set the number of threads as 14. Also, we set ω = 20 and µ = 2 as

the default settings.

• SFO: The state-of-the-art graph clustering algorithm based on the modularity maxi-

mization [20]. This algorithm does not require any parameters, and it automatically

determines the number of clusters.

• ZN: The state-of-the-art spectral algorithm for the modularity-based graph cluster-

ing [21]. Since this algorithm requires the number of clusters k as a user-specified

parameter, we set k as the number of clusters included in the ground-truth of each

dataset.

All experiments were conducted on a CentOS server with an Intel (R) Xeon (R) E5-2690 2.60

GHz CPU, which equips 14 physical cores, and 128 GB RAM.

5.1.1. Datasets

We evaluated the algorithms on both synthetic and real-world graphs detailed below.

Synthetic graphs: We evaluated the algorithms on synthetic graphs with their ground-

truth clusters generated by LFR benchmark [27]. We first generated three graphs composed

of 2,000 nodes, LFR (0.1), LFR (0.5), and LFR (0.9), by varying a mixing parameter mu

as 0.1, 0,5, and 0.9, respectively. The mixing parameter mu controls a fraction of neighbor

nodes included in other clusters for each node; if the value of mu decreases, the clusters are

explicitly separated in the graph. The other parameters of LFR benchmark, average degree,

maximum degree, and clustering coefficient, were fixed at 20, 50 and 0.4, respectively.

In addition to the above graphs, we generated synthetic graphs with the different graph

sizes for the scalability test. We varied the number of nodes from 1,000 to 16,000, where the

mixing parameter, the average degree, the maximum degree, and the clustering coefficient,

were fixed at 0.1, 20, 50 and 0.4, respectively.

Real-world graphs: We also evaluated the algorithms on two real-world graphs that have

ground-truth clustering results. The details of the real-world graphs are listed as follows:

• Email [28]: This is a graph generated by e-mail communication data from a large

European research institution. The number of nodes and edges are 1,005 and 25,571,

respectively.

• HPEC [29]: This graph is published by Graph Challange competition collocated with

the IEEE High Performance Extreme Computing Conference 2017. The graph has

20,000 nodes and 408,778 edges.

5.2. Clustering Accuracy

We evaluated the accuracy of the clustering results produced by the algorithms by using an

information-theoric metric, normalized mutual information (NMI) [30]. NMI compares two
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Fig. 2. NMI on synthetic graphs.

clustering results, and it returns 1 if two clustering results are completely the same, otherwise

0. We compared the clustering results included in the ground-truth of each dataset with the

results produced by each algorithm that we performed in the experiments.

5.2.1. Evaluation on synthetic graphs

Figure 2 shows NMI values of the algorithms for each synthetic graph. As we can see from the

results, our proposal, CAV, shows much higher NMI values than the other algorithms under all

conditions examined. Of particular interest, CAV achieved the most significant improvement

on LFR (0.9); it shows 60% and 53.3% higher accuracy than SFO and ZN, respectively.

Since LFR (0.9) is generated by a large mu value, LFR (0.9) has many edges among clusters

included in the graph. However, as we described in Section 2, the state-of-the-art modularity-

based algorithms like SFO and ZN fails to extract such densely connected clusters. This is

because these methods explore a set of nodes based on the modularity maximization that does

not handle the cohesiveness of each cluster. Thus, SFO and ZN fail to extract fine-grained

clustering results from the graphs. In contrast to SFO and ZN, our proposed algorithm is

designed to capture the cohesiveness of each cluster by using the cohesiveness-aware vector

partitioning.

Our experiments also considered the effects of user-specified parameters, ω and µ, on CAV.

To evaluate the effects of the parameters, we fixed one of the two parameters and varied the

other one on the synthetic datasets. Figure 3 shows NMI values by varying ω with fixed

parameter, µ = 2. As shown in Figure 3, CAV gradually decreases NMI values as ω increases.

This is because it is difficult for a large ω setting to exclude sparsely connected nodes from

the clusters. Hence, as demonstrated in Figure 3, smaller ω values are effective for improving

the clustering accuracy. Similarly, in Figure 4, we demonstrate the effects of µ by varying µ

values as 2, 10, 50, and 100 with fixed ω value, i.e., ω = 20. As we can see from Figure 4,

NMI values are almost stable under all µ settings that we examined.
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Fig. 3. Effect of ω on synthetic graphs. Fig. 4. Effect of µ on synthetic graphs.

5.2.2. Evaluation on real-world graphs

We evaluated the clustering accuracy on the real-world graphs. Figure 5 shows NMI values

of the algorithms on Email and HPEC datasets. As well as the results in Section 5.2.1, our

proposed method achieved higher accuracy than the state-of-the-art methods, SFO and ZN.

Specifically, CAV showed 19.5% and 55.8% higher NMI values than those of SFO and ZN,

respectively. From these results, we experimentally verified the effectiveness of our approach

on real-world datasets.

Similar to the results on the synthetic graphs, we also tested the effects of the user-specified

parameters ω and µ on real-world graphs. In Figure 6, we varied ω from 10 to 80 with µ = 2.

Also, Figure 7 shows the results when we set µ as 2, 10, 50, and 100 with ω = 20. As we

can see from the results, the small ω settings show better accuracy than larger ones, and

the results varying µ are almost stable. Therefore, ω and µ should be the small values for

improving the clustering accuracy on real-world datasets.

5.3. Efficiency

We here evaluate the efficiency of P-CAV compared with CAV. Figure 8 and 9 show the

running time of each algorithms, respectively. As shown in Figure 8 and 9, P-CAV successfully

reduces the computation time of CAV from 87.1% to 96.4%. In the best case, P-CAV runs

27.93 times faster than CAV under the experimental settings that we examined. As we

described in Section 4, P-CAV employs thread-parallel node pruning technique in order to

dynamically removes unnecessary computations in the cohesiveness-aware vector partitioning.

In contrast, as shown in Algorithm 1, our näıve algorithm CAV requires O(n3) times to

complete the cohesiveness-aware vector partitioning since CAV needs to perform exhaustive

explorations for all node-vectors extracted from a given graph. Thus, our extended approach

P-CAV achieves faster clustering than CAV.

5.4. Scalability
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Fig. 5. NMI on real graphs.

We finally assessed scalability test of our proposed approach P-CAV in Figure 10 and 11 by

increasing the number of nodes and threads, respectively. In Figure 11, we used five synthetic

graphs with different node sizes by LFR-benchmark; we generated graphs composed of 1,000,

2,000, 4,000, 8,000, and 16,000 nodes with fixed the other parameters as we described in

Section 5.1.1. Meanwhile, in Figure 10, we generated used LFR (0.1) dataset that we used in

Figure 11. As we can see from the results, the runtimes of P-CAV has near-linear scalability

in terms of the number of nodes and edges even though the näıve algorithm requires O(n3)

times for the clustering. These results verify that P-CAV is scalable for large-scale graphs.

6. Related work

The problem of finding densely connected groups from graph-structured data has been stud-

ied in a few decades [31]. Modularity, proposed by Newman and Girvan [10], is a widely used

graph clustering metric that evaluates a clustering result from a global perspective. The heart

of modularity is to find groups of nodes that have a lot of inner-group edges and few inter-

group edges. Thus, the modularity-based algorithms are designed to find groups of nodes that

maximize modularity Q shown in Definition 1. However, the optimization of modularity Q

is known as NP-hard problem [32]. This had led to the introduction of approximation ap-

proaches. Here, we review some of the more successful approximation methods in Web-based

applications and systems.

6.1. Greedy optimization algorithms

In order to avoid the expensive cost of the modularity-based algorithms, the greedy optimiza-

tion algorithms have been proposed in recent decades. The main idea underlying this class of

algorithms is to evaluate a gain of the modularity Q that we obtain after merging two clusters.

Newman method [32] is one of the representative algorithms in greedy optimization meth-

ods. Newman method explores the best increase of the gain among all pairs of clusters, and

then it greedily merges two clusters with the largest gain into the same cluster. As a result,
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Fig. 6. Effect of ω on real graphs. Fig. 7. Effect of µ on real graphs.

it produces reasonable clusters with hierarchical structures, which represent the history of

merges. Despite the effectiveness in avoiding the NP-complete problem, it still requires high

computing cost. To reduce the computational cost of Newman method, several algorithms

including CNM [33], Louvain [23], and the state-of-the-art method SFO [20], have been pro-

posed. CNM [33] is an index-based approach method, and on the other hand, Louvain [23],

and SFO [20] employ node-aggregation approaches for the efficient maximization of the mod-

ularity Q. These methods successfully reduce the running time of the greedy computation

besides maximizing the modularity Q.

Although the greedy optimization algorithms are useful for maximizing the modularity Q,

they still suffer from the resolution limit problems that we described in Section 2 since they

do not maintain the cohesiveness of each cluster. Different from the algorithms, our proposed

methods employ the cohesiveness-aware vector partitioning technique in order to exclude

sparsely connected nodes from the clusters. As a result, as shown in Section 5.3, our pro-

posed methods achieve higher accuracy than the state-of-the-art greedy method SFO on both

synthetic and real-world datasets.

6.2. Spectral partitioning algorithms

Another class of the modularity-based clustering is the spectral partitioning algorithms. Sim-

ilar to our proposed method, the spectral partitioning algorithms first extract a vectorized

representation for each node via spectral analysis of the given graph. After that, they partition

the vectors into k disjoint groups so that the groups maximize the modularity Q by using an

arbitrary vector partitioning algorithm. Richardson et al. [34] proposed a divide-and-conquer

method that divides the space of vectors into two subspace so that smaller edges split. Their

method continues to divide the space of vectors until further subdivision gives no improvement

of modularity Q. Zhang and Newman [21] also proposed another type of vector partitioning

algorithm inspired by k-means method [35]. Their proposed method first conducted a dis-

tance measure as the gain of modularity that is obtained after merging two vectors in the
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Fig. 8. Running time on synthetic graphs. Fig. 9. Running time on real-world graphs.

same cluster. Then, by using the distance, it performs k-means like algorithm and divides

the vectors into k disjoint partitions so that the partitions maximize the modularity Q.

Since these methods are designed as the modularity maximization problem via spectral

analysis, they also fail into the resolution limit problem [14]. Furthermore, these methods re-

quire the number of clusters k as a user-specified parameter even though we do not typically

know the number of clusters before the clustering. Different from the above spectral parti-

tioning algorithms, our proposed method can avoid to group sparsely connected nodes from

clusters by the cohesiveness-aware approach. Besides, it does not require to set the number

of clusters k for the clustering. Hence, as shown in Section 5.3, our proposed methods show

higher accuracy than the state-of-the-art spectral partitioning method.

7. Conclusion

This paper addressed the resolution limit problem of the modularity-based graph clustering.

In order to overcome the resolution limit problem, we focused on the cohesiveness of each

cluster, and we proposed novel algorithms, named CAV and P-CAV. Our proposed methods,

CAV and P-CAV, are consisted of two major phases: (1) it represents each node as a p-

dimensional vector by applying the spectral analysis to the modularity Q, (2) it performs the

vector partitioning algorithm by capturing the cohesiveness of each partition. Also, P-CAV

employs thread-based parallelization for further improving the clustering speed of CAV in

the above vector partitioning phase. Our extensive evaluation using several datasets demon-

strated that CAV and P-CAV achieve higher accuracy than the state-of-the-art algorithms.

Furthermore, we experimentally verified that P-CAV successfully reduces the running time

of CAV for large-scale graphs. The modularity-based graph clustering algorithm is now an

essential tool for various Web-based applications and systems even though it suffers from the

resolution limit of clustering results. By providing the cohesiveness-aware approaches that

can capture fine-grained clusters from a given graph, the proposal will help to improve the

effectiveness of current and future applications.
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Fig. 10. Scalability by varying the number of nodes. Fig. 11. Scalability by varying the number of threads.
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