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We prove the unconditional security of the standard six-state scheme for quantum key

distribution (QKD). We demonstrate its unconditional security up to a bit error rate

of 12.7 percents, by allowing only one-way classical communications in the error cor-

rection/privacy ampli�cation procedure between Alice and Bob. This shows a clear

advantage of the six-state scheme over another standard scheme|BB84, which has been

proven to be secure up to only about 11 percents, if only one-way classical communica-

tions are allowed. Our proof technique is a generalization of that of Shor-Preskill's proof

of security of BB84. We show that a advantage of the six-state scheme lies in the Alice

and Bob's ability to establish rigorously from their test sample the non-trivial mutual

information between the bit-
ip and phase error patterns. A modi�ed version of the

degenerate quantum codes studied by DiVincenzo, Shor and Smolin is employed in our

proof.
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1. BB84

Whereas conventional cryptography is often based on some unproven computational

assumptions, the security of quantum key distribution [1,2,3,4] � is guaranteed by the

fundamental laws (particularly the uncertainty principle) of quantum mechanics. The best-

known quantum cryptographic application is quantum key distribution (QKD) whose goal

is to allow two persons, Alice and Bob, to communicate in perfect security in the presence

of an eavesdropper, Eve.

A number of years had passed before rigorous and convincing proofs of security against

the most general attack �nally appeared. Mayers [8] and subsequently others [9] have

proven the security of the standard Bennett and Brassard's BB84 scheme [1], a scheme

that is closer to a realistic experimental situation. Unfortunately, those proofs are rather

complex. A proof by Lo and Chau [10] has the advantage of being conceptually simple,

�Quantum cryptography, but not quantum key distribution per se, was invented by Stephen Wiesner
around 1970 in a paper that remained unpublished until 1983 [5]. Quantum key distribution is experi-
mentally the most advanced sub�eld of quantum information processing. Photons have been transmitted
over about 50km of commercial Telecom �bers [6] and over 1km of open air [7].
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82 Proof of unconditional security of six-state quantum key distribution scheme

but it requires a quantum computer to implement. Their proof built on earlier work

on quantum privacy ampli�cation [11] and has subsequently been further simpli�ed [12].

Recently, Shor and Preskill [13] have proposed a simple proof of security of BB84 by

combining and generalizing the insights in Lo and Chau's [10] and Mayers' [8] proofs.

Their proof also extends the tolerable error rate of BB84 from about 7 percents set by

Mayers' proof to about 11 percents.y

Other QKD schemes have also been proposed.z A notable example is the six-state

scheme proposed by Bruss [16]. Recently, a proof of security of the six-state scheme has

been proposed by Inamori [17], which, unlike Shor and Preskill's proof of security of BB84,

requires two-way classical communications between Alice and Bob.

Until now, it was not obvious how to generalize the proof technique of Shor-Preskill's

proof, which requires only one-way classical communications, to the six-state scheme. The

main goal of this paper is to provide precisely such a simple proof of security for the

six-state using Shor and Preskill's approach. Our result shows that, using only one-way

classical communication, six-state QKD scheme can be made secure up to an error rate

of about 12.7 percents. This is higher than the value of about 11 percents in the case of

Shor-Preskill's result in BB84, thus demonstrating the advantage of the six-state scheme

over BB84. Our proof also clari�es the symmetry structure employed in Shor and Preskill's

proof.

A key idea of Shor-Preskill's proof is reduction: Instead of tackling the security of

BB84 directly, they took an indirect path. They constructed a QKD scheme that employs

entanglement puri�cation (i.e., it requires a quantum computer to implement) and showed

that such a scheme is secure. Then, they showed that the security of such an entanglement-

puri�cation-based QKD scheme implies the security of BB84. In their proof, the bit-
ip

and phase errors of the underlying entanglement puri�cation protocol may be totally

uncorrelated. Therefore, in the worst case situation, the bit-
ip error syndromes tell the

two users nothing about the phase errors.

In this paper, we will follow Shor-Preskill's approach for the case of a six-state QKD

scheme. We see a clear advantage of the six-state scheme over BB84: As will be discussed

in subsequent sections, for the six-state scheme, one can show that in the corresponding

underlying entanglement-puri�cation-based QKD scheme, the bit-
ip and phase errors

are correlated.x In other words, the bit-
ip error syndromes can be used to reduce the

conditional entropy of the phase error pattern. This reduction in conditional entropy

makes the task of entanglement puri�cation easier and allows us to establish the security

of the six-state scheme up to an error rate of 12.7 percents.

This paper is organized as follows. In Section 2, we review Shor-Preskill's proof. In

Section 3, we study the di�erences between BB84 and the six-state scheme, emphasizing

yMayers' proof also permits the same extension.
zFor instance, an eÆcient four state scheme has been proposed and its unconditional security was proven
in [14]. Besides, the security of a continuous variable (squeezed state) QKD scheme has been proven by
Gottesman and Preskill [15] using the same approach of Shor and Preskill's proof.
xAs shown in subsequent sections, the six-state QKD scheme can be made symmetric with respect to all
three bases, X, Y and Z. In the language of entanglement puri�cation, this corresponds to a so-called
depolarizing channel. Therefore, the bit-
ip and phase errors are, indeed, correlated.
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the ability by Alice and Bob to establish the correlations between the bit-
ip and phase

error patterns in the six-state scheme, but not in BB84. In Section 4, our protocol for

secure six-state QKD scheme is given. Section 5 contains various concluding remarks.

2. Shor-Preskill's proof

In this section, we shall recapitulate brie
y Shor and Preskill's proof [13] of security

of BB84. A nice review of Shor and Preskill's proof can be found in the early sections of

[15]. Readers who are familar with the subject can skip this section. Before we go to the

speci�cs, we should �rst review the three major ingredients of their proof: entanglement

puri�cation, classicalization (i.e., quantum to classical reduction) and CSS codes.

2.1. Entanglement puri�cation

Entanglement puri�cation was �rst studied by Bennett, DiVincenzo, Smolin and Woot-

ters[18] and its usage in QKD was �rst proposed by Deutsch et al. [11]. Suppose Alice

prepares n EPR pairs and sends the half of each pair to Bob through a channel controlled

by Eve. Because of Eve's interference, the n EPR pairs are now noisy. However, Alice and

Bob can purify from the n imperfect pairs a smaller number, say m, perfect EPR pairs,

provided that the channel is not too noisy.

2.2. Classicalization

A key question remains: how can one verify that the channel is, indeed, not too noisy?

This is not entirely trivial because noise pattern of the channel is controlled by Eve and

does not have to be independent. Moreover, the Einstein-Podolsky-Rosen paradox tells

us that it would be too naive to apply classical arguments blindly to a quantum problem.

This is where the classicalization (quantum to classical reduction) idea of Lo and Chau

[10] comes in.

The key idea is \commuting observables", i.e., one should focus on observables that

commute with each other. For those observables, it is consistent to assign probabilities to

their simultaneous eigenstates and study those probabilities by classical probability theory,

particularly classical random sampling theory. This leads to substantial simpli�cation of

the original quantum problem. [This \commuting observables" idea is the essence of the

stabilizer formalism of Gottesman [19] and Calderbank et al. [20].]

More concretely, Alice and Bob can �gure out the error rate of the two (rectilinear

or diagonal) bases by random sampling. That is to say that, for each basis, Alice and

Bob select a random subset of test EPR pairs and compare their polarizations of the two

halves of a pair to see if they agree. Mathematically, this is equivalent to measuring the

either operator XX and ZZ, where X and Z are respectively the Pauli matrices, �x and

�z . The key observation here is that XX commutes with ZZ. Therefore, the commuting

observables idea indeed applies and probabilities to the simultaneous eigenstates can be

assigned to Alice and Bob's state.

With the above two ingredients|entanglement puri�cation and classicalization, one

can prove the security of QKD by intuitive classical argument [10]. Nonetheless, the
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resulting protocols still require quantum computers to implement. This is because a general

entanglement puri�cation protocol requires a quantum computer for its implementation.

It is the following insight of Shor and Preskill [13] that allows one to implement a secure

QKD scheme without a quantum computer.

2.3. CSS codes

Their proof makes essential use of the Calderbank-Shor-Steane (CSS) code. The CSS

code has the useful property that the error correction procedure for the phase error is

decoupled from that for the bit-
ip error. Clearly, bit-clip error correction is important

to ensure that Alice and Bob do share a common key. However, Shor and Preskill made

the following important observation: Since phase errors will not change the bit value of

their �nal key anyway, Alice and Bob have the liberty of dropping the whole phase error

correction procedure altogether. This is the fundamental reason why they can implement

a CSS code-based QKD scheme without a quantum computer. General quantum error

correcting codes can also be used for QKD, but it is unclear how to implement those QKD

schemes without a quantum computer.

Even though the phase error correction procedure is dropped in BB84, it is, nonetheless,

important that the phase error is, in principle, correctable by the underlying quantum error

correcting code because only then can security be guaranteed by the quantum no-cloning

theorem. In other words, Alice and Bob do not need to perform phase error correction. The

very fact that Alice and Bob could perform phase error correction (if they had quantum

computers) would be enough to guarantee security of QKD. The phase error correction

procedure reduces the eavesdropper's information on the key to an exponentially small

amount in terms of some security parameters. In other words, the phase error correction

is used for privacy ampli�cation, whereas the bit-
ip error correction is used for error

correction. The remenant of the phase error correction procedure is a \coset extraction"

procedure. This point has been emphasized in [13] and will be recapitulated below.

2.4. Notation

Having introduced the above three major ingredients, we shall give more speci�cs of

the Shor-Preskill's proof. We shall mostly use the notations in [13]. For each qubit,

we use a canonical basis, j0i and j1i. De�ne also the basis, j+i and j�i, where j+i =
1p
2
(j0i + j1i) and j�i = 1p

2
(j0i � j1i). The Hadamard transform, H, is a single qubit

unitary transformation of the form:

H =
1p
2

�
1 1

1 �1
�
: (1)

in the canoncial basis. It interchanges the bases j0i, j1i and j+i, j�i.
Let us also introduce Pauli matrices,

�x =

�
0 1

1 0

�
; �y =

�
0 �i
i 0

�
; �z =

�
1 0

0 �1
�
: (2)
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In what follows, we may simplify our notation and denote the three Pauli matrices simply

by X, Y and Z.

The Bell basis is an orthogonal basis for the quantum state of two qubits. It has basis

vectors,

	� =
1p
2
(j01i � j10i); (3)

�� =
1p
2
(j00i � j11i): (4)

2.4.1. CSS codes

Let us consider two classical binary codes, C1 and C2, such that,

f0g � C2 � C1 � F
n

2 ; (5)

where Fn

2 is the binary vector space of the n bits and that both C1 and C
?
2 , the dual of

C2 can correct up to t errors. A basis for the CSS code can be found as follows. For each

v 2 C1, de�ne the vector

v ! 1

jC2j1=2
X
w2C2

jv + wi: (6)

Notice that v1 and v2 give the same vector whenever v1 � v2 2 C2. In other words, the

codeword of the CSS code corresponds to the coset of C2 in C1. Let H1 be the parity

check matrix for the code C1 and H2 for C
?
2 .

2.5. Secure QKD based on entanglement puri�cation

Let us recapitulate the key point of Shor-Preskill's proof. As a starting point of their

paper, they [13] proved the security of the following QKD scheme:

Protocol 1 (in [13]): Modi�ed Lo-Chau

(0) Alice and Bob decide on a large positive integer n, a CSS code and a maximal

number emax of check bit errors that they tolerate in the protocol.

(1) Alice prepares 2n EPR pairs in the state (�+)2n.

(2) Alice picks a random 2n-bit string b and applies a Hadamard transform H on the

second half of each EPR pair for which (the component of) b is 1.

(3) Alice sends the second halves of the EPR pairs to Bob.

(4) Bob receives the qubits and publicly acknowledges the completion of his reception.

(5) Alice selects randomly n of the 2n EPR pairs to serve as check bits to test for the

eavesdropper, Eve,'s eavesdropping.

(6) Alice announces the bit string b and which n EPR pairs are to be used as check

bits.

(7) Bob performs a Hadamard transform on the qubits where (the component of) b is

1.
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(8) Alice and Bob each measure their halves of the n check EPR pairs in the j0i,
j1i basis and broadcast their results. If more than emax check bits disagree, they abort.

Otherwise, they proceed to the next step.

(9) Alice and Bob each measure �
[r]
z for each row r 2 H1 and �

[r]
x for each row r 2 H2.

They broadcast their results. Bob transforms his state accordingly to obtain m nearly

perfect EPR pairs.

(10) Alice and Bob measure the EPR pairs in the j0i, j1i basis to obtain a shared secret
key.

Remark: As discussed by Shor and Preskill, Alice should also scramble the qubits by a

random permutation before sending them to Bob. Such a scrambling extends the tolerable

error rate from about 7 percents set by Mayers [8] to about 11 percents in Shor-Preskill's

proof. We shall assume that this is done.

The above protocol consists of two steps: a) veri�cation and b) privacy ampli�ca-

tion/error correction. In step a), Alice and Bob verify by random sampling that the error

rate of the transmission is smaller than some prescribed value. Otherwise, they abort. In

step b), Alice and Bob employ the property of CSS code to correct up to t errors and

obtain privacy.

One can calculate the probability that the test on the check bits is passed and yet the

entanglement puri�cation procedure on the code bit fails. Since Eve does not know which

qubits are used as check bits and which as code bits, she cannot treat them di�erently. In

other words, the check bits provide a random sample of all the bits. Moreover, since all

relevant measurements refer to the Bell-bases and thus commute with each other, one can

apply a classical random sampling argument to estimate the number of errors. By choosing

an appropriate CSS code and emax, one can ensure that this probability is exponentially

small in n. The readers should refer to [13,15] for details.

2.6. Reduction to a quantum error-correcting code protocol

Now, the above entanglement puri�cation protocol only involves one-way communica-

tion from Alice to Bob. It has been shown [18] that any one-way puri�cation protocol can

be reduced to a quantum error-correcting code protocol. i.e., Instead of Alice preparing

EPR pairs and sending halves to Bob, Alice prepares an encoded quantum state with a

quantum error correcting code and sends it to Bob.

More concretely, suppose Alice and Bob start with n perfect EPR pairs. Suppose in

step (9) Alice measures the eigenvalues of �
[r]
z for each row r 2 H1 and �

[r]
x for each row

r 2 H2 and obtains the results, x and z respectively. Her measurement will project the

state of Bob into the CSS codespace Qx;z , which has basis vectors indexed by the coset of

C2 in C1. For v 2 C1, the corresponding codeword is given by

v ! 1

jC2j1=2
X
w2C2

(�1)z�wjx+ v + wi: (7)

The index, x, and z, de�nes a family of CSS codes, Qx;z , with equivalent error correct-

ing capability. In other words, each of them can correct up to t phase errors and t bit-
ip

errors.
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Also, Alice may measure her half of the EPR pair before or after transmission. If she

measures �rst, it will be the same as she has chosen a random raw key k and encoded it

by Qx;z (i.e., take v = k in Eq. (7)).

2.7. Reduction to BB84

The property of CSS codes is used in the reduction from a quantum error correcting

code protocol to BB84. Recall that the bit-
ip and phase error correction procedures

decouple in a CSS code. What if Alice and Bob simply drop the phase error correction

procedure? The resulting protocol is essentially BB84!

More concretely, since Bob does not really need the phase error syndrome z to extract

the value of the shared key, there is no reason for Alice to send it. Let us now consider

the case when Alice has obtained a value k for the raw key and does not send z. We can

take the average density matrix of Bob, over all values of z, thus obtaining:

1
2njC2j

P
z

P
w1;w22C2

(�1)(w1+w2)�z

�jk + w1 + xihk + w2 + xj
= 1

jC2j
P

w2C2
jk + w + xihk + w + xj: (8)

This gives rise to a classical mixture of the states, jk+w+xi with w randomly chosen from

C2. Mathematically, the key extraction procedure is the same as the following classical

error correction/privacy ampli�cation procedure: Alice sends a random string v to Bob

and later broadcasts u + v where u is a random string in C1. The key is then the coset,

u + C2, of C2 in C1. Bob receives a corrupted string v + e. He then substracts Alice's

broadcast string u+ v from his string to obtain u+ e. He corrects errors to �nd u in C1.

He then �nds the �nal key to be u+ C2, which is a coset of C2 in C1.

3. BB84 vs six-state scheme

Let us look at Shor-Preskill's proof of security of BB84 more closely by re-examining

their underlying entanglement puri�cation protocol (EPP), Protocol 1. Recall from sub-

section that one can employ the commuting observable idea and only be concerned with

probabilities of their simultaneous eigenstates. In such a description, one only considers

the diagonal entries of the density matrix with respect to the Bell-basis. Furthermore, in

the large N limit (where N is the number of pairs of qubits), by random sampling, one

should only be concerned with the average density matrix. Therefore, one can reduce the

whole problem of puri�cation of a general N -pair state in QKD to the problem of puri�-

cation of an ensemble of N identical Bell-diagonal states. In what follows, we will see that

the four entries in the density matrix have interpretations in terms of the probabilities of

a) no error, b) a bit-
ip error, but no phase error, c) a phase error, but no bit-
ip error and

d) both bit-
ip and phase errors. A natural question to ask is: What are the correlations

between the bit-
ip and phase errors?

We will now show that in Protocol 1, the bit-
ip and phase errors can be totally

uncorrelated. In the language of commuting observables and in the limit of large number

of pairs, let us denote the e�ective density matrix by:
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diag(a; b; c; d): (9)

Here, we use the Bell-basis as in the notations of [18]. (See also Eqs. (3) and (4).) Now,

the action of the Hadamard transform in Eq. (1) will permute the four matrix elements

of Eq. (9) into:

diag(a; c; b; d): (10)

In Step 2 of Protocol 1, one applies randomly either the identity or the Hadamard.

Averaging over the two cases: a) Identity and b) Hadamard, we �nd that the e�ective

average density matrix shared by Alice and Bob after Step is of the form:

diag(a; (b+ c)=2; (b+ c)=2; d) = diag(a; e; e; d); (11)

where we de�ne e = (b+ c)=2.

As remarked earlier, the four entries represent, for each shared pair between Alice and

Bob, the four physical possibilities respectively: a) No error; b) bit-
ip error, but no phase

error; c) phase error, but no bit-
ip error; and d) both bit-
ip error and phase error.

See, for example, [18] for details. In the random sampling procedure|Steps (5)-(8), the

sample bit error rate found by Alice and Bob will be approximately e + d. {This leaves

d unconstrained in Shor-Preskill's proof of security of BB84 scheme. The implication

is that Alice and Bob cannot possibly know of the correlations between the bit-
ip and

the phase error. This is a serious limitation of the BB84 scheme. In the worst case

situation, the bit-
ip and phase error are independent. This corresponds to the values,

e = (b+ c)=2 = p(1� p) and d = p
2 for some 0 < p < 1.k

Let us now consider the six-state scheme. We will now show that the situation there is

completely di�erent. Indeed, we will establish that, for the six-state scheme, the density

matrix is that given by a depolarizing channel and as such does have correlations between

bit-
ip and phase errors. It is this correlations between bit-
ip and phase errors that will

give the six-state scheme an advantage over BB84.

As an analog of the Hadamard transform, which symmetrizes between the two bases|

X and Z|in BB84, in the six-state scheme we look for a symmetry operator that will

symmetrize between the three bases|X, Y and Z. We �nd the operator (see, e.g., Eq.

(15) of [21].)

T =
1p
2

�
1 �i
1 i

�
; (12)

{We remark that, owing to the symmetry between the two bases, only a single bit error rate of the sample
is required to establish the security of the Shor-Preskill's procedure. In other words, there is no need to
employ a re�ned data analysis studied in [14].
kOwing to symmetrization by the Hadamard transform, two of the diagonal entries in Eq. (11) are the
same. This means that the probability of having a bit-
ip error but no phase error is the same as that of
having a phase error but no bit-
ip error. Now, suppose the two types of errors are independent. They
must occur independently with the same probability p. This means that e = p(1� p) and that d = p2, as
stated in the main text.
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which cyclically permutes the three bases. i.e.,

T : X ! Y ! Z ! X: (13)

Suppose we apply either i) the identity operator; or ii) T ; or iii) T 2 with equal proba-

bility to the density matrix shown in Eq. 9. The average density matrix becomes

diag(a; (b+ c+ d)=3; (b+ c+ d)=3; (b+ c+ d)=3); (14)

which is totally symmetric with respect to the three bases, X, Y and Z. This shows that

the channel is e�ectively a depolarizing channel [18]. More importantly, the above four

entries again represent the four possibilities: a) No error; b) bit-
ip error, but no phase

error; c) phase error, but no bit-
ip error; and d) both bit-
ip error and phase error. This

implies that there are non-trivial correlations between bit-
ip and phase errors.

Such non-trivial correlations can be exploited to design a six-state error correction/privacy

ampli�cation protocol that tolerates a higher error rate than Shor-Preskill's protocol for

BB84. The key point is that, the bit-
ip error pattern and the phase error pattern are

no longer independent in the six-state scheme. Therefore, given the same bit error rate,

the actual entropy of the density matrix is smaller in the case of the six-state scheme, as

compared to the worst case situation in BB84.

More concretely, for the n imperfect EPR pairs shared by Alice and Bob, let us denote

by the variable X , the phase error pattern and by Z, the bit-
ip error pattern. Now, the

entropy of the whole error pattern is given by

H(X ;Z) = H(X ) +H(Z)� I(X ;Z): (15)

The fact that the phase and bit-
ip error patterns are correlated means that I(X ;Z) > 0.

Consider now the following strategy of quantum error correction.

Subrountine A: Modi�ed \random" hashing procedure with CSS codes

(I) Alice and Bob apply a random hashing code on the Z variable only to identify the

bit-
ip error pattern. Note that (slightly more than) H(Z) rounds of random hashing is

needed.

(II) Alice and Bob use the information on the bit-
ip error pattern to reduce their

ignorance on the phase error pattern from H(X ) to H(XjZ) = H(X ) � I(X ;Z) =

H(X ;Z)�H(Z).
(III) Alice and Bob apply a random hashing code on the X variable only to identify

the phase error pattern. Note that only (slightly more than) H(X ;Z) �H(Z) rounds of
random hashing is needed.

Remark: Bennett, DiVincenzo, Smolin and Wootters (BDSW) [18] have studied a ran-

dom hashing scheme in entanglement puri�cation. Our random hashing code is analogous,

except that we restrict our attention to CSS codes. Therefore, in (I), all the operators are

chosen to be tensor products of Z operators only and in (III), X operators only. Nonethe-

less, in the asymptotic limit of large number of pairs, our scheme is equally eÆcient as the

original random hashing scheme by BDSW. In BDSW, it was shown that the scheme gives
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non-zero rate of distilled entanglement when the �delity f > 0:81071. Since f = 1� 3p=2

for a depolarizing channel, this corresponds to a bit error rate of about 12.6 percents.

Remark: By adopting a modi�ed version of the DiVincenzo-Shor-Smolin code [22], a

slightly higher error rate of about 12.7 percents can be tolerated in the six-state scheme.

DSS code consists of the concatenated of a non-random (cat) code with random hashing

code. It is one of the few examples of a so-called degenerate code and gives better perfor-

mance than any known non-degenerate code. Note that the non-random (cat) code is a

CSS-code. Since we have given a modi�ed version of the random hashing code that is a CSS

code, the concatenated code can, therefore, also be modi�ed into a CSS code. While the

actual improvement|12.7 percents vs 12.6 percents|is quite small, the result is conceptu-

ally interesting because it shows that a degenerate code can be employed in the underlying

entanglement puri�cation protocol in i) establishing a secure error-correction/privacy am-

pli�cation protocol for the six-state QKD scheme and ii) tolerating a higher error rate

than any known non-degenerate codes.

4. Protocol for secure six-state QKD scheme

Following our discussion in the last section, we now give the details of our procotol for

secure six-state QKD scheme. We claim the following modi�ed QKD scheme is secure.

For conciseness, we omit the steps that are identical to Protocol 1. We replace some of

the steps of Protocol 1 by the following.

Protocol 1': QKD based on entanglement puri�cation

(0') Alice and Bob decide on a large positive integer n and a maximal number emax of

check bit errors that they tolerate in the protocol.

(2') Alice selects a random 2n-trit t, and performs I, T or T 2 on the second half of

each EPR pair if (the component of) t is 0, 1 or 2 respectively.

(6') Alice announces the trit string t and which n EPR pairs to be check bits.

(7') Bob performs I, T�1 or T�2 on the qubits depending on the value of (the compo-

nent of) t.

(9') Alice and Bob apply Subrountine A (the modi�ed random hashing procedure with

CSS codes discussed in the last section) to correct the (correlated) bit-
ip and phase

errors. They broadcast their results. Bob transforms his state accordingly to obtain m

nearly perfect EPR pairs (which are shared with Alice).

The proof of security is analogus to Shor-Preskill's proof.

4.1. Reduction to six-state protocol

Furthermore, the various reduction arguments of Shor-Preskill directly carry over and

reduce Protocol 1' to a six-state protocol. From the security of Protocol 1', we have proven

the security of the six-state protocol.

More speci�cally, the quantum key distribution Protocol 1', which is based on a one-

way entanglement puri�cation protocol, is mathematically equivalent to a protocol based

on a class of CSS code. Furthermore, by the virtue of CSS codes, the phase error-correcting

procedure is essentially decoupled from the bit-
ip error-correcting procedure. Since the
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phase errors do not a�ect the value of the �nal key, the phase error correction procedure

can be simply dropped. Put in another way, Alice could have done the procedure with

any CSS code in the same family (they are all related by phase errors to one another).

Mathematically, the mixture of the CSS codes in the family is equivalent to a classical code

(with the corresponding error correction and privacy ampli�cation procedure). Therefore,

the protocol can be reduced to the a simple \prepare and measure" protocol, namely

the six-state scheme. The maximal tolerable bit error rate of the six-state scheme with

our error-correction/privacy ampli�cation procedure is 12.6 percents for modi�ed random

hashing with CSS codes (and 12.7 percents if we employ a modi�ed DSS code described

in the last Section).

Inamori [17] has recently proposed a proof based on a di�erent approach which gives

a higher tolerable error rate of about 13%. However, unlike the present proof, Inamori's

proof requires two-way communications between Alice and Bob.

In conclusion, we have proven the security of the six-state quantum key distribution

up to a bit error rate of 12.7 percents.

5. Concluding remarks

We shall conclude with a few remarks.

5.1. EÆcient six-state scheme and proof of its unconditional security

In the six-state scheme, Alice and Bob independently and randomly choose between

three bases. Therefore, two-thirds of the times they disagree and have to throw away their

polarization data. We remark that they can improve the eÆciency of scheme substantially

by choosing the three bases with di�erent probabilities, say �; � and 1 � 2�. This ensures

that the eÆciency is greater than (1 � 2�)2. As � ! 0, the eÆciency asymptotically goes

to 100%.

Whereas in the standard six-state scheme the computation of only a single error rate is

required for its proof of security, for this eÆcient scheme to be secure, it is now necessary

to use a re�ned data analysis [14]. One should divide up the data according to the various

bases in which they are transmitted and received and compute the error rate for each basis

separately and demand that all the error rates are small.

Note that the scheme is insecure when � is exactly zero. The constraint on � has been

discussed. Basically, it is necessary that N�
2
> m where N is the total number of photons

transmitted from Alice to Bob and m is the minimal number of photons needed for an

accurate estimation of the error rate of the data. The numerical value of m must scale at

least as logN . But, it is a priori unnecessary for it to scale linearly with N . We remark

that the unconditional security of the eÆcient four-state scheme has been proven in [14].

It is straightforward to apply the techniques developed there to prove the unconditional

security of the eÆcient six-state scheme up to the same error rate of 12.7 percents.
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5.2. Security of other QKD schemes

The security of some other QKD schemes remains to be explored. In particular, it

would be interesting to study the security of the B92 scheme [23] with noises. It is not

entirely obvious to us how the Shor-Preskill's techniques can be applied to B92.

5.3. Real life issues

Our result only applies to an idealized situation. In a real experiment, the source of

EPR pairs are imperfect; the channel is lossy and the detector eÆciency is far from perfect.

It would be interesting to explore the security of the six-state in a real world situation. For

BB84, some works along those lines have been done by researchers including L�utkenhaus

[24,25].

In a recent preprint, Inamori, L�utkenhaus and Mayers [26] have proposed a proof of

security of a weak coherent state implementation of the BB84 scheme. A key assumption

is that, given any quantum signal, independent of the basis of measurement chosen by

Bob, Bob's detection eÆciency stays the same. (One can imagine that Bob chooses his

measurement basis by pushing a button. Then, independent of which button his pushes,

it is assumed that the measurement will with the same probability be successful. In other

words, the signals cannot behave di�erently according to the basis chosen by Bob. Cf.

Trojan Horse attack in the next subsection.) This assumption is closely related to the

detectors' loophole problem in the testing of Bell's inequalities. Given rather imperfect

detectors, testing of Bell's inequalities often assumes that the detected sample provides a

fair representation of all the signals, detected or not.

The Shor-Preskill's proof is a �ne theoretical result. However, if one would like to

apply the result, one needs to make sure that the amount of computing power required is

reasonable. It is not entirely clear to us that this is the case. Some discussion has been

made in [25].

5.4. Trojan Horse problem

In proofs of security of QKD schemes, it is often assumed that the signals transmitted

from Alice to Bob lives in a two-dimensional space. How can one be sure that there is no

hidden Trojan Horse in the signal? For instance, the signal may, in principle, be made up

of two parts, one is the usual quantum signal, the other is a robot that will explore Alice

or Bob's system and tell the �rst part of the signal to behave di�erently according to,

for example, the basis of measurement actually employed by Bob. Notice that the Trojan

Horse can break the quantum crypto-system without directly leaking out information from

Bob's laboratory to Eve!

One might naively think that QKD provides more room for the Trojan Horse attack.

Fortunately, it has been pointed out (Note 21 of [10]) that this Trojan Horse problem in

quantum cryptography is no worse than in classical cryptography: By using teleportation,

any quantum signal can be reduced to classical one. Therefore, Alice and Bob only need

to receive classical signals anyway. This teleportation trick requires only the experimental

implementation of teleportation, rather than a full-blown quantum computer.



Hoi-Kwong Lo 93

5.5. Bell's inequality with untrusted imperfect apparatus

Another question is whether Alice and Bob can buy their quantum cryptographic

devices from untrusted vendors and verify their security by doing some simple testing

themselves. By assuming that Alice and Bob's laboratory can be suÆciently shielded

from the environment, a procedure to prove security based only on input/output proba-

bilities (that corresponds to a choice of several local measurements by Alice and Bob and

the corresponding measurement outcomes) has been provided for the case of perfect EPR

pairs [27]. It would, thus, be interesting to generalize the result to the case of imperfect

EPR sources and measuring apparatus. (See also Subsection 5.3). This line of research can

also be re-phrased as a generalization of Bell's inequality to the case of a limited amount

of entanglement. The question there becomes: given a �xed amount of entanglement,

how far can Bell's inequality be violated? Conversely, given some experimental violations

of Bell's inequality on some random sample, can one deduce the minimal amount of en-

tanglement shared by Alice and Bob? Interesting questions include what type of privacy

amplication/error correction procedures can be employed to prove unconditional security

in this untrusted situation.

In summary, there is no doubt in our mind that QKD provides a fertile real-life play-

ground for the various concepts in quantum information theory. Moreover, these interac-

tions between theory and practice will most likely inspire new research avenues on both

sides.

Notes Added: Recently, Gottesman and Lo [28] have proven the security of the six-state

scheme up to a bit error rate of about 23 percents. However, their method employs two-

way classical communications between Alice and Bob. They also show that, by allowing

two-way classical communications, BB84 scheme can be made unconditionally secure up

to an error rate of 17 percents.
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