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Theory of quantifying entanglement is reviewed in a uni�ed framework. The subject is

divided with respect to �nite and asymptotic regime, as well as abstract and operational

approach. Important measures are presented within four classes according to di�erent

methods of construction. The relations between postulates for asymptotic and �nite

regime are clari�ed. Many results are formulated based on general properties of the

involved functions and classes of states and operations, without referring to entanglement

anymore. It is argued that while in �nite regime only monotonicity is relevant postulate,

for asymptotic regime, one needs, in general, monotonicity, a kind of extensivity and

continuity.
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1. Introduction

Entanglement 1;2 is the corner-stone of the quantum information theory (QIT). Conse-
quently, quanti�cation of entanglement is necessary to understand and develop the theory.
The main problem is that we do not understand fully what entanglement is. Rather,
we know its mathematical de�nition as well as its manifestations like violation of Bell's
inequalities 3, teleportation 4 or quantum computation 5.

There are, in principle, two approaches to quantifying entanglement: \operational" and
\abstract" one, both present in the pioneering paper on entanglement measures 6. In the
�rst one, entanglement is related to the operational tasks: the system is more entangled
if it allows for better performance of some task (impossible without entanglement). One

such task is teleportation. By use of a single pair of two qubits in state 1p
2
(j00i + j11i)

and classical communication, a qubit can be transmitted. This is impossible by use of
classical communication itself. A mixed state cannot faithfully teleport. However, if Alice
and Bob share many pairs of particles each, in state %, then by use of local operations and
classical communication, they can obtain a smaller number of pairs in state  +, and per-
form teleportation. The above procedure is called distillation 7. The number of obtained
output pairs per input one is entanglement of distillation. It quanti�es entanglement with
respect to rate of teleportation. More generally, operational measures are optimal rates of
conversion of one form of entanglement into other one.

In abstract approach one says that a state function can be used to quantify entan-
glement, if it satis�es some natural properties. The fundamental property is 6 that en-
tanglement of two systems, whatever it actually is, cannot be increased without quantum
interaction (direct or indirect) between them. If the systems are spatially separated, then
entanglement between the quantum systems cannot increase, if only classical communica-
tion between Alice and Bob sharing the systems is allowed. The latter sentence expresses
the fundamental postulate of entanglement theory - monotonicity under local operations
and classical communication (LOCC). Development of abstract entanglement theory was

�E-mail address: �zmh@univ.gda.pl
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4 Entanglement measures

initiated in Refs. 8;9;10. In particular, the idea of entanglement measures based on distance
from the set of disentangled states of Refs. 9;10 had great impact on entanglement theory.
The minimal axioms for entanglement were �nally formulated in 11.

Another division of entanglement theory is into two regimes: �nite and asymptotic
one. According to the �rst one (see e.g. 12 and references therein), one would like to
quantify entanglement of single system (of course a compound one). In the second one
13;14, we are interested in entanglement of a sequence of systems, or, more generally,
quantum sourcey. In the latter regime one works with \asymptotic accuracy" paradigm
(as in classical communication theory). Namely, if, for two sequences of systems, their
total states converge to each other, one identi�es the sequences. This implies that the
very axiom of monotonicity will not be suÆcient, and some continuity will enter the scene
11. Asymptotic regime is called thermodynamics of entanglement 8;10;15. Its axiomatic
treatment was developed in 16.

So far I have referred only to the literature concerning general approach to entanglement
theory. However, the latter would be impossible without many concrete results, I will refer
to further in the paper.

The purpose of this paper is to gather \phenomenology" of quantifying entanglement
around the two divisions: �nite-asymptotic, operational-abstract. Subsequently, a connec-
tion between operational and abstract measures, both in �nite and asymptotic regime will
be presented. It allows to evaluate entanglement conversion rates in di�erent processes,
and, subsequently, to investigate irreversibility in entanglement processing. I will argue
that the connection and other results can be obtained without referring to entanglement
at all: one simply deals with some functions monotonic under some classes of operations
and with sets closed under those classes. The classes and the sets are usually convex, and
closed under tensor product. From this point of view, I will show that much can be done,
by using monotonicity in �nite regime (as pointed out in 11) and monotonicity, extensivity
and continuity in asymptotic regime 16.

I will be mainly concerned with bipartite systems. However I will often point out that
some result is valid for multipartite domain, too. Moreover, only �nite-dimensional systems
will be considered. For recent attempts to quantify continuous variable entanglement see
e.g. 19;20.

The paper is organized as follows. First I present some basic classes of states, and opera-
tions (Sect. 2). In Sect. 3 I discuss the possible mathematical formulations of monotonicity
postulate. Subsequently (Sect. 4) basic entanglement measures are presented, divided into
four classes according to four methods of constructing the measures. We present brie
y
some results on evaluating measures for concrete states. The main results on pure state
entanglement are discussed in Sect. 5. Next, I present asymptotic regime (Sect. 6) and dis-
cuss appropriate postulates (Sect. 7). Basic theorems of asymptotic regime are presented
in Sect. 8. Also some connections between entanglement measures and information-like
quantities are brie
y discussed.

2. Basic sets of states and classes of operations

2.1. States

From the point of view of entanglement theory one is interested in states of compound
system. We will be concerned with bipartite systems, described by Hilbert space H

A

H

B
.

It is natural to divide the set of all such states (density matrices) into the set of entangled
states E and its complement, the set of separable states S. A state is entangled if it
is not a mixture of product states, otherwise it is separable 21. However, the concept
of distillation suggests other division: Into distillable and non-distillable states. It turns
out 18 that there exist entangled states that are non-distillable (one calls them bound

yOnly the sources of identically, independently prepared systems have been treated so far.
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entangled ones). This gives three classes of states: separable, bound entangled (BE) and
distillable. The separable states and bound entangled ones are non-distillable, denote
them by ND = S[BE . Actually, the set ND has not been yet operationally characterized
18;22;23. Therefore another set is useful: The set of states with positive partial transposition
(call it PPT ). To de�ne partial transposition T

B
of a given state % acting on Hilbert

space H
A

H

B
, we will use matrix elements of the state in some product basis: %

m�;n�
=

hmj 
 h�j % jni 
 j�i. Here the kets with Latin (Greek) letters form orthonormal basis in
Hilbert space describing �rst (second) system. Now, the partial transposition of % with
respect to the system B is de�ned as

%
TB

m�;n�
� %

m�;n�
: (1)

The form of the operator %TB depends on the choice of basis, but its eigenvalues do not.
We will say that a state is PPT if %TB � 0 i.e. if all the eigenvalues of %TB are nonnegative
(otherwise we will say that a state is NPT)z. As shown by Peres 25, separable states are
PPT, but for entangled states some eigenvalues can be negative, thus partial transposition
can be used to detect entanglement of mixed states. PPT states cannot be distilled 18, so
that PPT � ND. Moreover PPT contains S as proper subset 26. Most likely PPT is
not equal to ND: there is strong evidence that there are non-distillable states which are
not PPT. x

2.2. Important one-parameter families of states

Werner states - U 
 U invariant ones The Werner states 21 for d 
 d systems (i.e.

for systems described by the Hilbert space Cd 
 C
d) are given by

%
W

(p; d) = p
P�

N�
+ (1� p)

P+

N+

; 0 � p � 1 (2)

where P�(+) are projectors onto antisymmetric (symmetric) subspace of the total space;

N� = d
2�d
2

are dimensions of these subspaces. One �nds that the state is PPT if and only

if p � 1=2. Under the same condition it is separable. For p >
3(d�1)
2(2d�1) it is distillable, while

for 1
2
� p � 3(d�1)

2(2d�1) it is, most likely, bound entangled 22;23. The Werner states are the

only ones that are invariant under operations of the form U 
 U , i.e. they do not change
if Alice and Bob apply locally the same unitary transformation.

Isotropic states - U 
U� invariant ones De�ne �rst maximally entangled state of a
system H
H with dimH = d (call it d
 d system) by

P+(H) = j ih j; with  =
1p
d

dX
i=1

jiii: (3)

(we will call it shortly singlet, even though it is actually not singlet state). The isotropic
state 27 (cf. 24) acting on d
 d system is given by

%
iso

(F; d) =
1� F

d2 � 1
I +

Fd
2 � 1

d2 � 1
P+(d); (4)

zEqually well one could take transposition with respect to the system A.
xFor more details concerning qualitative description of entanglement see the article by P. Horodecki & R.
Horodecki, in this issue.
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where 0 � F � 1. Note that F = Tr
�
%(F; d)P+(d)

�
. As shown in 27 for F � 1

d

the state

is separable, PPT, non-distillable; for F >
1
d

it is nonseparable, distillable, NPT. The

isotropic states are the only ones that are invariant under any transformation U
U� (star
denotes complex conjugation).

2.3. Classes of operations

The general problem of quantum operations was considered in 28;29;30. Essentially new
aspects were added quite recently in the context of quantum information processing (cf.
6;11;32;33). A very elegant, closed description was provided in 34.

All possible physical operations on quantum systems can be divided into

(i) state-to-ensemble operations

(ii) ensemble-to-state operations (mixing)

Here, ensemble is a set of states f%
i
g with ascribed probabilities fp

i
g (more generally,

ensemble is a probability measure on the set of states). The class (ii) is described by
taking convex combination

fp
i
; %

i
g ! %

out
=
X
i

p
i
%
i

(5)

The action of mixing corresponds to erasure of information concerning identity of a member
of ensemble. The operations of type (i) we will call simply operations. A special case of
operation is proper operation. It is state-to-state operation, and is described by trace

preserving completely positive (CP) map{ k. In general, the class (i) is described by

a family of suboperations i.e. trace-decreasing CP maps �
i

with Kraus operators V
(i)

j

satisfying X
ij

V
(i)
j

y
V
(i)
j

= I: (6)

The operations thus consist of state transformation plus some classical record. The maps
�
i

describe transformations the state was subjected provided that i was obtained. Given
operation, the transformation is of the form

%
in
! fp

i
; %

i

out
g (7)

where p
i

= Tr[�
i
(%
in

)] is the probability that the outcome i will occur, while %i
out

are out-

puts of �
i
, after normalization, i.e. %i

out
= 1

pi

�
i
(%
in

). The operations can be composed,

and tensored with each other 35. Examples of operations are measurement, or random
application of unitary transformations. One can consider pure operation, for which sub-
operations are extreme maps, i.e., they are of the form

�
i
(%) = V

i
%V

y
i
: (8)

Proper operations are usually strongly impure: no output is read out. Indeed, a proper
map has only one suboperation - itself. Hence to be pure it must be of the form (8).

{A map is CP if it is of the form �(%) =
P

i
Vi%V

y

i
. Vi are called Kraus operators of �. The condition of

preserving trace is equivalent to
P

i
V
y

i
Vi = I. A CP map is called trace decreasing if

P
i
V
y

i
Vi � I.The

input and output states can act on di�erent Hilbert space.
kSometimes in literature on quantum information proper operations are called deterministic operations,
while improper operations { stochastic or probabilistic ones. However in older literature concerning open
systems trace preserving CP maps are called stochastic maps.
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The only pure proper operations are thus unitary one and isometry (unitary embedding).
Example of the latter is adding an ancillary system in some pure state.

It should be emphasized, that only proper operations can be a result of single run of
experiment. The improper operation and mixing have only statistical meaning, they need
many runs. A suboperation cannot be performed itself - in experiment it is always a part
of some operation. Thus trying to perform suboperation, one, in general, can succeed only
with some probability while the proper operations are performed with certainty. Finally,
note that the proper operation can be treated as composition of pure operation with mixing
of the resulting ensemble. More generally, any operation can be treated as pure operation
followed by partial mixings (the output ensemble is divided into subensembles, and each
of them is mixed).

Let us now present basic subclasses of operations (i) in the context of entanglement.
Apart from the basic one, i.e. LOCC operations, there are other ones, which sometimes
are easier to deal with. The common feature of the classes is that some set that is far
from maximally entangled state (it can be S, PPT or ND) is closed under them. In
this way, the possibilities of manipulations of entanglement are restricted, which makes
considerations nontrivial.

LOCC operations. This basic class of operations was introduced in 6;7 (cf. 36). Con-
sider input state of bipartite system, shared by Alice and Bob. Suppose that Alice performs
operation on her side of two component system. Such operations, performed exclusively
within Alice (or Bob) laboratory we will call local operations. Let then Alice communicate
the outcome to Bob. Conditional on the outcome, Bob performs his operation, obtains
outcome, communicates it to Alice, and so forth. At some stage they stop, left with
some ensemble. This complicated action is LOCC operation - the one composed of local
operations and classical communication. To have proper LOCC operation (state-to-state
transformation) Alice and Bob should forget the outcomes (perform mixing).

It is interesting, that nontrivial proper LOCC operation cannot be done without com-
posing state-to-ensemble and ensemble-to-state operations. This is because the operation
needs communication between Alice and Bob. Thus they must read outcomes to be able
to communicate them and then act conditionally on them, even though they will forget
them afterwards. In contrast, any proper operation in single laboratory can be done with-
out producing intermediate ensemble: it can be performed coherently, by adding ancilla,
applying unitary transformation and removing ancilla (or its part, or part of the initial
system). The sets S;PPT ;ND are closed under LOCC operations. That is, if the input
state belongs to the set, say, S, then so does any of the member of output ensemble.

Separable operations. The class was introduced in 10;35. An operation is separable, if
all its suboperations are of the separable form

�(%) =
X
k

A
k

B

k
%A

y
k

B

y
k
: (9)

Again, all the three sets S;PPT ;ND are closed under separable operations.

PPT operations. The LOCC operations have physical rather than mathematical ori-
gin. They describe possibilities of Alice and Bob that are in distant laboratories in the
situation where sending classical information is cheap while sending quantum one - ex-
pensive (quantum states are fragile, while classical ones - robust against disturbance). As
mentioned, one can extract the relevant mathematical property of LOCC. Namely, the
set of separable states is closed under LOCC class. Consequently, they cannot create
singlet from separable states. However, we know that there are larger sets than S (such
as PPT ;ND), that are still closed under LOCC operations. This suggests to consider
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larger classes of operations. They are allowed to move a state outside S, but one of the
considered larger sets should be closed under them.

In this context consider the class of operations (called PPT ones) 35, such that all
suboperations �

i
have the property that the map T

B
�T

B
is completely positive. The set

PPT is closed under such operations. Example of such operation is adding a pair in PPT
state

%
in
! %

out
= %

in

 %

PPT
(10)

The set is closed under composition and tensor multiplication.

Other possible classes One could consider the set of all operations that leave the set
S, PPT or ND invariant. For example, we have the set of PPT preserving operations
that any PPT state convert into PPT one. Such classes are not closed under tensor
product. For example, the map interchanging the Alice and Bob systems with each other
(i.e. �(%) = V %V with V being swap operator, V  
 � = � 
  ) belongs to such class.
However, it cannot be tensored with identity. Indeed, such tensoring would correspond to
situation, where Alice and Bob have two pairs, and swap is applied to one of them, while
nothing is done with the other one. Now, if the initial state was product of two singlets,
one singlet at Alice side, the second at Bob's, then after the operation, they will share
two singlets. Thus entanglement between Alice and Bob was produced out of a product
state. Hence swap operation is not a PPT operation. One can show that 37;38 the PPT
operations constitute the largest subset of PPT preserving ones, that is closed under tensor
multiplication (hence the relation between the sets is similar to the one between positive
and completely positive maps).

The considered classes can be still useful, but one must be careful while working with
them.

2.4. Examples of operations: twirlings

Let Alice apply to the shared bipartite state % a random unitary transformation and
send to Bob the information, which transformation was applied. Then let Bob apply the
same transformation. Finally let them erase the information, what transformation was
applied. The resulting operation

%!
Z
U 
 U %U

y 
 U
ydU (11)

is called twirling 6;21. The resulting state is Werner state, independently of the initial
state. There is also U 
 U

� twirling 27

%!
Z
U 
 U

�
%U

y 
 U
�y
dU (12)

The resulting state is always isotropic.

3. Minimal postulates for entanglement measures

Entanglement measures are real positive functions de�ned usually on the union of all
states acting on �nite dimensional systems. Below we will list the postulates that certainly
should be satis�ed by entanglement measures.

3.1. Monotonicity

If a state %
out

was created from %
in

by use of a proper LOCC operation, then, irrespec-
tive of used measure, entanglement of %

out
cannot exceed that of %

in
. This basic postulate
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was announced in Ref. 6. It says that entanglement is constituted by genuinely quantum
correlations, that cannot be increased by use of classical communication.

Consequently, if we con�ne to proper operations, the postulate for potential entangle-
ment measure E is

(M1) For any proper LOCC operation � and any state %

E(�(%)) � E(%) (13)

One could impose stronger condition, requiring that average entanglement should not
increase under any LOCC operations 6;13 �� .

(M2) Let an LOCC operation produce ensemble fp
i
; %

out

i
g out of initial state %

in
. Then

we require X
i

p
i
E(%out

i
) � E(%

in
) (14)

The strongest condition arises, if, in addition to (M2), we require also non-increasing

under mixing, which is natural condition from physical point of view. One �nds 11 that
the condition can be written in a much simpler form from mathematical point of view.

(M3.a) Let a local, pure operation produces ensemble fp
i
; %

out

i
g out of %

in
. Then we

require X
i

p
i
E(%out

i
) � E(%

in
) (15)

(M3.b) E is convex

E

�X
i

p
i
%
i

�
�
X
i

p
i
E(%

i
) (16)

This latter postulate will be treated as the fundamental one for any entanglement
measure in �nite regime (we will argue, that in asymptotic regime it is, in general, too
strong).

One can strengthen the conditions (M1) and (M2) by considering larger classes of
operations, presented in preceding section. Sometimes it is mathematically more feasible
to show that these stronger conditions hold. However, if we add non-increasing under
mixing, we will not obtain such simple form as (M3). For separable operations, the
condition (M2) plus convexity can be rephrased as monotonicity under pure operations plus
convexity. For PPT operations even this is impossible. This is because PPT operations
that are not separable, cannot be pure. It is easy to see that a pure PPT operation must
have suboperations of the form A
B(�)Ay
By, so that it must be a separable operation
(the best way to check it is to act by a suboperation on halves of singlets (cf. 31) as in
example of the last paragraph of sect. 2.3).

Remark. Any of the above conditions implies that E is invariant under product
unitary transformations U

A

 U

B
. More generally: Monotonicity implies invariance un-

der reversible operations. In �nite regime product unitary transformations are the only
reversible ones. As we will see, in asymptotic domain there are much more reversible
operations.

3.2. Vanishing on separable states

Of course, for separable states any entanglement measure must vanish:
(S1) For any separable state % we require E(%) = 0.

Why didn't we started with this obvious condition? Following 11 we note that mono-
tonicity in any form of previous subsection, ensures E = const for all separable states.

��Of course, entanglement of some members of the output can exceed the initial one. E.g. one can produce
with some probability two-qubit singlet state out of  = aj00i+ bj11i with a; b > 0.
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This is because separable states can be reversibly converted into each other by LOCC op-
erations. Anticipating a bit, let as require that for some separable state E(%
%) = 2E(%).
Then we obtain E = 0 for separable state automatically! In �nite regime we will not
impose additivity, so that we must set the constant equal to zero ourselves.

A natural question is: shouldn't we require E = 0 if and only if % is separable? If
there were only one type of entanglement, then any entangled state should contain at
least a small amount of it. However there exists many types of entanglement. Thus, if a
measure vanishes for some entangled state, it is not a contradiction, but it implies that
the state does not contain the type of entanglement quanti�ed by this particular measure.
For example, bound entangled states have zero distillable entanglement: all entanglement
they contain is the bound one.

4. Important measures of entanglement

In this section we will present important classes of measures. We will discuss mainly
their monotonicity. Other properties will be presented in �nal subsection and in further
sections.

4.1. Operational measures

Here we will describe two entanglement measures, entanglement of distillation E
D

and
entanglement cost E

C

6 (cf. 35;39). They have direct quantum communication sense.
E
D

(%) denotes the maximal number of qubits per pair that can be teleported via pairs in
state %. That is, E

D
is quantum communication capacity of the given source of pairs. E

C

is the minimal number of qubits per pair that must be sent to create pairs in the state %.
The measures are de�nitely \asymptotic" objects.

Distillable entanglement. To de�ne distillable entanglement E
D

6;35 of the state %
acting on H = H

A

H

B
we consider protocol P , i.e., a sequence of proper LOCC operations

�
n
, that map the state %
n of n input pairs into a state �

n
acting on the Hilbert space

Hout

n
= (C2)
mn 
 (C2)
mn . Now P is distillation protocol if for high n the �nal state �

n

approaches the state of m
n

two qubit singlets (we will drop the index n at m
n
)

F � h +(C2)
mj�
n
j +(C2)
mi ! 1 (17)

(i.e., the �delity F tends to 1). The asymptotic ratio DP of distillation via protocol P is
given by

DP(%) � lim
n!1

m

n
(18)

The distillable entanglement is de�ned by maximum of DP over all distillation protocols

E
D

(%) = sup
P
DP : (19)

Remarks. (1) Instead of �delity condition, one could consider some metric D, and
impose D(�

n
;  +(C2)
m) ! 0. For Bures metric and the one induced by trace norm,

one gets equivalent conditions as the �delity one. (2) One could consider class of PPT

operations. The obtained rate is called PPT-distillable entanglement 35.

Entanglement cost. It is de�ned in a dual way to E
D

. Let a state % acts on H 
H.
We start from m pairs of two-qubit singlets and a protocol, i.e. a family of proper LOCC
operations �

m
transforming the singlets into some state �

n
acting on H
n

A

 H
n

B
. The
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state �
n

is a state of n pairs, and is to be closer and closer to %
n which we want to create
from input pairs. Thus for the family to be protocol we require

D(�
n
; %

n) ! 0 (20)

where D is some metric - for de�niteness, let it be the one induced by trace norm kAk1 =
TrjAj.

Again, the asymptotic cost CP of the production of % via protocol P is given by

CP(%) � lim
n!1

m

n
(21)

The entanglement cost is de�ned by minimum of CP over all protocols

E
C

(%) = sup
P
CP : (22)

Intuitively, E
D

(as well as E
C

) should not increase under proper LOCC operations �
since it is de�ned as some optimum over them. Since the set of LOCC operations is closed
under tensor product, one easily �nds that the measures satisfy (M1). Werner showed
that it also satis�es (M2) 40. Most likely E

D
is not convex 41 (we will discuss it later).

Asymptotic and �nite optimal conversion rates. One can generalize E
D

and E
C

as
follows 6;40. Suppose that Alice and Bob start with n pairs in state % and (for large n) are
able to convert them by LOCC into m pairs in state %0. The optimal asymptotic ratio m

n

is

called optimal %! %
0 conversion rate and is denoted by R(%! %

0). The rigorous de�nition
is similar to the de�nitions of E

D
and E

C
. In particular, E

C
(%) = 1=R( +(C2) ! %),

E
D

(%) = R(%!  +(C2)).
In �nite regime, one can consider optimal probability of conversion 11

p(% ! %
0).

Thus Alice and Bob perform operation on % whose one of outcomes correspond to �nal
state equal to %

0 (if possible). Then p(% ! %
0) is maximal probability of obtaining this

outcome over all such operations. If such operation does not exist, the optimal conversion
probability vanishes. The quantity is especially useful in �nite regime for pure states; we
will discuss it in more detail in Sect. 5. For �xed %

0 it satis�es (M3) as a function of
% itself. For % mixed and %

0 pure, it is usually zero. Then we must pass to asymptotic
conversion rates.

4.2. Entanglement measures based on distance

The distance entanglement measures 10 are based on the natural intuition, that the
closer the state is to the set S, the less entangled it is. The measure is minimum distance
D between the given state and the states in S:

E
D;S(%) = inf

�2S
D(%; �): (23)

Roughly speaking, it turns out that such function is monotonic, if distance measure is
monotonic under all operations. It is then possible to use known, but so far unrelated,
results from literature on monotonicity under completely positive maps. Moreover, it
proves that it is not only a technical assumption to generate entanglement measures:
monotonicity is a condition of a distance to be a measure of distinguishability of quantum
states 42;43.

More precisely, consider a given state % and a state � 2 S. Suppose that an operation
applied to those states produces ensembles fp

i
; %

i
g and fq

i
; %

i
g respectively. Then the

distance is required to satisfy X
i

p
i
D(%

i
; �

i
) � D(%; �): (24)
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Note, that by this very assumption we obtain that D(%; %) is a constant independent of %
(this is in strict analogy to the similar case in sect. 3.2). This is, because for arbitrary
states % and �, there is a proper operation transforming % into �. The constant will be the
value of the entanglement measure on separable states. To set the value zero, is to require
D(%; %) = 0 which is obvious condition for distances. Then monotonicity (24) will ensure
non-negativity of the distance. Let us stress, however, that we do not need constitutive
properties of distances like symmetry or triangle inequality.

It is immediate to see that monotonicity of a distance implies (M2) for associated
measure. The clue is that S is closed under LOCC operations. Take �0 saturating the
in�mum (23), so that E

D;S(%) = D(%; �0). For simplicity, consider proper LOCC operation
� applied to %. The distance will satisfy D(�(%);�(�0)) � D(%; �0). Since �(�0) is still
in S, the new distance is no smaller than E

D;S(�(%)) which is minimum distance. If the
distance is in addition doubly convex then the arising measure is convex, satisfying then
(M3).

Once a distance, good in the above sense, was chosen, one can consider di�erent mea-
sures by changing the sets closed under LOCC operations. In this way we obtain E

D;PPT
35 or E

D;ND. The measure involving set PPT is much easier to evaluate. The greater the
set, the smaller the measure is, so that we have

E
D;ND � E

D;PPT � E
D;S : (25)

In Ref. 10 two distances were shown to satisfy (24) and double convexity: Bures one

D
B

(%; �) = 2 � 2
p
F (%; �) where F (%; �) = [Tr(

p
%�
p
%)1=2]2 is �delity 44;45 and relative

entropy S(%j�) = Tr%(log % � log �). The measure based on the latter, called relative
entropy of entanglement turned out to be one of the fundamental measures, as the relative
entropy is one of the most important functions in quantum information theory (see 46;47).
Depending on choice of set we will denote them by E

R;X with X = S;PPT or ND.
Relative entropy of entanglement turned out to be powerful upper bound for entanglement
of distillation 35;10.

4.3. Convex roof measures

Here we consider the following method: one starts by imposing a measure E
p

on pure

states, an then extends it to mixed ones by so-called convex roof: 49;48

E(%) = inf
X
i

p
i
E( 

i
);

X
i

p
i

= 1; p
i
� 0: (26)

where the in�mum is taken over all ensembles fp
i
;  

i
g for which % =

P
i
p
i
j 
i
ih 

i
j. If E

p

is continuous then in�mum is reached on a particular ensemble 48. The ensemble we call
optimal. Thus E is equal to average over optimal ensemble.

One easily checks that E must be convex. Actually, convex roof measures are the
largest functions that are (i) convex (ii) compatible with given values for pure states 48.
Thus they are as 
at as only possible without violation of convexity. The prototype for the
method was entanglement of formation E

F
introduced in 6, where E( ) is von Neumann

entropy of the reduced density matrix of  . It constituted �rst upper bound for distillable
entanglement, and was intended to be entanglement cost. It is indeed the case for pure
states, but we still do not know if E

F
= E

C
in general. In Ref. 6 monotonicity of E

F
was

shown. In Ref. 11 general proof for monotonicity of all possible convex-roof measures was
established. We follow the latter approach.

For the convex roof measure E, again, the very de�nition signi�cantly simpli�es the
condition of monotonicity. As said, convexity is satis�ed almost automatically. The con-
dition (M3a) is reduced to monotonicity for pure states. To see it, consider % with optimal
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ensemble fp
i
;  

i
g. Take any local pure operation. It transforms initial state % as follows

%! fq
k
; �

k
g; q

k
= TrV

k
%V

y
k
; �

k
=

1

q
k

V
k
%V

y
k

(27)

The members of the ensemble fp
i
;  

i
g transform into ensembles of pure states (because

operation is pure)

 
i
! fqi

k
;  

i

k
g; q

i

k
= Tr(V

k
j 
i
ih 

i
jV y
k

);  
i

k
=

1p
qi
k

V
k
 
i
: (28)

One �nds that �
k

= 1
qk

P
i
p
i
q
i

k
j i
k
ih i

k
j.

Now we want to show that the initial entanglement E(%) is no less than �nal average

entanglement E =
P

k
q
k
E(�

k
), assuming, that for pure states E is monotonic under the

operation. Since �
k

is a mixture of  i
k
's, then due to convexity of E we have

E(�
k
) � 1

q
k

X
i

p
i
q
i

k
E( i

k
) (29)

Thus E �P
i
p
i

P
k
q
i

k
E( k

i
). Due to monotonicity on pure states we have

P
k
q
i

k
E( i

k
) �

E( 
i
) hence we obtain E �P

i
p
i
E( 

i
). However, the ensemble fp

i
;  

i
g was optimal, so

that the latter term is equal simply to E(%). This ends the proof. Note that the presented
reasoning is valid for multipartite setting.

Thus, for any function monotonic for pure states, its convex roof is monotonic for all
states. How general is this implication? Of course it applies to multipartite setting. As
far as di�erent classes of operations are concerned, note that we have used the fact that
monotonicity is equivalent to convexity plus pure operations (consequently the pure state
is converted into pure one). Then the result applies to separable operations, but not to
PPT ones (cf. discussion after (M3) postulate). From the above result one can easily
get monotonicity of E

F
under separable operations 38. Indeed, we already know, that

relative entropy of entanglement is monotonic under separable operations. In particular,
it is monotonic for pure states. However for the latter, it is equal to E

F
, so that we have

monotonicity of E
F

for pure states, which then extends to mixed states. Of course, E
F

can increase under PPT operations. For example, changing separable state into entangled
PPT one is legitimate PPT operation. The output state has E

F
> 0 as it is entangled.

This is compatible with the fact, that we couldn't apply the above reasoning to PPT
operations.

In Sect. 5 we will discuss the question of monotonicity for pure states. We will see
that any concave, expansible function of reduced density matrix of  satis�es (M3a). For

example 11 one can take E
�

( ) given by Renyi entropy 1
1�� log2 Tr(%�) of the reduction.

For � = 1 it gives E
F

, while for � = 0, the so-called Schmidt rank 50. Finally, for two
qubits the measure called concurrence was introduced for pure states 51. In 52 closed
expression for its convex roof extension was found, and formula for E

F
was derived in

two-qubit case.

4.4. Negativities

A couple of measures, so far unrelated to each other, were put into elegant uni�ed
scheme in Ref. 53. The idea comes from a measure introduced in 54 called robustness
of entanglement (see also 55). For given % consider decomposition into two separable
state % = a+%+ � a�%� with a� � 0. Robustness of entanglement is minimal possible
a� that can be achieved in this way. To obtain other measure one can take %� to be
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PPT ones. Interestingly, one can consider decomposition of % into operators from any
compact set B of Hermitian operators of trace one, with the property that its real linear
span gives all Hermitian operators. One then de�nes B-norm as k%kB = minfa++a�g and
corresponding negativity N (%) = minfa�g. Since the involved operators have unit trace we
have jj%jjB = 1+2N (%). It is not hard to see that k�kB is indeed a norm, hence it is convex.
Now, if the set B is closed under class of operations, then the negativities satisfy (M3a)

under this class, as well. Indeed, let the operation produce ensembles fp
i
; %

i
g, fp�

i
; %
�
i
g

out of of % and %� respectively. Applying the operation to optimal decomposition of % we

obtain decompositions %
i

= a+p
+
i
=p

i
%
+
i

+a�p
�
i
=p

i
%
�
i

. Due to required property of the set,

%
�
i

belong to the set, so that N (%
i
) � a�p

�
i
=p

i
, hence the �nal average negativity satis�es

N �P
i
p
i
a�p

�
i
=p

i
= a� � N (%).

Usually it is hard to �nd minimal a�. Fortunately, if we choose the set B of all unit
trace operators that are positive under partial transpose, we obtain a measure introduced
in 56 - sum of negative eigenvalues of partially transposed %. In terms of norms we have
that k%kB = k%PT k1 in this case. The above result of 53 shows that it is indeed a good
measure. In this way we obtain the �rst calculable measure of entanglement. One can
consider logarithmic negativities log(2N + 1), which will usually not be convex. The

logarithmic negativity EN = log k%PT k is additive, it is not convex anymore, but still
satis�es (M1). Moreover, it is additive.

In Ref. 57 a measure based on the so called cross-norm was proposed. Within the
present framework, the cross norm is S-norm, hence the cross-norm measure is closely
related to robustness of entanglement.

Finally in Ref. 58 two di�erent concepts were combined, to give the following measure

E
R+N = inf

�

�
S(%j�) + log k�PT k1

�
(30)

where the in�mum is taken under the set of all states. One easily �nds that the measure
satis�es (M1).

4.5. Summary

Thus, we have, in principle, four kinds of measures. All of them involve some optimiza-
tion. Let us roughly summarize the concepts of obtaining monotonicity. For operational
measures, monotonicity is immediate consequence of de�nition. The price is that they are
extremely hard to calculate. Monotonicity of other measures is implied by their properties.
Distance measures and negativities base on invariance of some sets of states under LOCC
operations. Convex-roof measures being extensions of measures de�ned for pure states,
inherit monotonicity from the latter measures.

4.6. Evaluating measures

Here I will review a couple of results of calculating or estimating entanglement mea-
sures. As said, EN is easily calculable for any state (it suÆce to �nd eigenvalues of partial
transpose of the latter). Entanglement of formation is eÆciently calculable for two-qubits
52. In higher dimensions it can be evaluated for states with high symmetries 60;61. In
particular for Werner states one has 6;61

E
F

(%
W

(p; d) = H(1=2�
p
p(1� p)) (31)

where H(x) = �x log x � (1 � x) log(1 � x) (we give the values of measures for p � 1=2
for Werner states, and F � 1=d or isotropic ones, as otherwise the states are separable).
Distance measures are very easy to calculate for Werner and isotropic states by exploiting
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their symmetries 35. It turns out that

E
R;S(%

W
(p; d)) = S(%

W
(p; d)j%

W
(1=2; d))

E
R;S(%

iso
(F; d)) = S(%

iso
(p; d)j%

iso
(1=d; d)): (32)

Consequently, we have
E
R;S(PPT )(%W (p; d)) = 1�H(p); (33)

E
R;S(PPT ;ND)(%iso(F; d)) = log d� (1� F ) log(d� 1)�H(F ) (34)

In 61 a surprising result was obtained, concerning possible additivity of E
R

. It turned out
that E

R
of two copies of Werner states with p = 1, is, for large d almost the same as for

one copy. Thus, the relative entropy of entanglement can be strongly non-additive.
It is worth to recall also the values of EN for the considered states.

EN (%(F; d)) = log dF (35)

EN (%
W

(p; d)) = log

�
2

d
(2p� 1) + 1

�
(36)

Concerning the operational measures, we know that E
C

= E
1
F
� lim

n!1
1
n

E
F

(%
n) 39.

If E
F

were additive (which is a long-standing open problem) then it would be equal to E
C

.
E
D

is bounded from above by E
F

6. For pure states E
D

= E
F

= E
C

= E
R;X = S(%

A
)

where %
A

is reduced density matrix of the given pure state 13;10; X = S;ND;PPT . We
will return to this coincidence while discussing uniqueness theorem in sect. 8.3. In 62 it
was found that for some some bound entangled state (i.e. with E

D
= 0) E

C
> 0. One

expects that the only mixed states with E
D

= E
C

are the mixtures of locally orthogonal
states 15. Apart from such mixturesyy, the value measure E

D
is known only for one family

of mixed states - mixtures of two maximally entangled two qubit states 35

E
D

(%) = 1� S(%) (37)

In general, for mixtures of two-qubit maximally entangled states we have E
D
� 1� S by

the so-called hashing protocol 6. For higher dimension powerful tools for evaluating E
D

were provided in 58. One knows several upper bounds for E
D

6;10;35;64;53;58. The best
known bound is E

R+N provided in 58. For Werner states it is equal to regularization of

E
R;S given by E1

R;S = lim
n

1
n

E
R;S(%
n) calculated in 59:

E
1
R;S = E

R+N =

(
1�H(p) 1

2
� p � 1

2
+ 1

d

log
�
d�2
d

�
+ p log

�
d+2
d�2

�
1
2

+ 1
d

� p � 1
(38)

In Ref. 16 a general method of obtaining bounds was provided: roughly speaking, any
entanglement measure, satisfying some continuity and additivity assumptions is upper
bound for E

D
. We will discuss it in more detail later.

5. Finite regime, pure states

5.1. All measures for pure states

In Ref. 11 it was shown that measures for pure states are in one-to-one correspondence
to functions f of density matrix satisfying

yy Sometimes it is not immediate that a given state is a mixture of locally orthogonal pure states. In Ref.
63 it was shown if Alice and Bob share n singlet pairs, and will forget which particle comes from which
pair, the resulting state is a such mixture.
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(i) f is symmetric, expansible function zz of eigenvalues of %

(ii) f is concave function of %

(by expansibility we mean f(x1; : : : ; xk; 0; : : : ; 0) = f(x1; : : : ; xk)). In this way all possible
entanglement measures for pure states were found. More precisely we have the following
theorem

Theorem 1. (Vidal 11)

� (direct) Let E
p
, de�ned for pure states, satisfy E

p
( ) = f(%

A
), where %

A
is reduction

of  , and f satis�es (i) and (ii). Then there exists an entanglement measure E

(satisfying M3) coinciding with E
p

on pure states (E is convex-roof extension of
E
p
).

� (converse) Let E satisfy (M3). Then E( ) = f(%
A

) for some f satisfying (i) and (ii).

We will recall here the proof of the \direct" part.
Proof. We are to show that convex-roof extension E of E

p
satis�es (M3). E is convex by

de�nition, hence it remains to show (M3a). As discussed in previous section, it suÆces to
show it for pure states. Consider then any pure operation on, say, Alice side (for Bob's
one, the proof is the same) which produces ensemble fp

i
;  

i
g out of state  . We want to

show that the �nal average entanglement E
p

=
P

i
p
i
E
p
( 

i
) does not exceed the initial

entanglement E
p
( ). In other words, we need to show

P
i
p
i
f(%

(i)

A
) � f(%

A
), where %

(i)

A

are reductions of  
i

on Alice's side. We note that due to Schmidt decomposition of  ,
reductions %

A
and %

B
have the same non-zero eigenvalues. Thus, f(%

A
) = f(%

B
), due to (i).

Similarly f(%
(i)

A
) = f(%

(i)

B
). Thus it remains to show that

P
i
p
i
f(%

(i)

B
) � f(%

B
). How %

B
is

related to %
(i)

B
? Well, due to no-superluminal-signalling, the mixture produced by Alice's

action must have the same Bob's reduction as the initial state. The former reduction isP
i
p
i
%
B

, the latter one is %
B

. We conclude that %
B

=
P

i
p
i
%
(i)

B
(which is usually not true

for Alice part!). Thus our question reduces to the inequality
P

i
p
i
f(%

(i)

B
) �P

i
p
i
f(%

(i)

B
).

This is however true, due to concavity of f .
Let us consider this latter result from a di�erent point of view. The result could be

stated as follows: any function satisfying (i) and (ii) does not increase on average under
pure measurement. If we de�ne information about the state as I = I0�f , where I0 is some
constant, then the physical contents of the statement is: The average information gain
after pure measurement is always nonnegative. Moreover, if monotonicity of information
we take as necessary property of information, we obtain that any candidate for information
must be function satisfying (i) and convexity. In this context, a version of the result was
proven by Lindblad, where f was von Neumann entropy, while the class of measurements
was con�ned to orthogonal ones. Here, we have a back-on-the-envelope proof for fully
general setting! Moreover, the proof is no longer technical. This illustrates the power of
\entanglement approach" to quantum mechanics.

5.2. Entanglement measures and conversion probability

Another important step in �nite regime in Ref. 11 for development of entanglement
measures was realizing the connection between axiomatically de�ned measures, and oper-
ational ones, i.e., conversion probabilities. For asymptotic regime this was anticipated in
67 and obtained in 16 (see sect. 8.1)We have the following theorem

zz As mentioned earlier, entanglement measures are not functions of states acting only on some de�nite
Hilbert space, but on the union of all �nite-dimensional states. Similarly, our function acts on union of n
dimensional simplexes for all n, rather than on some k dimensional simplex.
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Theorem 2. 11 For any measure E satisfying M3, and S1, the following inequality
holds

p(%! %
0) � E(%)

E(%0)
(39)

Corrolary. Since p(% ! %
0) as a function of % is a monotone itself, we have p(% !

%
0) = min

E

E(%)

E(%0)
, where the minimum is taken over all monotones E.

This theorem gives a general hint how to employ the axiomatic theory of entanglement
measures to evaluate interesting operational quantities.

Proof. Consider optimal operation converting % into %0. The �nal average E is cer-
tainly no smaller than pE(%0) were p is probability of obtaining %0. However, the process
is assumed to be optimal, hence p = p(%! %

0). Thus the �nal entanglement is no smaller
than p(% ! %

0)E(%0). Due to monotonicity, this cannot exceed the initial entanglement
E(%).

The result is simple, but very important. Basing on it and on Nielsen result 68 Vidal
provided formula for conversion probability for any two pure states (see the article by
Vidal & Nielsen, this issue). The last result allowed to discover the surprising e�ect of
catalysis in entanglement processing 70.

On the other hand, the above theorem, though very powerful for pure states, is not
very useful in mixed state domain, as it is usually impossible to convert some mixed state
(or pure one) into another mixed state with perfect accuracy, as required in the de�nition
of p(% ! %

0) (see 71;72). Then conversion probability is zero, and the inequality becomes
trivial. This motivates to use \asymptotic accuracy" and \collective operations" paradigm
introduced in 6. One considers many copies in the same state, apply collective operations
and require that for high number of copies, the resulting state will approach the desired
one (or some number of the copies of the latter one). We will see that it is still possible to
derive the connection between abstract and operational measures within this asymptotic
regime 16.

6. Asymptotic regime

As we have seen, even only for pure states there is a plenty of valid entanglement
measures. All of them are important ones. Then, what about mixed states? The situation
is much worse - the �nite regime approach does not allow to see any ordered structure: it
constitutes a cloud hiding some general features of the structure of entanglement. Such a
general feature is, e.g., distillability. As discussed in sect. 2.1 the set of entangled states is
then divided into two ones - bound entangled and free entangled. The borderline between
those sets will certainly say us much about entanglement. However, it would not emerge
in a natural way in �nite regime considerations.

The asymptotic regime, that is believed to lead to better understanding of entangle-
ment, is called thermodynamics of entanglement. To build the engine we do not need
to know microscopic dynamics of all molecules, only several parameters are relevant, like
temperature or pressure. Similarly, in entanglement domain, the plenty parameters of �-
nite regime are killed in the asymptotic limit 8. For example, as shown in 13 if we consider
a large number n of pairs in the same state  , then out of all entanglement measures,
the limit n ! 1 only one measure survives! Then it is very tempting to develop this
approach.

How the reduction of parameters is achieved in asymptotic regime? Mainly due to the
fact that we can operate collectively on many identically prepared copies. Besides, since we
allow imperfect conversions much more operations are reversible (for perfect conversions,
the only reversible LOCC operations are product unitary ones).

Interestingly, unlike in statistical physics, where we go, in a sense, from reversible
dynamics to irreversibility, for pure bipartite states we will go from very often and natu-
ral irreversibility in �nite regime 68, to full reversibility in asymptotic domain. However,
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\thermodynamic limit" will not kill irreversibility for mixed states. The survived irre-
versibility is connected with bound entanglement - and is a result of mixing of quantum
and classical information levels (cf. 74). In multipartite case, even for pure states there is a
basic irreversibility, 14;76 and it is, in turn, the re
ection of the multipartite entanglement,
fundamentally di�erent from bipartite one (in general, for each n we have genuine n partite
entanglement that cannot be reversibly transformed into n� 1-partite entanglement).

6.1. States and sources

Let us now state more precisely what objects are of interest in asymptotic regime. In
�nite one those are states. Here, instead, we will consider quantum sources. A quantum

source is a compatible family of states %
n

acting on Hilbert space H(1) 
 : : :
H(n). Com-
patibility means TrH(n)%n = %

n�1. We can imagine a source emitting systems, such that
the �rst n emitted systems is in joint state %

n
. In our case the systems will be pairs so

that H(i) = H
A

H

B
. The simplest example of source is stationary memoryless one, for

which %
n

= %

n. Then the subsequently emitted systems are completely uncorrelated,

and the state of each system is the same.
We will be interested in entanglement of source, instead of a pair, as in �nite case. Of

course that entanglement will be in�nite, so we will pass to intensive parameter, dividing
entanglement by \volume" - number of pairs. Thus, given entanglement measure E from
�nite regime, we can calculate its density (or mean) E1 for a source Q = f%

n
g as follows

E
1(Q) = lim

n!1

E(%
n
)

n
(40)

For memoryless source we can write E1(%). One �nds that E1(%) is what was called in
literature regularization of E. Note that % does not stand for a state of a pair, any longer,
but it stands for a symbol of in�nite number of pairs. Thus, E1 is not entanglement of a
pair, but per pair.

It seems that some entanglement parameters of source do not need to come from some
�nite regime measure. For example distillable entanglement is de�ned directly for source.
It says with what rate can we convert source % into source  +(C2). In general, we can
consider asymptotic conversion rate R(Q! Q

0).
Having distinguished between source entanglement and state entanglement, we should

�rst note that in the case of memoryless source, the former one, treated as a function of %
should not be required to be a good measure in �nite regime. Let us exhibit an example.
It is very natural to consider convexity of entanglement as a fundamental postulate 11.
Well, erasure of some information cannot increase quantum correlations. However, quite
recently it was argued that E

D
as a function of state need not be convex. Namely, in

Ref. 41 it was shown that if for some states E
D

(%1) + E
D

(%2) = 0 but E
D

(%1 
 %2) > 0,
then E

D
is non-convex (moreover, a strong evidence was provided that such states exist).

Following the reasoning of 41 take %0
i

= %
i

jiihij where jii's are orthogonal states on Alice

side, and %
i

satisfy the conditions above. The process of mixing of primed states is then
locally reversible: Alice can measure the \
ags" jii and get to know which state is actually
shared. Then E

D
(%
mix

) with %
mix

= p%
0
1 + (1 � p)%02 is nonzero. Indeed, having n pairs

in the state %
mix

, Alice measures the 
ags, and communicates to Bob the results. They
are left on average with np pairs in state %1 and n(1 � p) pairs %2. If p � 1 � p they
have np \double" pairs in the total state %1 
 %2, and van distill them, according to our
assumption. Thus we have E

D
(%
mix

) > pE
D

(%1)+(1�p)E
D

(%2) = 0. We could conclude,
that E

D
is not a good measure. However, E

D
is one of the central quantities showing

capability of entanglement, hence it must be a good measure. The other way around is to
give up a condition of convexity for entanglement measures. This seems to be even more
unreasonable.

The answer is, that it is misunderstanding to treat E
D

as a good measure of entangle-
ment of individual pair. E

D
is entanglement of a source. This implies that the requirement
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of convexity of E
D

treated as a function of % has nothing to do with convexity in �nite
regime. To see it, let us apply convexity to states %1 = %


n and %2 = �

n for some �nite

regime measure E. We obtain

E(p%
n + (1� p)�
n) � pE(%
n) + (1� p)E(�
n): (41)

We see that it is much di�erent than

E((p%+ (1� p)�)
n) � pE(%
n) + (1� p)E(�
n): (42)

Now, requirement of convexity of E
D

treated as a function of % is similar to the latter
condition which is arti�cial and completely unjusti�ed. Thus, how convexity translates
from �nite regime to asymptotic one? Note that we can think of E

D
as if it were entan-

glement of %
n with large n. Thus the inequality (41) applies. Consequently, the proper
asymptotic convexity condition is that the rate of distillation of the source pQ+ (1� p)Q0
with Q = f%
ng; Q0 = f%
ng does not exceed pE

D
(%) + (1� p)E

D
(�). Clearly, mixture of

sources is not a source of mixtures. Mixture of sources means that there is only on kind of
states, Alice and Bob not knowing which one, while the source of mixtures emits di�erent
types of states.

7. Postulates for asymptotic regime

Henceforth we will be interested only in memoryless sources, as only this case has
been treated in the literature so far. Accordingly, we will deal with two categories of
entanglement measures: (i) entanglement of source (which can, but do not have to come
from some �nite regime measure) treated as a function of state (ii) entanglement of state,
which gives raise to entanglement of source via regularization. Both categories deserve
separate treatment. As far as (ii) is concerned, stronger postulates than in �nite regime
should be required. In the case (i) the postulates should be instead weaker. For example,
E
F

is convex and belong to (ii). E
C

is its regularization, belongs to (i), and would need not
be convex, however it is convex 17. E

D
belongs to (i), we do not know if it is regularization

of some measure. As mentioned, it is expected not to be convex. We will see that E
F

is
asymptotically continuous, but E

C
and E

D
most likely are not. In general, there can be

measures of type (i), still satisfying strong properties. Then they will constitute a strong
tool.

Let us emphasise that in the following we will treat all measures (either of type (i) or
(ii)) as function of state.

7.1. Monotonicity

As argued in sect. 6.1 for entanglement of source we should give up convexity. It is
yet not clear if we should impose (M1) or (M2). It seems that (M1) should be enough.
Entanglement of state should, in principle, satisfy (M3). However, it is reasonable to
consider measures satisfying only (M2) or even (M1), as useful tools.

7.2. Continuity

The paradigm of \asymptotic accuracy" implies continuity constraints on �nite regime
measures that can be useful for asymptotic regime. This was �rst observed in 11, and devel-
oped in (16 and 73;75;17). The transformation of % into � means that %
n was transformed
into �0

m
approaches �
m for large m. Thus we, in a sense, identify the states that asymp-

totically converge to one another. Consequently, we require corresponding entanglement
densities to converge, as well.

(C1) For any sequences %
n
, �

n
acting on H

n
= HA

n

HB

n
we have

k%
n
� �

n
k ! 0 ) E(%

n
)� E(�

n
)

log dimH
n

: (43)
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(C2) One can weaken the condition (C1) by requiring H
n

= H
n
A


 H
n
B

. Then the
measure need not be continuous as a function on �xed Hilbert space.

One can also consider the following conditions:
(CP1) Same as (C1) with %

n
being pure states.

(CP2) Same as (C1) with both %
n

and �
n

being pure states.
A useful condition is continuity on isotropic state combined with some normalization

16:
(C3) For family of isotropic states %(F

n
; d

n
) with F

n
! 1, d

n
! 1 (i.e. approaching

maximally entangled state) we require

E(%(F
n
; d

n
))

log d
n

! 1 (44)

The latter condition is easy to check, by direct calculating the given measure for isotropic
state and performing the limit.

It is reasonable to impose postulates of type (C) for state entanglement measures (i.e.
type (ii)). For source entanglement (type (i)), in principle none of them should be imposed,
but we will see that usually properties of type (CP) are satis�ed.

It is known that E
R;X satis�es (C1) for any compact convex set X including maximally

mixed state 75 (the structure of tensor product is irrelevant here). E
F

satis�es (C1), too
73.

Convex roof measures based on Renyi entropies and negativities fail to satisfy (C1) 11.
As a matter of fact, any measure that is not equal to E

F
for pure states must not satisfy

(C1) (cf. sect. 8.3). EN satis�es (C3).

7.3. Extensivity

A measure useful for asymptotic regime, must exhibit a kind of extensivity 8. As
important postulate we consider

(A1) For any state % the following limit exists

E
1(%) = lim

n!1
E(%
n) (45)

In practice, one could weaken it by requiring lim sup
n

E(%
n)

n

<1. (Of course, we are in-

terested only in measures for which the limit gives nonzero value at least for some states).
Evaluating regularizations E1 of known measures is now a challenge for entanglement
theory. This extremely diÆcult task is necessary to obtain insight into asymptotic be-
haviour of entanglement. First example of performing regularization was done in Ref. 59

for E
R

. For some states it turned out that E
R

was additive, so that E1
R

= E
R

35. At
present, even a single nontrivial example of state for which we would know whether E

F

needs regularization or not is not known!
Stronger conditions than (A1) are the following:
(A2) (additivity) E(%
 �) = E(%) + E(�) (then E1 = E)
(A3) (partial additivity) E(%
n) = nE(%).
Entanglement of source satis�es (A1) and (A3) automatically: % and %
% represent the

same source. The full additivity (A2) is too strong: most likely distillable entanglement is
not additive 41. Measure basing on Bures distance satis�es (A1), however the limit vanishes
for all states, as the distance is bounded by a constant. Also negativities vanish after
regularization. One can obtain extensivity for those measures by playing with logarithm
(e.g. EN is additive) at a price of losing convexity and (M2).

A plausible postulate for source entanglement would be the following one
(A4) E(%) � E(%1) + E(%2) where % is a state of two pairs shared by Alice and Bob

and %
i

are the states of each pair (reductions of %).
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It is not clear to what extent it holds. Certainly it is satis�ed by entanglement of
distillation.

8. Basic theorems in asymptotic domain

8.1. Entanglement measures and conversion rates

We will �rst exhibit a theorem on extreme measures which was proven originally in 16

and improved in 17. It was inspired by previous results 48;67. In 17 the assumptions were
weakened and some variations of the theorem were proven.

Theorem 3. Any real-valued function E of state, satisfying M1, CP1, A3, and being
in addition convex on pure decompositions, satis�es

E
D

(%) � E(%) � E
C

(%) (46)

Thus E
D

and E
C

are, in a sense, extreme measures. The measures known to satisfy all
the assumptions are regularized relative entropy of entanglement, E1

R;S or E1
R;PPT , and

entanglement cost E
C

itself. Concerning E
D

the only trouble is with CP1 - we do not know
if it holds. Most likely it would be satis�ed if the hashing distillation method 6 worked for
higher dimension. Note that if E

D
= E

C
then under assumptions of the theorem, all the

measures coincide (cf. sect. 8.3).
Let us now formulate the theorem binding axiomatic measures and asymptotic conver-

sion rates i.e. the asymptotic regime analogue of Theorem 2. It was proven (in a bit less
general form) in Ref. 17.

Theorem 4. Let E satisfy (M1), (C1) and (A0), and R(% ! �) < 1 Then the
following inequality holds

E
1(�)R(%! �) � E

1(%): (47)

Sketch of the proof. Take large n and consider optimal conversion map (proper opera-
tion) �

n
(%
n) = �

0
m

with �0
m

approaching �
m. We will estimate the initial entanglement.
Due to monotonicity (M1) of E we have

E(%
n)

n
� E(�0

m
)

n
=
E(�0

m
)

m

m

n
(48)

The fraction m

n

tends to R(%! �) as n!1. Since E is asymptotically continuous (C1)
E(�0

m
)

m

approaches
E(�
m)

m

which tends to E1(�).

The contents of the theorem is intuitively clear: The left hand side of the inequality
is the �nal entanglement while the right-hand-side is the initial one, per input pair. The
theorem is very general, in particular, it works for multipartite case. The proof is also
extremely transparent. In fact, we do not make use of structure of tensor product. The
key ingredient is that E is monotonic under some class of operations, and that R is de�ned
as some optimum over the same class. Continuity is needed only because we deal with
imperfect conversions. If the optimum is in�nity, i.e., if some states can be created for free
the E1 must automatically vanish on such states.

Finally, note that if we are interested in conversion from % to � the continuity is needed
only for the state �
n. For example, we will see that to obtain bounds for E

D
we will need

continuity only for isotropic state. Conversely, if we want to prove anything concerning
asymptotic rate R, we must deal with E continuous for states of interest.

Finally, let us note that the condition of reversibility of the asymptotic conversion of %
into � takes form

R(%! �)R(� ! %) = 1 (49)
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(here one puts 0 � 1 = 0). For example if % is two-qubit singlet then we recover the
condition E

D
= E

C
. Note that if R(% ! �) = R(� ! %) = 1 then the question of

reversibility does not make sense.

8.2. Example: GHZ-3EPR conversion

Entanglement measures have been successfully applied to search of irreversibility in
multipartite entanglement in 14;76;77. Here we will consider irreversibility of conversion
between tripartite GHZ state and 3EPR one shared by Alice, Bob and Charlie (shown in
76). The �rst one is given by 1p

3
(j000i+ j111i). The 3EPR state is tripartite but six-qubit

state: each pair of parties share one EPR pair (pair of two qubits in singlet state). In Ref.
76 the following measure on pure states was considered:

E1( ABC) = S(%
BC

) + E
R;S(%

BC
); (50)

where %
BC

is partial trace of  over Alice part. More precisely it was shown that (M3a)
holds for this measure (for tripartite LOCC operations). The entropy S(%

BC
) is monotonic,

as well (as it is monotonic as a function of bipartite system A-BC). One can extend both
measures to mixed states by convex roof. The second one is thus entanglement of formation
with respect to A�BC division of the system, denote it be E2. As proven in 73

E2 satis�es
(C1). We do not know if E1 extended to mixed states satis�es (C1). We will assume it

is true y. One �nds that for GHZ state we have E11 = E1 = 1, E12 = E2 = 1, while
for 3EPR state E11 = E1 = 3, E12 = E2 = 2. Putting these values into formula (47) we
obtain

R(GHZ ! 3EPR) � E1(GHZ)

E1(3EPR)
=

1

3
(51)

and

R(3EPR! GHZ) � E2(3EPR)

E2(GHZ)
= 2 (52)

Now, if we go from GHZ to 3EPR and then back to GHZ we obtain the optimal GHZ !
GHZ through 3EPR conversion rate bounded by 2

3
. Thus 1

3
ebits of entanglement is

necessarily irreversibly dissipated. There is no reversible process joining 3EPR and GHZ.
Note that the bound (51) can be achieved: from GHZ state, EPR pair can be created at
any two parties. Thus we obtain R(GHZ ! 3EPR) = 1=3.

8.3. Uniqueness theorem

For pure bipartite states we have full reversibility: there is only one measure good in
asymptotic domain: entanglement of formation. It was argued in Ref. 8 and improved
in 11 by adding continuity. More self-contained formulation was presented in 73. Finally,
necessary and suÆcient conditions for a measure to be unique were found 17.

Theorem 5. Let E be a real-valued function of pure states. Then, the following
conditions are equivalent:

1) E = cE
F

where c is some constant. 2) E satis�es (i) additivity, (ii) continuity
(CP2), (iii) monotonicity: E( ) � E(�( )) for any LOCC proper operation � for which
�( ) is pure

Remark. Note that as monotonicity we require analogue of (M1) for pure states.
To prove the \necessary" part, one checks that E

F
satis�es the conditions (i)-(iii). The

idea of the proof of suÆciency is to show that any function satisfying the conditions must
lie between E

C
and E

D
and then use the fact that the latter ones coincide for pure states,

yFollowing Ref. 69 one can show that as far as we consider conversions between pure states, the condition
(CP1) is suÆcient to have formula (47).
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which was proven in 13 (see 73;17 for the proof compatible with rigorous de�nitions of E
D

and E
C

).
If we had E

C
= E

D
for all states, then in asymptotic limit, there would be unique

measure, and the conversions would be reversible. However as shown in 62 for some bound
entangled mixed states we have irreversibility, i.e. E

D
< E

C
.

8.4. Bounds for entanglement of distillation

Since E
D

is of prime interest in asymptotic theory of bipartite entanglement being
capacity of noisy teleportation channel, one would like to evaluate it. Since, however, it is
de�ned by a complicated optimization, what we can do is to provide tighter and tighter
upper and lower bound. The lower bounds are obtained by designing distillation protocol
that realizes the bound. Upper bounds are provided by use of axiomatic entanglement
measures. (First upper bound was provided in 6 - it was entanglement of formation. The
second one, which appeared to be tight in some cases was relative entropy of entanglement
35;10.

Let us present a powerful theorem obtained in Ref. 16 which allows for easy production
of upper bounds for E

D
. The theorem follows, in fact, from the proof of Theorem 4.

Theorem 5. Any function E satisfying (i) monotonicity (M1), (ii) continuity for
isotropic state (CI) (iii) E(%
n) � nE(%) is upper bound for E

D
.

Remark. If E does not satisfy (iii), then under the assumptions of theorem we have

lim sup
E(%
n

n

) � E
D

.

Proof. By (iii) we have

E(%) � 1

n
E(%
n): (53)

Since the only relevant parameters of the output of the process of distillation are the
dimension of the output Hilbert space and �delity F (see de�nition of distillable entangle-
ment), we can consider distillation protocol ended by U 
 U

� twirling 27, that results in
isotropic �nal state. By monotonicity, distillation does not increase E, hence

1

n
E(%
n) � 1

n
E(%

iso
(F

dn
; d

n
)) (54)

Now, in the limit of large n, distillation protocol produces F ! 1 and (log2 dn)=n !
E
D

(%), hence by continuity the right hand side of the inequality tends to E
D

(%). Thus we
obtain that E(%) � E

D
(%).

Using the above result and applying the formulas for values of the measures on isotropic
state one immediately checks that relative entropy of entanglement, logarithmic negativity
and the combined measure EN+R of Ref. 58 are upper bounds for E

D
.

8.5. Entanglement measures and information-like quantities

As we have seen, measures of source entanglement coincide on pure states. One can
view it as a result of two facts: (i) E

D
= E

C
= S(%

X
) for pure states, as shown in 13

(cf. 17); (ii) the theorem 3, saying that E
D

and E
D

are extreme measures. This is the
�rst link between measures and von Neumann entropy - which is a measure of quantum
information content of the quantum source 78. For mixed states, the measures good in
asymptotic regime are likely to satisfy inequality

E � I
X
; (55)

X = A;B, where I
X

= maxf0; S(%
X

)�S(%)g is coherent information 79, a quantity closely
related to capacity of quantum noisy channel. As a matter of fact coherent information
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is expected to play the role of quantum counterpart of Shannon mutual information. One
knows that separable states have I

X
= 0 80. For E

F
the inequality follows from convexity

of I
A

15. For E
R

the proof is much more involved 65. From the inequality E
R
� I

X

together with trivial one E
R
� S(%

X
) one obtains E

R
= S(%

X
) for pure states. In Ref.

66 the hashing inequality was conjectured E
!
D

� I
B

, where E
!
D

is one-way distillable

entanglement (classical communication only from Alice to Bob is allowed 6). Since E!
D

is
no greater than E

D
(Alice and Bob have to use only one-way communication to distill the

state) and the latter is lower bound for asymptotic entanglement measures, the hashing
inequality would imply inequality (55).

The von Neumann entropy can be also used to quantify classical information about
quantum state. In Ref. 63 it was argued that during mixing average entanglement loss
�E should not exceed average loss of the information �I about the system. This can be
presented in the form of the following inequality

E(%)�
X
i

p
i
E(%

i
) � S(%)�

X
i

p
i
S(%

i
): (56)

One easily �nds 66 that (55) implies the inequality for pure states %
i
.
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