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Entanglement of formation is one of three widely studied measures of entanglement of a

general bipartite system. This paper reviews our current understanding of entanglement

of formation and the related concept of concurrence, including discussions of additivity,

the problem of �nding explicit formulas, and connections between concurrence and other

properties of bipartite states.
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1. Entanglement of pure and mixed states

In both classical mechanics and quantum mechanics, one can de�ne a pure state to be a

state that is as completely speci�ed as the theory allows. In classical mechanics a pure

state might be represented by a point in phase space. In quantum mechanics it is a vector

in a complex vector space. Perhaps the most remarkable feature of quantum mechanics,

a feature that clearly distinguishes it from classical physics, is this: for any composite

system, there exist pure states of the system in which the parts of the system do not have

pure states of their own. Such states are called entangled.

One can also de�ne the concept of entanglement for mixed quantum states: a mixed

state is entangled if it cannot be represented as a mixture of unentangled pure states.

For both pure and mixed quantum states, there are good measures of the degree of

entanglement. In the case of pure states of a bipartite system there is a single widely

accepted measure of entanglement, whereas for mixed states of such systems there are three

measures that have been extensively studied. One of these, entanglement of formation,

is the subject of this paper.� After recalling the de�nition of entanglement of formation

and the motivation for the de�nition, we review some aspects of the current state of our

understanding of this entanglement measure. For the special case of a pair of qubits, the

entanglement of formation is closely related to a simpler but less physically motivated

measure of entanglement called the concurrence, and we devote much of our discussion

to this concept and to possible generalizations of it to other bipartite systems.yWe begin,

though, by discussing the simplest case, the entanglement of pure states.

�The other two are distillable entanglement1;2 and relative entropy of entanglement.3

yRecently some researchers have worked towards generalizing both entanglement of formation4;5 and
concurrence6 to multipartite systems; in this paper we restrict our attention to the bipartite case.
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28 Entanglement of Formation and Concurrence

Consider a general quantum system consisting of two parts labeled A and B. Any pure

state j�i of this system can always be written in the form7

j�i =
nX
i=1

cij�Ai i 
 j�B
i
i; (1)

where fj�A1 i; : : : ; j�An ig and fj�B1 i; : : : ; j�Bn ig are sets of orthonormal states for subsystems
A and B, respectively, and the ci's are a set of positive coeÆcients. The possibility of

entanglement is simply the possibility that there may be more than one term in the above

sum. The values ci are precisely the features of the state j�i that do not change when

the parts of the system are subjected to separate unitary transformations. Therefore any

reasonable de�nition of the entanglement of j�i should depend only on those values. Of

all the possible functions that one might use, one particular function has, for good reason,

been adopted as the standard measure of entanglement for pure states, namely,

�
nX
i=1

c2
i
log2 c

2
i
: (2)

This quantity is the von Neumann entropy of the density matrix associated with either

of the two subsystems, the values c2
i
being the non-zero eigenvalues of either of these two

density matrices.

The justi�cation for using this particular function comes from the possibility of con-

verting one entangled pure state into another.8;9 We take a particular entangled state,

the singlet state j	�i = (1=
p
2)(j01i � j10i) of a pair of qubits, as our standard state,

and de�ne its entanglement to be one \ebit." The entanglement of any other pure state

will then be de�ned by relating it to the standard state. In particular, suppose that two

participants, Alice and Bob, are trying to create n copies of a particular bipartite state

j�i, such that Alice will hold part A of each pair and Bob will hold part B. They are

not allowed any quantum communication between them, but they have at their disposal a

large collection of shared singlet pairs. We ask, how many singlet pairs must they use up

in order to create n copies of the state j�i? The answer8 is that they need roughly nE(�)

singlets, where

E(�) = S(TrB j�ih�j) = S(TrAj�ih�j) = �
nX
i

c2
i
log2 c

2
i
; (3)

S indicating the von Neumann entropy. More precisely, for any � > 0, one can �nd a large

enough n such that from m copies of the singlet state, Alice and Bob can produce n copies

of j�i, with m=n � (1 + �)E(�). This is the justi�cation for using E(�) as the measure

of entanglement. For example, if the value of E(�) is 1/2, then to create 1000 copies of

j�i, Alice and Bob will need only about 500 singlet pairs; so it is reasonable to say that

the state j�i has an entanglement of half an ebit. It is worth noting that this process is

reversible, in that Alice and Bob could convert their �-pairs back into singlets without

any loss (asymptotically).



William K. Wootters 29

Let us now extend this idea to mixed states. For a mixed state of a bipartite system the

von Neumann entropy of a subsystem is no longer a good measure of entanglement, because

each subsystem can now have non-zero entropy on its own even if there is no entanglement.

The entanglement of formation is designed to pick out the irreducible entanglement of the

mixed state.

We imagine Alice and Bob trying to create n copies of a particular mixed state �

to be shared between them as before. Again Alice and Bob initially share many singlet

states and are allowed no quantum communication. How many singlets must they use

up, asymptotically, for each copy of the state � that they create? The following rough

argument suggests an answer to this question. Suppose that Alice and Bob �rst write

down a decomposition of � into pure states. That is, they express � as

� =

NX
j=1

pj j�jih�j j; (4)

where the j�ji's are distinct (but not necessarily orthogonal) normalized pure states of

the bipartite system and the pj 's are non-negative real numbers that add up to one. Now,

for each j = 1; : : : ; N , Alice and Bob create npj copies of the pure state j�ji by using

npjE(�j) of their singlet pairs. They will then have created a total of n pairs, which

they now collect into a large ensemble. Finally, they discard any records they may have

generated that would tell them which value of the index j to associate with each physical

pair. At this point, then, each pair could be in any of the states j�ji with probability pj ;

that is, each pair is now in the mixed state �. The number of singlets that Alice and Bob

had to use up in this process is

number of singlets used = n

NX
j=1

pjE(�j): (5)

Note that this number depends on the particular decomposition of � that was chosen.

Suppose, for example, that � is the state (j00ih00j+ j11ih11j)=2 of two spin-1/2 particles.
We can regard this state either as an equal mixture of j00i and j11i, or as an equal mixture
of (1=

p
2)(j00i+ j11i) and (1=p2)(j00i � j11i). To create an ensemble based on the former

decomposition requires no singlets at all, since neither j00i nor j11i is entangled. But to
create an ensemble based on the latter decomposition requires one singlet pair for each

copy of the state �. If we want to get a measure of the minimum number of singlets

required to create �, we should look for the decomposition that minimizes the expression

in Eq. (5). This line of reasoning motivates the de�nition of entanglement of formation:1;2

Ef (�) = inf
X
j

pjE(�j); (6)

where the in�mum is taken over all pure-state decompositions of �.z

zIn an alternative de�nition of entanglement of formation, Alice and Bob start with no shared entanglement
but are allowed quantum communication. The question then is how many qubits must pass between Alice
and Bob in order to create many pairs in the desired state. This approach has been adopted by Nielsen
to de�ne a generalization of entanglement of formation for multipartite systems.4
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There are a number of ways in which the above argument needs to be sharpened. Note

in particular that when we imagine creating a mixed state �, we must allow the possibility

that for �nite n, the pairs created will not be exactly in the state � but will only be

approximations to �. (For example, we cannot make exactly npj copies of the pure state

j�ji if pj is an irrational number.) Therefore the goal must be to create a state whose

�delity to the desired state becomes arbitrarily good as n approaches in�nity. A careful

treatment of this problem has been carried out by Hayden et al.13 We discuss their work

further in the following section.

One feature of entanglement of formation that distinguishes it from the distillable

entanglement
1;2 is this: by de�nition, the entanglement of formation of � is zero if and

only if � is separable, that is, if and only if � can be written as a mixture of product states.

In contrast, the distillable entanglement, a measure of the amount of pure entanglement

that one can extract from a given mixed state, can be zero even if the state is non-

separable. Entangled states with no distillable entanglement are said to have \bound

entanglement":10 they have entanglement, as measured by the entanglement of formation,

but this entanglement cannot be used to create pure entanglement, as represented, for

example, by a collection of singlet pairs. Thus, in contrast to the case of pure states,8 the

creation of entangled mixed states is not reversible. This irreversibility is not surprising:

in creating a mixed state from a pure state, one must discard some information.11

Though we can relate entanglement of formation to the creation of an ensemble of

pure states representing the given mixed state �, we cannot yet say that it quanti�es in

an absolute sense the number of singlets required to create many copies of the state �

itself. The di�erence between these two senses of creation is the essence of the \additivity

question," which is the subject of the next section.

2. The additivity question

Once again imagine Alice and Bob trying to create n copies of the bipartite state �. If n

is an even number, this task is the same as creating n=2 copies of the bipartite state �
�,
where the tensor product indicates the composition of two copies of �, each of which is to

be shared in the usual way between Alice and Bob. Thus, rather than expressing � itself as

a mixture of pure states and then creating these pure states by transforming a collection

of singlets, Alice and Bob could express �
� as a mixture of pure states and try to create

these pure states. Is there any advantage in doing this? Could they get away with using

fewer singlets? This is the beginning of the additivity question. In symbols, the question

is whether Ef (�
 �) is equal to 2Ef (�). More generally, we can ask whether Ef (�

N ) is

equal to NEf (�), where �

N is the tensor product of N copies of �. The answer to this

question is not known. It must be the case that Ef (�

N ) is less than or equal to NEf (�),

because one can always decompose �
N into N copies of the optimal decomposition of �.

What is not known is whether one can do better.

If it does turn out that there is an advantage in treating many pairs together as a unit,

then Ef (�) itself is clearly not the proper measure of the quantum resources needed to

create the mixed state �. Rather, one would want to use the regularized entanglement of
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formation, de�ned as follows:12

E1
f
(�) = lim

N!1

Ef (�

N )

N
: (7)

One has to check, though, (i) that this limit exists and (ii) that there is not some alternative

way to create many copies of the state �, more eÆcient than creating the pure states of a

decomposition of �
N . Fortunately, Hayden, Horodecki, and Terhal,13 using a continuity

theorem of Nielsen,14 have proved that E1
f

survives these concerns and does indeed express

the asymptotic cost, in singlets, of creating the state �.

So far we have been considering the additivity of entanglement for a collection of pairs

in the same state �. The standard notion of additivity is actually more general:15 we say

that entanglement of formation is additive if

Ef (�
 �) = Ef (�) + Ef (�); (8)

where � and � are any two bipartite states, each shared between Alice and Bob. (The

states � and � do not have to be states of similar objects. E.g., � could be the state of a

pair of qubits and � could be the state of N pairs of qubits.) If entanglement of formation

is additive in this sense, then it follows that E1
f

= Ef . Eq. (8) has been shown to be true

for special cases: Benatti and Narnhofer15 proved it for the case where � is of the form

�A 
 �B , and Vollbrecht and Werner16 extended this result to the case where � is any

separable state, that is, any state for which Ef (�) = 0. Beyond this, though, and the fact

that no counterexample has ever been found, little is known about the additivity of Ef .

As we will see below, there are some signi�cant analytical results for the entanglement

of formation Ef . But E
1

f
is the more physically interesting quantity, being an expression

of the actual asymptotic cost of creating the state �. Therefore it would be of great interest

to settle the additivity question.

3. Exact Formulas

The de�nition of entanglement of formation, Eq. (6), requires �nding the minimum

average entanglement over all possible pure-state decompositions of the given mixed state

�. Even for a simple system such as a pair of qubits, there is no limit to the number of

parameters required to specify a decomposition, because the number of terms can be arbi-

trarily large. There is, however, a theorem due to Uhlmann17 guaranteeing that in order

to �nd the minimum average entanglement, it is suÆcient to consider decompositions with

no more than r2 terms, where r is the rank of �. For a pair of qubits, then, one need never

consider mixtures of more than 16 pure states.aMoreover a number of researchers have

devised eÆcient methods for minimizing the average entanglement.22;23;24;25 Nevertheless,

one would like if possible to have an explicit expression for Ef that does not require this

extremization. Explicit formulas have been found for certain systems and certain classes

of states, and they are the subject of this section.

aIn fact it turns out that for a pair of qubits one never needs more than four terms.18;19 However, for
mixed states of larger systems, the number of terms needed in an optimal decomposition often greatly
exceeds the rank of the density matrix.20;21
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3.1. Case 1: A pair of qubits

For a pair of qubits, there exists a general formula for Ef , proved �rst for special cases1;26

and later for all states.19 The formula is based on the quantity called \concurrence," which

at this point has a standard de�nition only for a pair of qubits.26;19 (But see Section 4

below for possible generalizations to larger systems.)

Let us �rst consider a pure state j�i of a pair of qubits. The concurrence C(�) of this
state is de�ned to be C(�) = jh�j~�ij, where the tilde represents the \spin-ip" operation
j~�i = (�y 
 �y)j��i. Here j��i is the complex conjugate of j�i in the standard basis

fj00i; j01i j10i; j11ig, and �y is the Pauli operator

�
0 �i
i 0

�
. The spin-ip operation,

when applied to a pure product state, takes the state of each qubit to the orthogonal state,

that is, the state diametrically opposite on the Bloch sphere. The concurrence of a pure

product state is therefore zero. On the other hand, a completely entangled state such as

the singlet state is left invariant by the spin ip (except possibly for a phase factor), so

that for such states C takes the value one, which is its maximum possible value. It is

not hard to obtain the following relation between concurrence and entanglement of a pure

state.

E(�) = E(C(�)); (9)

where the function E is de�ned by

E(C) = h

 
1 +

p
1� C2

2

!
; (10)

h(x) = �x log2 x� (1� x) log2(1� x): (11)

The function E(C) is monotonically increasing for 0 � C � 1; so the concurrence can be

regarded as a measure of entanglement in its own right, though unlike entanglement of

formation, it is not a resource-based or information theoretic measure. The connection

between concurrence and entanglement is particularly clear if we express the state in the

standard basis:

j�i = aj00i+ bj01i+ cj10i+ dj11i: (12)

One can show that j�i is factorizable if and only if ad = bc, so that one might take

the di�erence between ad and bc as a measure of entanglement. Indeed, this is what

concurrence does: C(�) = 2jad� bcj.
We can de�ne the concurrence of a mixed state � of two qubits to be the average con-

currence of an ensemble of pure states representing �, minimized over all decompositions

of �. That is,

C(�) = inf
X
j

pjC(�j); (13)

where � =
P

j
pj j�jih�j j. Now it happens that the function E(C) de�ned by Eq. (10), in

addition to being monotonically increasing, is also convex. It follows that

E(C(�)) = inf E
�X

j

pjC(�j)
�
� inf

X
j

pjE(C(�j)) = Ef (�): (14)
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That is, E(C(�)) is a lower bound on Ef (�).

At this point we invoke, but do not prove, two remarkable facts about concurrence.

First, there always exists a decomposition of � that achieves the minimum in Eq. (13)

with a set of pure states having the same concurrence. This fact makes the inequality

in Eq. (14) an equality, so that E(C(�)) actually gives us the entanglement of formation.

Second, one can �nd an explicit formula for C(�).19 It is

C(�) = max f0; �1 � �2 � �3 � �4g; (15)

where the �i's are the square roots of the eigenvalues of �~� in descending order. Here ~� is

the result of applying the spin-ip operation to �:

~� = (�y 
 �y)�
�(�y 
 �y); (16)

and the complex conjugation is again taken in the standard basis.bAlternatively, we can

say that the �i's are the singular values
c (in descending order) of the symmetric matrix

Aij =
p
rirjh	ij~	ji; (17)

where the j	ii's are the eigenvectors of � and the ri's are the corresponding eigenvalues.

One can see that Eq. (15) reduces to the pure state formula C(�) = jh�j~�ij when � is the
pure state j�ih�j. We now have our formula for the entanglement of a pair of qubits in

any mixed state �:

Ef (�) = E(C(�)); (18)

with C given by Eq. (15) and the function E given by Eq. (10). The original proof of this

formula19 has been streamlined recently by Audenaert et al.23 on the basis of a theorem

of Thompson.27

It is a curious fact that for a pair of qubits, one can always �nd an optimal decomposi-

tion of � in which all the states have the same entanglement. One might wonder whether

this feature will be preserved for larger systems. It is easy to see that the answer is no.

Consider, for example, a mixed state of two qutrits (objects with 3 orthogonal states)

consisting of an equal mixture of the two pure states

j00i and
1p
2
(j11i+ j22i): (19)

One can show that this is the unique optimal decomposition of the given mixed state, and

yet its component pure states have quite di�erent entanglements.

In fact, for bipartite systems larger than a pair of qubits, there is no known general

formula for the entanglement of formation. However, there do exist formulas for states

with special symmetries and we now consider two such cases, Werner states and isotropic

states.

bEven though �~� is not necessarily a Hermitian matrix, its eigenvalues are all real and non-negative because
it is the product of two non-negative de�nite matrices.
cThe singular values of a complex matrix A are the square roots of the eigenvalues of Ay

A.
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3.2. Case 2: Werner states

Consider a pair of d-dimensional quantum objects A and B. We assume that we have

chosen a correspondence between the states of A and the states of B, so that it would

make sense, for example, to say that A and B are in the same state. More relevant for

our purpose, it makes sense to speak of performing the same transformation on A and B.

A state � of the joint system AB is then called a Werner state if it is invariant under all

transformations of the form U 
 U , where U is a unitary operator.16 The most general

Werner state is of the form

� = aI + bF; (20)

where a and b are real numbers, I is the identity operator, and F is the operator that

interchanges A and B: F =
P

ij
jijihjij. Here the states jiji are an orthonormal basis of

product states for the system AB. The parameters a and b are related by the condition

Tr � = 1; so the Werner states in any given number of dimensions are characterized by a

single parameter. A convenient choice for this parameter is f(�) = �Tr �F , which ranges

from �1 to 1.
For a pair of qubits, there exists a unique Werner state that is also a pure state, namely,

the singlet state j	�ih	�j; the other Werner states are mixtures of the singlet with the

completely mixed state. In higher dimensions the Werner states are always mixed states.

By making use of the symmetry of these states, Vollbrecht and Werner16 found an

exact formula for the entanglement of formation, valid in any dimension. I simply state

the result here. For f(�) � 0, the state is separable. For f(�) � 0, we have

Ef (�) = E(f(�)); (21)

where E is the function we de�ned in Eq. (10) in connection with the entanglement of a

pair of qubits. Thus f , when it is non-negative, plays exactly the role of the concurrence;

indeed, in the case d = 2, maxf0; fg is equal to the concurrence.
Notice that the maximum possible entanglement of a Werner state is 1 ebit, regardless

of the value of d, even though the maximum possible entanglement of a general state in d

dimensions is log2 d. The maximally entangled Werner states are mixtures of orthogonal

singlet states. For example, for d = 3 the unique maximally entangled Werner state is an

equal mixture of (1=
p
2)(j01i � j10i), (1=p2)(j02i � j20i), and (1=

p
2)(j12i � j21i).

3.3. Case 3: Isotropic states

Again let us consider two d-dimensional systems A and B for which we have made a

correspondence between state spaces. The isotropic states of the system AB are those

states that are invariant under all transformations of the form U 
U�, where the asterisk
denotes complex conjugation in a certain �xed basis.28 In every dimension d, there is

exactly one pure state that is an isotropic state, namely, j�+i = (1=
p
d)
P

i
jiii. The

other isotropic states are mixtures of this pure state with the completely mixed state.

Thus, these states can, like the Werner states, be labeled in any dimension by a single real

parameter. A convenient choice is g(�) = h�+j�j�+i, which ranges from 0 to 1.



William K. Wootters 35

Again by making use of the symmetry, Terhal and Vollbrecht28 found a formula for the

entanglement of formation of a general isotropic state. (This was the �rst formula obtained

for any class of mixed states in arbitrary dimension.) They found that for g < 1=d the

state is separable, and for g � 1=d the formula is

Ef (�) = co (h() + (1� ) log2(d� 1)) ; (22)

where

 =
1

d

�p
g +

p
(d� 1)(1� g)

�2
(23)

and the symbol \co" applied to any function of g indicates the convex hull, that is, the

largest convex function that is nowhere larger than the given function.

For d = 2, the function inside the \co" symbol is already convex as a function of g|it

is in fact E(2g� 1) with E given again by Eq. (10)|but for other dimensions one needs to

�nd the convex hull. Terhal and Vollbrecht have found the convex hull for d = 3 and have

conjectured its form for all d. Their conjecture, and their result for d = 3, are given by28

Ef (�) =

8>><
>>:

0; g � 1
d
;

h() + (1� ) log2(d� 1); 1=d < g < 4(d� 1)=d2;

[(g � 1)d log2(d� 1)] =(d� 2) + log2 d; 4(d� 1)=d2 � g � 1:

(24)

The paper of Vollbrecht and Werner16 shows how to get the entanglement of formation

of certain other states that are related to Werner and isotropic states; I refer the reader

to that paper for details. We move now to an example that is interesting even though it

is not physical.

3.4. Case 4: A pair of rebits

Our last example of an explicit formula for entanglement of formation concerns a �ctitious

object called a \rebit," whose state space is a two-dimensional real vector space. This case

was investigated by Caves, Fuchs, and Rungta29 with the aim of seeing how entanglement

manifests itself in a theory other than standard quantum mechanics.

A density matrix � of a pair of rebits is a 4 � 4 real symmetric matrix with unit

trace and no negative eigenvalues. Following Caves et al., we de�ne the entanglement of

formation of a pair of rebits just as in standard quantum mechanics, except that the only

decompositions of � that we consider are those whose pure-state elements are represented

as real vectors. This restriction makes a signi�cant di�erence, as can be seen in the (real)

state

�0 =
1

4
(I 
 I + �y 
 �y); (25)

which is an equal mixture of the two pure entangled states (1=
p
2)(j00i � j11i) and

(1=
p
2)(j01i + j10i). In ordinary complex quantum mechanics �0 is separable, because

it can also be written as an equal mixture of the two pure product states (1=2)(j0i +
ij1i)
 (j0i+ ij1i) and (1=2)(j0i � ij1i)
 (j0i � ij1i). However, these latter states are not
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allowed in real-vector-space quantum mechanics and it is easy to see that no mixture of

real product states can produce the above state �0: any mixture �sep of real product states

must satisfy

Tr[�sep(�y 
 �y)] = 0; (26)

since h j�yj i = 0 for any real state j i. The state �0 does not have zero trace with

�y 
 �y; so it is not separable in real-vector-space quantum mechanics.

Indeed, for a general mixed state �, Caves et al. show that the quantity Tr[(�(�y
�y)]
plays exactly the role of concurrence for a pair of rebits: the entanglement of formation

of a pair of rebits is given by Ef = E(C), where C = Tr[(�(�y 
 �y)] and the function E
is given, as always, by Eq. (10).29

Caves et al. point out that in real-vector-space quantum mechanics, the state �0 is

a bound entangled state. It cannot have any distillable entanglement because it has no

entanglement at all in the complex world, and any distillation procedure that one could

perform in the real case could also be performed in the complex case. This example

thus provides an interesting perspective on bound entanglement: bound entanglement can

sometimes be a manifestation of a restriction on the pure states that one is allowed to use

in building up the given mixed state. Caves et al. raise the interesting question whether

some bound entangled states in complex quantum mechanics would appear unentangled

in quaternionic quantum mechanics.

4. Generalizations of Concurrence

For a pair of qubits, the concurrence is a simple measure of entanglement that provides

an analytic formula for the entanglement of formation. It is therefore interesting to ask

whether concurrence can be generalized to larger quantum objects. There is no widely

accepted de�nition of concurrence for systems other than a pair of qubits. There are,

however, some interesting proposals, which are the subject of this section.

4.1. Concurrence associated with an arbitrary conjugation

Recall that the concurrence of a pure state j�i is de�ned as C(�) = jh�j~�ij, where the tilde
operation consists of taking the complex conjugate of j�i in the standard basis and then

applying the unitary operator �y
�y. The tilde operation on a pair of qubits is an example
of a conjugation, that is, an antiunitary operator whose square is the identity. Uhlmann30

has generalized the concept of concurrence by considering arbitrary conjugations acting

on arbitrary Hilbert spaces.

First let us unpack the de�nition of \conjugation." An antilinear operator � is an

operator satisfying

�(a1j 1i+ a2j 2i) = a�1�j 1i+ a�2�j 2i: (27)

The operator is antiunitary if it also satis�es h j�j�i = h�j��1j i for all state vectors

j i and j�i, that is, if the adjoint is the same as the inverse. Finally, an antiunitary � is

a conjugation if �2 = I. For later reference we also de�ne a skew conjugation to be an

antiunitary operator � such that �2 = �I.
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For any conjugation �, one can de�ne the �-concurrence of a pure state j�i to be
C�(�) = jh�j�j�ij: (28)

The �-concurrence of a mixed state � is then de�ned as

C�(�) = inf
X
j

pjC�(�j); (29)

where the in�mum is over all pure-state decompositions of �. Uhlmann shows that, just

as one can �nd an explicit formula for the usual concurrence, one can �nd a very similar

formula for the �-concurrence:30

C�(�) = max
n
0; �1 �

X
i>1

�i

o
: (30)

Here the �i's are the square roots of the eigenvalues of �(���) in descending order. If the

system is a pair of qubits and � is the tilde operation, this formula reduces to Eq. (15).

Thus the formula (15) is a special case of something quite general.

The next question is whether we can use these more general conjugations to get a

quantitative handle on entanglement for systems other than a pair of qubits. Uhlmann

presents some evidence in that direction as well. In particular, he considers a bipartite

quantum system consisting of a qubit and an d-state object (that is, a 2 � d system),

where d is even. For that case he obtains the following lower bound on the entanglement

of formation:

Ef (�) � E(sup
�

C�(�)); (31)

where � is restricted to be the tensor product of two skew conjugations acting on the two

subsystems. In the case of a 2 � 2 system, there is essentially only one such �, the two

skew conjugations in that case both being the spin ip on a single qubit: �j�i = �yj��i.
Partly to deal with odd values of d|but we will �nd this idea useful more generally

in the next subsection|Uhlmann suggests using operators that are more general than

conjugations in that they send some state vectors to zero. More precisely, he considers

arbitrary antilinear operators � such that �y = �. One can de�ne the �-concurrence for

such operators by Eq. (29), and Uhlmann shows that C�(�) is still given by Eq. (30).

For a typical bipartite system larger than a pair of qubits, a single antilinear operator

and its associated concurrence will most likely not be enough to capture entanglement.

(Hence the \sup" to strengthen the inequality in Eq. (31).) Rather, one will probably need

several concurrences. The idea of using many di�erent concurrences leads to the notion of

a \concurrence vector," which is the subject of the following subsection.

4.2. A concurrence vector

Let � be the state of an arbitrary bipartite system, and let D = f(j�ii; pi)g be a decompo-
sition of � into pure states. When the system is a pair of qubits, we can de�ne the average

concurrence of the decomposition to be

C(D) =
X
k

pkC(�k) =
X
k

pkjh�kj~�kij: (32)
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Audenaert, Verstraete, and De Moor23 generalize this formula in the spirit of Uhlmann's

work, by de�ning for an arbitrary d1 � d2 system a speci�c set of anitlinear operators

generalizing the tilde operation.

Following their construction, we begin by choosing once and for all a standard basis

for each of the two subsystems. Let (i; i0) with i < i0 label two speci�c basis states for

the �rst subsystem, and let j and j0 be analogous indices for the second subsystem. For

brevity, let � represent the ordered set (i; j; i0; j0). There are [d1(d1 � 1)=2][d2(d2 � 1)=2]

possible choices of the two pairs of states, i.e., choices of �. For each such choice, we de�ne

an antilinear operator �� by its action on basis vectors: all basis vectors other than the

four tensor products formed from the vectors labeled by � are sent to zero by �� , and

the action of �� on the four remaining basis vectors is given by

��jiji = �ji0j0i; ��ji0j0i = �jiji;
��jij0i = ji0ji; ��ji0ji = jij0i: (33)

Thus �� projects an arbitrary state of the system onto a \two-qubit subspace" and then

performs what amounts to a spin-ip on that subspace.

Now, for any pure state j�i of the system, we de�ne the ��-concurrence of j�i as in
Eq. (28): C��(�) = jh�j��j�ij. We abbreviate C��(�) as C�(�), and we refer to the

ordered set of values fC�(�)g as the concurrence vector of the pure state j�i. It is not

hard to show that a pure state j�i is factorable if and only if C�(�) = 0 for each �.

We also note that the squared \length" of the concurrence vector,
P

�
C2
�
(�), is invariant

under local unitary transformations of the two separate subsystems.

Returning now to the mixed state � with decomposition D, we de�ne a concurrence

vector fC�(D)g by analogy with Eq. (32):

C�(D) =
X
i

piC�(�i): (34)

The mixed state � is separable if and only if there exists a decomposition D such that

every component of the concurrence vector is zero.

Can one use the concurrence vector to express the entanglement of formation of a

general d1 � d2 system? The answer is not known. However, Audenaert et al. use the

\vector" of operators �� to formulate an interesting condition for separability. To get to

this condition, we �rst introduce a set of matrices A(�) that are analogous to the matrix

A of Eq. (17):

A
(�)
ij

=
p
rirjh	ij��j	ji: (35)

Here the ri's and j	ii's are again the eigenvalues and eigenvectors of �. Let f�(�)
i
g be

the singular values of A(�) in descending order (or alternatively, the square roots of the

eigenvalues of �(�����)). For any particular �, a necessary and suÆcient condition for

the existence of a decomposition D such that C�(D) = 0 is the following [see Eq. (30)]:

�
(�)
1 �

X
i>1

�
(�)
i
: (36)
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Thus for each value of �, Eq. (36) is a necessary condition for separability. Note, however,

that di�erent values of � may require di�erent decompositions D to make C�(D) = 0,

so that even if Eq. (36) is satis�ed for every �, there is no guarantee that the state � is

separable.

One can, however, generate many other necessary conditions for separability simply

by starting with a linear combination of the ��'s rather than with just one of them. Let

x = fx�g be a vector of complex numbers, and de�ne f�i(x)g to be the singular values

(in descending order) of the matrix
P

�
x�A

(�). Then for any vector x the following is a

necessary condition for separability:

�1(x) �
X
i>1

�i(x): (37)

Finally, we choose a vector x that makes the separability condition strongest, thus arriving

at the condition

max
x

�1(x)P
i>1 �i(x)

� 1: (38)

Audenaert et al. demonstrate numerically that Eq. (38) is quite a stringent test for

separability.23 In particular it identi�es non-separable states of a 3 � 3 system that are

missed by the \partial transpose condition" introduced by Peres.31 These authors raise

the question whether Eq. (38) may even be a suÆcient condition for separability. If so,

this would be a great success for the concurrence-vector approach.

4.3. Universal state inversion

The standard de�nition of concurrence is based on the spin-ip operation, which takes any

product state of a pair of qubits to an orthogonal state. Rungta et al.
32 have taken this

fact as the starting point for another generalization of concurrence, somewhat di�erent in

spirit from the ones in the preceding subsections. Rather than working with operations

on state vectors (such as conjugations), they look for a superoperator Sd|it will act on

density matrices in a space of d dimensions|satisfying the following three conditions:

1. Sd maps Hermitian operators to Hermitian operators.

2. Sd commutes with all unitary operators.

3. If j�i is a pure state for a bipartite system, then h�j(Sd1 
Sd2)(j�ih�j)j�i is always
non-negative, and is equal to zero if and only if j�i is a product state.

They �nd that up to a constant factor there is only one such superoperator in any dimen-

sion, namely,

Sd(�) = I � �; (39)

where I is the identity operator. For a pair of qubits, the concurrence of a pure state j�i
can be written in terms of S2 as

C(�) =
p
h�j(S2 
 S2)(j�ih�j)j�i: (40)
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Rungta et al. therefore propose an analogous de�nition of pure-state concurrence in any

dimension:

C(�) =
p
h�j(Sd1 
 Sd2)(j�ih�j)j�i =

q
2[1� tr(�2

A
)]; (41)

where �A is the density matrix of one of the two parts of the system.

This generalized concurrence turns out to be closely related to the pure-state concur-

rence vector of the preceding subsection. One can show that it is in fact the length of the

concurrence vector:

C2(�) =
X
�

C2
�
(�): (42)

It is interesting and rather satisfying that these two di�erent approaches to generalizing

concurrence are related in such a simple way.

For pure states, the usual entanglement given by Eq. (3) is not a function of the

generalized concurrence of Eq. (41): except in the case of two qubits, the two functions

give di�erent entanglement orderings for the pure states.33 So one would not expect to

�nd a formula for entanglement of formation based on Eq. (41). On the other hand, this

generalized concurrence may prove valuable either in the search for bounds on the various

measures of mixed-state entanglement or in other contexts, such as the entanglement

sharing problem (see subsection 5.2 below).

5. Investigations Using Concurrence

Because the concurrence of a pair of qubits is easy to compute for an arbitrary mixed

state, it has been used in a number of investigations of the properties of entanglement. In

this section I describe some of these studies.

5.1. Comparison of entanglement measures

It is interesting to compare concurrence to other quantities related to entanglement. One

simple measure of entanglement for a pair of qubits is based on the Peres criterion for

separability: a bipartite state � is separable only if the partial transpose of �, that is,

the result of applying the transpose operation to only one of the two subsystems, has no

negative eigenvalues.31 For a pair of qubits this condition is not only necessary but also

suÆcient for separability,34 so that if � is the smallest eigenvalue of the partial transpose

of �, we can take N(�) = 2maxf0;��g, called the negativity, to be a measure of �'s

entanglement.35 For pure states, one can show directly that the negativity is equal to the

concurrence. Eisert and Plenio,36 and later Zyczkowski,22 numerically investigated the

relationship between N(�) and C(�) for many randomly generated mixed states of a pair

of qubits and found that the following inequality seemed always to hold: N(�) � C(�).

This inequality was later proved by Audenaert et al.35

Another natural measure of entanglement for a pair of qubits is based on what is called

the best separable approximation to a bipartite density matrix, introduced by Lewenstein

and Sanpera.37 Given a density matrix � of any d1 � d2 system, one can always write �

as a weighted average of a separable density matrix �s and another, possibly entangled,

density matrix �r such that the weight w of �s is maximal. The state �s is then called
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the best separable approximation to �. When the system is a pair of qubits, the best

separable approximation is unique and the residual density matrix �r (if such a residual

state is required) always represents an entangled pure state.37;38 One can therefore de�ne

the following measure of entanglement for a pair of qubits:37

R(�) = (1� w)E(�); (43)

where j�i is the residual pure state and E is the usual pure-state entanglement given by

Eq. (3).

In a recent paper, Wellens and Ku�s39 have found a remarkable connection between

R(�) and C(�), namely, that if the best separable approximation to � has full rank (rank

4), then the concurrence is equal to 1 � w and the residual pure state j�i is maximally
entangled, so that R(�) = C(�). It follows that when the best separable approximation

is of full rank, the Lewenstein-Sanpera procedure generates a pure-state decomposition

of � that minimizes the average concurrence: the decomposition consists of a single pure

state with C = 1 and weight R, together with other states all having C = 0. This result

may sound surprising, since the optimal decompositions we discussed in Section 3 always

equalize the concurrences of the pure states. But in fact it is typically the case that many

di�erent decompositions achieve the same minimum concurrence, so that the above result

is not paradoxical.a

5.2. Entanglement under constraints

A number of authors have studied the relationship between the entanglement of a state

� and some measure of the purity of the state.22;40;41 In general, entanglement becomes

less likely as the purity diminishes. One formulation of this problem is to ask what the

maximum possible entanglement is for a �xed set of eigenvalues of the density matrix.

The answer to this question is now known for a pair of qubits. Let � be any state of a

pair of qubits, and let (r1; r2; r3; r4) be the eigenvalues of � in descending order. Then the

maximum possible concurrence of � is

Cmax(�) = max f0; r1 � r3 � 2
p
r2r4g: (44)

A special case of this result was proved by Ishizaka and Hiroshima42 and the general case

by Verstraete, Audenaert, and De Moor.43 It follows from Eq. (44) that any state � for

which Tr �2 does not exceed 1=3 cannot be entangled, a result that appears also in the

work of Zyczkowski et al.40 and Munro et al..41

Fixing the purity or the eigenvalues of � is one sort of constraint on the state that can

limit entanglement. Another limitation arises when entanglement must be shared among

several quantum objects.44 Consider, for example, a system of three qubits A, B, and C.

A priori, the concurrence CAC between A and C could have any value between 0 and 1.

However, if there is some entanglement between A and B, this will limit the entanglement

aOn the other hand, if one wants to minimize the average entanglement as given by Eq. (3), rather than
the average concurrence, then for a pair of qubits one must choose a decomposition in which all the
entanglements are equal, because the function E of Eq. (10) is strictly convex.
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between A and C. Co�man et al.
45 showed that the two concurrences CAB and CAC are

constrained by the following inequality:

C2
AB

+ C2
AC

� 1: (45)

Moreover, the bound is a tight one in that for any values of CAB and CAC satisfying the

corresponding equality, one can �nd a quantum state having those values of the concur-

rences.

In a system of n qubits there can be many more constraints on the sharing of entan-

glement. Suppose, for example, that one wants each pair of qubits to be as entangled

as possible. This goal will require some compromising, since increasing the entanglement

between one pair will work against the entanglements of other pairs. One might choose,

then, to maximize the smallest pairwise entanglement in the system. The evidence so far

suggests that the smallest concurrence between any pair cannot exceed 2=n. This bound

has been proved for the case of three qubits by D�ur et al.46 and is suggested for n qubits

by the work of Koashi et al.47

In a di�erent problem involving n qubits, one imagines the qubits arranged in a ring

and tries to maximize the nearest neighbor concurrences. O'Connor and Wootters48 have

shown that the optimal nearest-neighbor entanglement in this problem does not approach

zero as the number of qubits goes to in�nity but instead approaches a value no smaller

than 0.434.

5.3. Entanglement of magnetic systems

Finally, concurrence has been used to investigate the entanglement of magnetic systems

such as a Heisenberg spin chain.49;50;51;52 Perhaps the most interesting result of this work

is the observation that under certain circumstances, entanglement|say the entanglement

between nearest neighbors|can increase as the temperature rises from absolute zero.49

This happens, for example, if an external �eld forces the ground state to be a product state,

each spin being aligned with the �eld. In that case, raising the temperature allows certain

entangled energy eigenstates, which are suppressed at T = 0 by the external �eld, to have

nonzero probability so that the thermal mixed state can be entangled. Of course for large

enough temperature the entropy becomes too large for entanglement (that is, the purity

becomes too small), and all entanglements must vanish because of the considerations of

Subsection 5.2.

As is clear from the dates of many of the references in the present article, we are in the

midst of a very active period of research on entanglement. In the near future, not only are

we likely to make progress in �nding formulas or bounds for entanglement of formation; we

will probably also see more connections between entanglement and other areas of physics.

The current work on magnetic systems is an interesting example, being a bridge between

quantum information theory and the physics of condensed matter.
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