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The model of local Turing machines is introduced, including classical and quantum ones,
in the framework of matrix-product states. The locality refers to the fact that at any

instance of the computation the heads of a Turing machine have definite locations. The

local Turing machines are shown to be equivalent to the corresponding circuit models
and standard models of Turing machines by simulation methods. This work reveals the

fundamental connection between tensor-network states and information processing.
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1 Introduction

Matrix-product states and tensor-network states have been playing central roles in quantum

information science [1, 2, 3, 4]. They could be used, but not limited, to characterize entan-

glement in many-body systems [5], construct topological quantum error-correcting codes [6],

and enable universal quantum computing in the measurement-based models [7].

In this work, we reveal a fundamental connection between matrix-product states and

quantum computation. We find that a universal quantum Turing machine [8, 9, 10], which is

equivalent to the usual quantum circuit model, can be defined in the framework of matrix-

product states. On the one hand, our model of quantum Turing machines greatly simplifies

the functionality of the standard ones with a locality structure; on the other hand, our model

establishes a sort of ‘duality’ between information processing and matrix-product states (and

also tensor-network states), hence bringing together perspectives and results from both sides.

Quantum computation is a computing model that operates according to quantum mechan-

ical rules. In general, information can be processed by the interaction between registers (i.e.,

string of bits) and an external drive, or interaction among the registers [11, 12, 13, 14];

quantum Turing machines (QTM) belongs to the first case, and quantum circuit model

(QCM) belongs to the second case. While QCM has been the canonical model for quan-

tum computing, QTM, as a universal computing model, are relatively less understood for

physicists [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Turing machine, which lies at the heart of the theory of computation, is a universal

mathematical or computational model to study algorithms and the process of computation.

Physically, a Turing machine (TM) is a bipartite system including a register tape and a

processor, interaction between which is enabled by a read/write head. The standard QTM [8,
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9, 10] is ‘fully’ quantum [18, 19, 20, 21] in the sense that all elements of TM are quantized,

which results in the superposition of head position and the nonlocal interactions between the

tape and the processor. Observe that quantum systems do not have to be fully quantum;

on the contrary, there are usually classical ingredients (e.g., sites on a lattice, temperature,

external potential) in models of quantum systems. We find that, a local and simplified QTM

can be defined by making the head position classical, without loss of universality for quantum

computing. Local interactions are physically appealing, and it is not hard to see that it is

present in the circuit models (with local gates), as well as the classical TM (CTM).

There are also other study that provides hints for variations of TM. With teleportation and

gates realized by nonunitary means [28], a measurement-based QTM was introduced [29, 24],

which, by construction, does not have problems such as halt qubit [18, 19, 21] and the locality

issue of head position. With qubits as passive memory, i.e., no direct interactions among them,

computing models with projections on ancilla [30] and automatically decoupled ancilla [31]

are proven to be universal by simulating a universal set of gates. In both models each register

qubit may be acted upon many times, i.e., the interaction is not sequential. In quantum optics,

a so-called qubus model [32] was developed, which realizes gates on qubits by non-sequential

interactions with a quantum bus, which is infinite dimensional.

Motivated by the observation above, the model of local TM is introduced in this work,

including classical and quantum ones. The probabilistic (or stochastic) TM and quantum

stochastic TM are also introduced, and are shown to be reducible to local CTM and QTM,

respectively. The local structure is brought and imprinted onto a TM from the matrix-product

states (MPS) formalism [1, 2, 3, 4].

This work contains the following sections. We first present MPS formalism and also

develop techniques that are suitable for TMs in Section 2. We then define local TMs in

Section 3. A study of probabilistic TMs is also presented in the Appendix.

2 Matrix-product states

2.1 Quantum channels

We first review some basic properties of quantum channels, which are needed to understand

matrix-product states. From Stinespring dilation theorem and Kraus operator-sum represen-

tation [33, 34, 35], a quantum channel E , i.e., a completely positive trace preserving (CPTP)

map, can be represented as

E(ρ) =
∑
`

K`ρK
†
` , ∀ρ (1)

for a set of Kraus operators {K`} and
∑
`K
†
`K` = 1. Furthermore, the set of Kraus operators

corresponds to an isometry operator V :=
∑
` |`〉K` for |`〉 as ancilla state. The isometry can

be embedded into a unitary operator U such that V = U |0〉 and K` = 〈`|U |0〉.
The transfer matrix [35, 36] of a quantum channel E is

TE =
∑
`

K` ⊗K∗` . (2)

The dynamics E : ρ 7→ E(ρ) is equivalent to TE : |ρ〉 7→ TE |ρ〉, for a quantum state ρ =∑
ij ρij |i〉〈j| and |ρ〉 =

∑
ij ρij |i〉|j〉. For K` =

∑
ij k

`
ij |i〉〈j|, then TE =

∑
`ijkl k

`
ij k̄

`
kl|ik〉〈jl|.
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Ignoring the coherence part the matrix

SE =
∑
`ij

k`ij k̄
`
ij |ii〉〈jj| (3)

is stochastic (not doubly) as
∑
`i |k`ij |2 = 1, and can be treated as the stochastic version

of TE . Note |ii〉 can be simply viewed as an encoding of |i〉, same for 〈jj|. For example,

SU =
∑
ij |uij |2|i〉〈j| of a unitary operator U is doubly stochastic, and also orthostochastic.

The stochastic version of a random unitary channel is also doubly stochastic.

2.2 Matrix-product states and quantum circuits

Any finite-dimensional N -partite quantum state can be expressed as a MPS

|Ψ〉 =
∑

i1,...,iN

〈AiN |AiN−1 · · ·Ai2 |Ai1〉|i1 . . . iN 〉 (4)

for the open boundary condition (OBC) case. This form is in the so-called right-canonical

form, while left-canonical and other forms are also available [4]. These A matrices act on the

so-called correlation space, also known as virtual space, ancillary space etc, and the correlation

space dimension χ is also known as the bond or virtual dimension. Regarding LQTM, the

N particles (or ‘spins’, qubits) are on the tape, and the correlator is the processor. Tracing

out the system results in a sequence of quantum channels En on the correlator such that

En(ρ) =
∑
in
AinρAin†, and

∑
in
Ain†Ain = 1 for each n = 1, . . . , N .

The boundary condition is specified by the set of column vectors {|Ai1〉} and the set of

row vectors {〈AiN |}. For the first site,
∑
i1
Ai1†Ai1 = 1, each Ai1 is a column vector but

not-normalized, while its norm is a singular value. For the last site,
∑
iN
AiN†AiN = 1, each

AiN is a row vector and normalized, and they come from each column of a unitary operator

that appears in the first step of singular value decomposition (SVD) to derive MPS [4]. For

the OBC case, the form of MPS is usually simplified as

|Ψ〉 =
∑

i1,...,iN

〈R|AiN · · ·Ai1 |L〉|i1 . . . iN 〉, (5)

which may not be normalized due to the probability of the final projection 〈R|. However, the

normalization condition can be easily handled, so it does not cause problem. For the PBC

case, the MPS takes the following form

|Ψ〉 =
∑

i1,...,iN

tr(AiN · · ·Ai1)|i1 . . . iN 〉. (6)

We observe that this state can be prepared by using |ω〉 =
∑
i |ii〉 as both the initial and final

states of the correlator. The bond dimension is actually χ2, but the A matrices only act on

half of the space, so the effective bond dimension is still χ. Also the PBC case can be viewed

as a special case of OBC when each vector |Ai1〉 is equivalent to |AiN 〉 and {|Ai1〉} forms a

basis of the correlation space.

Next we study how to prepare a MPS (4) by a quantum circuit. To do so, the dilation

for each of the channels En is employed. The first channel E1 is defined by the set of Kraus

operators {|Ai1〉}, and the last channel EN is defined by {〈AiN |}. The channel E1 maps
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from dimension χ0 = 1 to dimension χ1, while the channel EN maps from dimension χN−1
to dimension χN = 1, while each other channel En in between maps the bond dimension

from χn−1 to χn. From the SVD process there exists relations between each χ and d, e.g.,

χN−1 ≤ d [4]. Implementing each En requires the dilation of channels that alter dimension.

For a rank-r CPTP channel from dimension n to m, one input ancilla with dimension d rmn e
is needed. Note that the input system and ancilla do not correspond to the output system

and ancilla, respectively, due to the change of dimension. Now a channel En can be realized

by a unitary Un with dimension dχn, and from Ain = 〈in|Un|0〉, {Ain} occupy the first block-

column of Un. For the last unitary UN , special cares are needed. If χN−1 = d, then no

ancilla is needed, which means the correlator itself becomes the last physical spin, and then

it is traced out after a unitary rotation UN such that 〈AiN | = 〈iN |UN , which appears in the

first step of SVD for the right-canonical form. If χN−1 < d then an ancilla is needed and

〈AiN | = 〈iN |UN |0〉 for |0〉 as the initial state of this ancilla.

The whole state preparation process is as follows. First, apply a sequence of unitary gates

from U1 till UN−1

UN−1 · · ·U1|0〉v|0〉1 · · · |0〉N−1 (7)

=
∑

i1,...,iN−1

AiN−1 · · ·Ai2 |Ai1〉|i1 . . . iN−1〉,

where |0〉v is the initial state of the virtual correlator. If χN−1 = d, apply UN first and trace

out the correlator, the state becomes∑
iN

〈iN |UNUN−1 · · ·U1|0〉v|0〉1 · · · |0〉N−1|iN 〉 (8)

=
∑
iN

∑
i1,...,iN−1

〈iN |UNAiN−1 · · ·Ai2 |Ai1〉|i1 . . . iN−1〉|iN 〉,

which is the MPS (4). If χN−1 < d, append the last ancilla with |0〉 such that W := UN |0〉
and 〈AiN | = 〈iN |W . Applying UN and tracing out the final system (both correlator and

ancilla) yields the MPS (4).

As we can see, the change of bond dimension complicates the MPS circuit, so instead,

these matrices can be enlarged to have the same bond dimension as the largest one, and

indeed, in practice many states can be described by MPS with constant bond dimensions.

Therefore, it can be assumed that all the A matrices have dimension χ, and each quantum

channel becomes dimension-preserving. For the quantum circuit, the first dilation U1 maps

from dimension dχ to d-dimensional spin and χ-dimensional correlator, and the channels in

the middle are simple to deal with, while the last one deserves some attention. The set

{〈AiN |} still forms a channel, but now it may hold d ≤ χ, while injectivity requires d ≥ χ2.

This means for both injective and also χ2 ≥ d ≥ χ cases the method described above can be

used. For the case d < χ, the channel cannot be TP since each vector 〈AiN | is extended to

a larger vector. This means partial projection on the correlator is required, which leads to

probabilistic events. However, we can employ the method in subsection 2.3 to avoid this.

2.3 Avoid the final projection on correlation space

Consider the generation of a MPS in the form (5) with a constant bond dimension. From

Ref. [37] a MPS can be prepared deterministically such that the correlator is decoupled at
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Fig. 1. Quantum circuit to prepare a general MPS with constant bond dimension χ and an

automatically decoupled correlator |0〉 at the end. Each unitary Un is the dilation of Vn, the
embedding of V ′

n. The initial state of the correlator can be chosen to be |0〉 by absorbing a unitary

gate, which converts |0〉 to |L′〉, into the first gate U1.

the end, here this method is extended for the general qudit case.

With the isometry Vn :=
∑
in
|in〉Ain for each site, a MPS with OBC (5) can be written

as

|Ψ〉 = 〈R|VN · · ·V1|L〉. (9)

With 〈R|VN = (1d ⊗ 〈R|)VN and from SVD

(1d ⊗ 〈R|)VN = V ′NMN , (10)

for (i) d < χ, MN of size d × χ, unitary V ′N of size d × d, and (ii) d ≥ χ, MN of size χ × χ,

isometry V ′N of size d× χ. Now MNVN−1 is (1d ⊗MN )VN−1, and perform SVD for the rest

sites, and for the last one define |L′〉 = M1|L〉, so

|Ψ〉 = V ′N · · ·V ′1 |L′〉. (11)

From a rank consideration, the size of V ′N−k is dmin(χ, dk) × min(χ, dk+1), and the size of

Mk is always at most χ×χ. Now each V ′ can be embedded into an isometry V of size dχ×χ,

although the embedding is not unique. This means a quantum circuit to realize the sequence

of Vk can be used to prepare the MPS: start from the state |L′〉, and perform the dilation

Uk for each Vk. To show that the correlator can automatically decouple at the end, there are

three cases to consider:

1. For d2 ≥ χ > d, the size of V ′N−1 is d2 × χ, while the size of its embedding VN−1 is

dχ×χ. This embedding can be done by appending χ−d rows of zeros to each of the d×χ
matrices in V ′N−1, and this means after the action of V ′N−1, the χ-level correlator will

only have amplitude on d levels. The embedding VN can be obtained by first appending

χ− d columns of normalized vectors, and then inserting χ− 1 rows of zeros after each

row in V ′N , and this means that the state of the correlator will be annihilated by V ′N ,

i.e., mapped to dimension one, and the correlator is converted to the last spin by V ′N .

2. For χ ≤ d, the size of V ′N−1 is dχ×χ, and its embedding is the same with itself; and size

of V ′N is d× χ, and its embedding VN can be obtained by inserting χ− 1 rows of zeros

after each row in V ′N . In this case, after V ′N−1 all levels of the correlator are occupied,

yet V ′N will still annihilate the correlator.

3. For χ > d2, the size of V ′N−1 is d2 × d2, and its embedding can be obtained by first

appending χ − d2 columns of normalized vectors, and then appending χ − d rows of

zeros to each of the d × χ matrices in V ′N−1. Still in this case after V ′N−1 only d levels

of the correlator are occupied, which are further annihilated by VN .
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The quantum circuit can be shown as that in Fig. 1. This also shows that in a LQTM one

does not need to implement a projection on the correlator, which is the processor of LQTM.

Here we apply this technique to the Bell states |Φ±〉 = 1√
2
(|00〉 ± |11〉), and |Ψ±〉 =

1√
2
(|01〉 ± |10〉). We only need the MPS form for |Φ+〉 ≡ |ω〉, and others can be easily

obtained. Let the two qubits be α and β, and a qubit ancilla be a, we find

|ω〉 = 〈0|aBA|0〉a, (12)

for A = |0〉αA0 + |1〉αA1, B = |0〉βB0 + |1〉βB1, with the tensors defined as

A0 = 1/
√

2, A1 = σx/
√

2, B0 = P0, B
1 = σ+, (13)

for P0 = (1 + σz)/2, σ+ = (σx + iσy)/2, and Pauli matrices σx, σy, σz, and |0〉 = (1, 0)t,

|1〉 = (0, 1)t. The pair of matrices A0 and A1, B0 and B1 each form a quantum channel. The

quantum circuit to prepare |ω〉 is also easy to find

|ω〉 = 〈0|aUβaUαa|000〉βαa, (14)

for Uβa = Sβa as a swap gate realizing B0 and B1, Uαa = CNOTαaHα with the controlled-not

(α as control) and Hadamard gate realizing A0 and A1. The qubit ancilla a automatically

decouples simply because it is swapped with the qubit β.

2.4 Composition

In the MPS circuit the starting state of system is usually |0〉 ≡ |0 · · · 0〉. If the input |0〉 is

substituted by another MPS, the output is still a MPS, but with a larger bond dimension.

Such a composition is useful when we consider a sequence of computations by a LQTM.

Let’s denote a MPS by |Ξa〉 and the sequence of unitary operators in it as U (a), and

|Ξa〉 := 〈Ra|U (a)|La〉|0〉 with bond dimension χa, and similarly for another MPS by |Ξb〉.
The composition of the two circuits leads to the state

|Ξab〉 = 〈Rb|U (b)|Lb〉|Ξa〉 = 〈Rb|〈Ra|U (ab)|Lb〉|La〉|0〉, (15)

with U (ab) := U (a) � U (b) for composition � defined as follows. For U (a) :=
∏
i U

(a)
i , U (b) :=∏

i U
(b)
i , Let Ũ

(a)
i = U

(a)
i ⊗1(b), Ũ

(b)
i = U

(b)
i ⊗1(a), then U (ab) =

∏
i U

(ab)
i for U

(ab)
i := Ũ

(a)
i Ũ

(b)
i .

The state |Ξab〉 has bond dimension χab = χaχb, and the boundary states of the correlator

are |Lb〉|La〉 and 〈Rb|〈Ra|. This property also holds when the technique to avoid the final

projection from section 2.3 is employed.

In addition, the tensor product of |Ξa〉 and |Ξb〉 also yields a new MPS |Ξa⊗b〉 with bond

dimension χa⊗b = χaχb and

|Ξa⊗b〉 =〈Rb|〈Ra|U (a⊗b)|Lb〉|La〉|00〉, (16)

with U (a⊗b) =
∏
i U

(a⊗b)
i for U

(a⊗b)
i := U

(a)
i ⊗ U (b)

i .

3 Turing machines

3.1 Preliminary

We first review the standard description of TM [9, 12]. For convenience, we will use ‘cbit’

for classical bit, and ‘bit’ as a general notion for a cit, pbit, or qubit. A TM, classical,
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Fig. 2. The model of Turing machines.

probabilistic, or quantum, has a processor (also known as control), denoted by the symbol Q,

state of which is often called ‘internal state’, and a register (tape) Γ of a string of non-

interacting bits, which usually contains the input and output, and a head, which can read,

write, move left or right by at most one step, see Fig. 2. Usually the processor Q is specified

to have an initial internal state q0 ∈ Q and a set of halting states F ⊆ Q so that the machine

halts when the internal state reaches a halting state. There is a transition function δ which

forms the program to solve a certain problem. The transition function takes the form

δ : Q\F × Γ×Q× Γ× {L,R,N} → D, (17)

for DCTM = {0, 1}, DPTM = [0, 1], DQTM = C [9, 12]. Here L (left), R (right), and N (no

movement) specifies the motion of the head. Also C needs to be substituted by a punctured

version C′ according to an efficiency argument [9, 12], and there are also blank symbols

(vacuum) on the tape, while here only physical issues are concerned.

A state of the whole machine is often known as a ‘configuration’, including the state of

tape, head position, processor (and some others). A computation on TM can be viewed

as a sequence of configurations, and a conversion between any successive two configurations

can be described by a permutation, stochastic process, or unitary evolution. The tape is a

passive memory, i.e., the bits on the tape do not interact with each other. This means the

computation is not carried out on the tape itself, instead it is induced by the interaction

between the tape and the processor.

To define a QTM [8, 9], we employ the tuple form 〈Q,F,H, P,Γ,Σ, δ〉:

1. Q: Hilbert space of the internal states.

2. F ⊆ Q: the set of starting and halting states of the processor.

3. H: Hilbert space of the halt qubit.

4. P : Hilbert space of head position P = {|p〉}.

5. Γ: Hilbert space of the quantum tape.

6. Σ ⊆ Γ: the set of input states on the tape.

7. δQTM: transition map Q× Γ× P ×H → Q× Γ× P ×H.

Compared with the CTM and PTM, it is clear that all the components in the configuration of

a machine including the head position, tape, processor, transition map and the halt operation

become quantum.
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The tape is formed by a string of non-interacting qubits, while each qubit has a quantum

position index |p〉. The transition map δQTM corresponds to a unitary operator, and there are

two important features of it. First, the state of the head position P has quantum correlations

with the tape Γ and the processorQ, so the evolution on the tape and processor itself would not

be unitary if the computing part is isolated from the global unitary on the whole configuration.

Second, the ‘quantum walk’ of the head can at most shift one position in each step, i.e., from

|p〉 to |p± 1, 0〉. This can be understood as a kind of locality in the space P , which, however,

does not correspond to a locality in the real space, which is still a classical space. After several

steps of computation, there will be a superposition of the head position and one will not be

able to see where the head sits, and the interaction between the processor Q and the tape Γ

will become nonlocal. The head also has quantum correlations with Γ and Q, so the evolution

on Γ and Q would not be unitary if the other parts are traced out.

3.2 Local Turing machines

The form (17) is a global description of a TM and does not reveal the locality of interactions

explicitly. For a CTM, the head has a definite position in each step, and needs to move in

both directions to achieve universality. The interaction between the processor and one cbit

of the tape is two-body and local in the space of position, i.e., the ‘real’ space (compared

to the momentum space) in physics. A PTM can be viewed as a randomized CTM, and

the computation by a PTM is a randomized permutation, i.e., a (doubly) stochastic process.

Each ‘trajectory’ of PTM is a CTM, hence the local structure of interactions in CTM carries

over to PTM (Appendix 1).

To make the physical locality explicit and simplify the functionality of TM, we now intro-

duce the model of local TM (LTM). We will prove its universality and draw the connection

with matrix-product states (MPS). Instead of a global description, a LTM is described via

the local interactions between the tape Γ and the processor Q. We will show that the model

of LTM is equivalent to the standard TM and the circuit model correspondingly. A LTM is

specified as follows.

Definition 1 A LTM is represented by a tuple 〈Q,F,Γ,Σ, δc, δs, C〉:

1. Q: Space of the internal states.

2. F ⊆ Q: the set of starting and halting states of the processor.

3. Γ: Space of the tape as a product of local ones, Γn.

4. Σ ⊆ Γ: the set of input states on the tape.

5. δc: local computing map Q× Γn → Q× Γn.

6. δs: classical head position shift function Z→ Z : p` 7→ p`+1 for p`+1 = p` ± 1, 0.

7. C: classical control, i.e., a finite set of classical internal states.

The local space Γn on the tape is that for a bit. The processor Q can be represented as a

set of bits, which could interact with each other or not, while the tape Γ contains a string of

non-interacting bits. The sets F and Σ are defined for completeness, yet we will not explicitly

analyze their roles in this work.
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The computing maps (or gates) δc specify a two-body interaction between the processor

and each bit on the tape. Four types of gate are possible: permutation, stochastic process,

unitary evolution, or completely positive trace preserving (CPTP) map, also known as quan-

tum channel or quantum stochastic process [38]. The unitary (channel) case generalizes the

permutation (stochastic) case. There might be final measurements on the tape for the LQTM,

as we will see later on.

The classical control C is formed by a set of classical states {c} that corresponds to the

computing part, and it has a starting state c0 for the starting state, and some halting states

{cf} for the halting states of the processor. The function of C is to signal the process of the

machine such that the machine halts when the classical control is at a halting state. It is also

implicitly present in QCM while usually not mentioned.

The fundamental way to prove universality and study the relation among various models is

by simulation [14]. There are many kinds of simulations according to convergence of variables

or operator topology [8, 9, 10, 21, 39, 40, 41, 42]. Our framework of simulation is as follows.

The simulation of a TM m by another TM u is a task such that

u([m], [x]) = [m(x)], ∀x, (18)

here [·] represents encoding, e.g., [m] is the bit-string description of m. The simulation is

efficient if there is only a polynomial overhead of cost for all input x. Furthermore, as [m] is

only being read during the simulation, [m] does not have to be the input of u, hence in fact

u([x]) = [m(x)], ∀x, and there exists a program

p([m], [x]) = [u], ∀x, (19)

such that p specifies the process of u to simulate m on arbitrary x. Each x is an input of p

since the simulation is to simulate the action of m on x, and both p and u are generically

x-independent. We will focus on simulation efficiency without a specification of simulation

accuracy, which simplifies our study and does not affect our conclusions.

Proposition 1 The models of LCTM, CTM, and CCM are equivalent.

Proof: We only need to show the equivalence between LCTM and CTM, LCTM and CCM,

since CTM and CCM are known to be equivalent. Given a computation on LCTM, with a

processor Q and a tape Γ of a certain size, each permutation Π acts on a tape bit and the

processor Q. The simulation by a CTM is simple by observing that each step in CTM is

a permutation Π. A gate Π can be simulated by a sequence of Boolean gates in CCM. A

Boolean circuit acts on |Γ| + |Q| bits can simulate the LCTM efficiently, for |Q| (|Γ|) as the

number of bits to represent states of Q (Γ).

Given a CTM which is a sequence of configurations, the simulation by LCTM is as follows.

If at step ` the head position is p`, the symbol at position p` on the tape is γ(p`), and the

internal state is q` ∈ Q\F , then the transition to the next step is simulated by a shift

operation on the head p` 7→ p`+1, for p`+1 = p` ± 1, 0 ∈ Z, and a permutation operation on

the corresponding tape bit and the processor to realize (q`, γ(p`)) 7→ (q`+1, γ(p`+1)). Given

a Boolean circuit, each gate in it can be simulated efficiently by a local permutation in a

LCTM. �
It is also clear to see there exists a universal LTM such that it can simulate a given LTM

efficiently. The universality can also be seen from the universality of Boolean circuits, which

states that any Boolean function can be computed efficiently by a Boolean circuit.
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When the bits in LTM are qubits and the computing maps are unitary operations, we

arrive at a LQTM. The key difference from the classical cases is the quantum superposition,

which is an additional feature and shall not be viewed as a generalization of mixing. Mixing

and probability can be included in the quantum formalism by quantum channels. However,

replacing unitary operations by quantum channels do not change the computational power

of quantum computers [43] due to the dilation theorem [33, 34, 35]. As far as we know, the

dilation theorem does not exist for the classical case; namely, it is not clear if a stochastic

process can be embedded in a permutation on a larger space. Instead, a doubly stochastic

process is a convex sum of permutations on the same space.

It is well known that QCM is equivalent to QTM [9, 10, 12, 27], so we will not show the

equivalence between QTM and LQTM directly. Instead, we will show the equivalence between

QCM and LQTM.

Proposition 2 The models of LQTM and QCM are equivalent.

Proof: Given a unitary circuit U in the QCM, its gates are assumed from the universal gate

set {CZ,H, T} [38]. The Hadamard gate H and T gate can be easily simulated. Each gate

CZij acting on qubits i and j can be simulated easily with a qubit ancilla e at state |0〉 which

belongs to the processor with

CZij |ψi〉|ψj〉|0〉e = SieCZjeSie|ψi〉|ψj〉|0〉e (20)

for swap gate S. As a result, the circuit U can be efficiently simulated by a LQTM. The

simulation of a LQTM m by a circuit in QCM is simple: with the states of the processor

encoded by qubits, each local gate in m can be simulated by an array of gates, and in all

simulated efficiently by a quantum circuit. �
The universality of QCM transfers to LQTM. We observe that the simulation of the gate

CZ (20) is non-sequential. It is known that direct sequential unitary simulation of entangling

gates are impossible [44]. However, with teleportation we find the structure of LQTM can be

further simplified.

Proposition 3 There exists a unilateral universal LQTM.

Proof: The non-sequential simulation of the gate CZ (20) can be converted as a sequential one

with teleportation gadget. With the MPS form of the Bell state |ω〉 discussed in section 2.3,

a gate CZij can be simulated as

CZij |ψi〉|ψj〉|0〉e|0〉a (21)

= σmαM
m
iβUβaCZjeSαeUαaSie|ψi〉|0〉α|ψj〉|0〉β |0〉e|0〉a.

The Bell measurement Mm
iβ with Pauli correction σmα will teleport the state of i to α. This

product of unitary gates is sequential, and qubits e and a belong to the processor, and qubits

i and β on the tape will be measured. Such a LQTM is unilateral while the exception is

that Bell measurements have to be done on the tape at the end of the computation. A Bell

measurement here can be simplified to projective measurements on i and β since the state of

i is |0〉. �
This compares to the classical case. A CTM with a one-direction moving head is not

universal. It is also known as a finite state transducer, which is a deterministic finite automata
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Fig. 3. Schematic diagrams of examples of TNS. The boxes with numbers represent channels,

after dilation, each channel yields a spin that belongs to the final TNS. The left one with a linear

information flow is the usual (linear) MPS with nine stages of the flow. The dashed circles highlight
the stages in other states: the sequential TNS has five stages, radial TNS has two stages, PEPS

has three stages, and the coupled MPS also has three stages. The channels within a stage can also
be ordered according to their flows.

that the input is only read once [14]. This highlights the crucial role of entanglement and

teleportation for quantum computing.

A unilateral LQTM is nothing but the process to prepare MPS. The interaction between

processor Q and tape Γ is sequential, and furthermore, we showed that Q can be automatically

decoupled at the end of the computation, with the output contained solely on the tape Γ.

3.3 Multipartite setting

In general, a LQTM can have multiple tapes and processors as in the classical cases for

various practical purposes, e.g., each processor can be a small system, even a single qubit.

This requires a slight extension of MPS to tensor-network states (TNS).

In a MPS the correlator (processor) is acted upon by a sequence of quantum channels,

without a detailed structure of the channels and the free propagations between them. To make

this clear, let us define MPS with more general information flows as quantum tensor-network

states (TNS), and the standard setting with a linear information flow as (linear) MPS.

Below we introduce TNS from the viewpoint of channel networks. For a directed acyclic

graph G = (E, V ) with edge set E and vertex set V , assign a quantum channel to each vertex,

and then the composition of quantum channels E := E|V |◦· · · E2◦E1 forms an acyclic quantum

channel network. The requirement of cycle-free is to avoid causality problem, i.e., the output

of a channel cannot become the input of it at a later time. Also note here in this section, a

general CP map, which may not be trace-preserving or dimension-preserving, is viewed as a

quantum channel.

The output of E` is from the input of E`+1, and each channel E` can contain several parts,

e.g., E` = E`1 ⊗ E`2 or E` = p1E`1 + p2E`2 for p1 + p2 = 1 as a convex combination, or other

complicated forms, and accordingly, the input and output of each channel E` can contain

several parts. Similar definitions can be found in other settings [45, 46, 47], and have been

called quantum networks [46], quantum channels with memory [47], while the definition above

is used to introduce TNS.

Given the Kraus operator representation {Ki} of a channel E , which may not be trace-

preserving or dimension-preserving, the channel can also be written as an operator V =∑
i |i〉Ki, which is an isometry if trace-preserving. For a channel network E = EN ◦ · · · E2 ◦ E1
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with boundary states |I〉 and 〈O|, given the operator V` of each channel E`, a TNS is

|Ψ〉 = 〈O|
∏
`

V`|I〉. (22)

The channels act on the correlation space. Examples of TNS are shown in Fig. 3. The

linear MPS has the simplest information flow structure, while all others are still MPS but with

branches. Note that the motivation to allow non trace-preserving or dimension-preserving

channels is that the norm of a TNS does not play a central role. For instance, in the PEPS

form the channel at each vertex is usually not trace-preserving, and in the coupled MPS

form there are dimension-altering channels. In many-body physics, MPS is usually used to

represent 1D systems, while PEPS is used for 2D or 3D systems on different lattices.

The flow in a TNS represents the evolution of the ancilla (correlator), corresponding to

the sequence of matrix multiplications (or tensor contractions). For LQTM, the lattice of

qubits form the tape, the correlator serves as the processor, and there might be qubits that

need to be measured at the end of computation due to the simulation of entangling gates.

A multipartite LQTM has a more complicated information flow structure, with its output

described as a tensor-network state (TNS), which can still be simulated by a single-tape

single-processor universal LQTM, since a TNS is also a MPS with a larger bond dimension.

Proposition 4 A LQTM with multiple tapes and/or processors can be simulated by a single-

tape single-processor universal LQTM.

Proof: If the processor is single-partite while the tape is m-partite, then in the MPS circuit

each unitary operator acts on the processor and m qubits, with one from each tape. If the

processor is also multi-partite, then this leads to multi-tape multi-processor machine, for

which there could be coupling between different parts, and this corresponds to the coupled

MPS scheme shown in Fig. 3. The resulting TNS on the tape is still a MPS, which can be

prepared on a universal LQTM. �

4 Conclusion

In this work a model of local Turing machines is introduced. We show that the model of local

classical (quantum) Turing machine is equivalent to the model of standard classical (quantum)

Turing machine and classical (quantum) circuit model. The structure of a local quantum

Turing machine can be described based on matrix product states (and teleportation). Our

work simplify the construction of quantum Turing machines and establish a close relationship

with quantum many-body systems.

While the interaction between a tape bit and the processor seems no more easier than

that between bits, the model is suitable for situations when direct interaction among bits is

difficult, such as distributed computing and communication and when the tape and processor

encoded in different physical systems. Models like the qubus model in quantum optics can

be viewed as special kinds of local Turing machines. Finally, the processor can also contain

multiple parts, and the design and complexity of its structure are nontrivial subject on its

own.

This work does not intend to study Turing machine from the viewpoint of computer

scientists. Issues like grammar, language, complexity etc, and relations with other universal

quantum computing models shall also be pursued for separate investigations.
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Appendix A Probabilistic Turing machines

Here we present a study of probabilistic Turing machines (PTM) and the local versions.

Recall that a PTM can be understood as a randomized CTM, and the randomness can be

realized by random variables, which can be encoded by a string of pbits on a so-called random

tape, and the computation by a PTM is a randomized permutation, which can be described

by a doubly stochastic matrix. Also each step of a PTM is a stochastic matrix S =
∑
λ pλΠλ

for a set of permutations Πλ with probability pλ, which is represented on the random tape.

The product of a sequence of stochastic matrices can be expressed as

∏
i

Si =
∑

λ1,λ2,...

pλ1
pλ2
· · ·

(∏
i

Πλi

)
, (A.1)

and each sequence in the parenthese above represents a CTM with corresponding probability.

That is, a CTM realizes a particular trajectory of a PTM. Each permutation Πλi acts on the

processor and a single cbit. The output of a PTM contains the final states γ ∈ Γ on the tape

with probability

P(γ) =
∑

p∈Z,q∈Q
P(p, q, γ), (A.2)

where the sum is over position p and internal state q for the same γ.

Observe that the PTM is fully probabilistic: the computation on the whole configuration

of the machine is stochastic. As a result, there is also a probability distribution of the head

position: it is uncertain where the head is during each step of the computation. However, this

actually does not cause physical problems thanks to different interpretations of probability:

the frequency interpretation and ensemble interpretation. In the former one, probability is

the ratio n/N of the number of times n for the occurrence of a particular event to the total

amount of runs N . In the latter one, given a total amount N of a collection of objects,

the probability of a particular object is the weight n/N given n copies of this object. The

probability in PTM is in the frequency interpretation. As a result, a PTM can be viewed

as a randomized CTM. However, there is no such interpretations of quantum superposition,

which causes the subtlety of locality for QTM as we studied in the main text.

A LPTM can be defined by deleting the randomness of head positions. A LPTM can also

be viewed as a LCTM with one additional tape of pbits. Given a LPTM, it can be simulated

by a PTM easily since LPTM is a restricted version of PTM. Given a PTM, the simulation

by a LPTM contains two steps: first decompose the PTM as pbits and a collection of CTMs,

then the CTMs each can be simulated by a LCTM according to the pbits. With this, we
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see that the model of LPTM is equivalent to PTM, except that the pbits are given as a free

resource.

Appendix B Stochastic matrix product states

Here we show that pbits (when not free) can be prepared by a LPTM. The reason is that,

the states of pbits, as probability vectors, can be written as stochastic MPS (sMPS)(see, e.g.,

Ref. [48]). We show that each pbit on the tape is only acted upon once, i.e., the read/write

head is unilateral, and the processor is automatically decoupled at the end.

It is shown that [48] any probability vector |p〉 can be written as a sMPS form

|p〉 =
∑

i1,...,iN

A
[1]
i1
P [1]A

[2]
i2
· · ·P [N−1]A

[N ]
iN
|i1 . . . iN 〉 (B.1)

such that S[n] := P [n−1]C [n] is a stochastic matrix for C [n] =
∑
in
A

[n]
in

. Furthermore, we

find this can also be proved using the non-negative matrix factorization (NMF) method [49,

50, 51, 52]. A matrix is non-negative iff all its entries are equal to or greater than zero. In

particular, given a m× n non-negative matrix A, it can be well approximated by

A′ = PDQt (B.2)

such that the generalized Kullback-Leibler divergenceD(A||A′) is minimized for k ≤ min(m,n),

wherein P is m×k, Q is n×k, and both are column stochastic, and D is diagonal non-negative

such that
∑
iDii =

∑
ij Aij [51]. The elements Dii play similar roles with singular values.

Given a multi-partite probability vector |p〉 written as |p〉 =
∑d
i1,...,iN

p(i1, . . . , iN )|i1 . . . iN 〉,
define a matrix C with dimension d×dN−1 and elements Ci1,(i2,...,iN ) = p(i1, . . . , iN ). By NMF

C = PDQt and

Ci1,(i2,...,iN ) =

r1∑
a1

Pi1,a1Da1,a1Q
t
a1,(i2,...,iN ), (B.3)

for r1 ≤ d. Denote Da1,a1Q
t
a1,(i2,...,iN ) = p(a1, i2, . . . , iN ), and a row vector Bi1 with element

Bi1a1 = Pi1,a1 , then Ci1,(i2,...,iN ) =
∑r1
a1
Bi1a1p(a1, i2, . . . , iN ). Put Bi1 on the most left. The

coefficients p(a1, i2, . . . , iN ) can form a new matrix C′. By NMF again

Ci1,(i2,...,iN ) =

r1∑
a1

r2∑
a2

Bi1a1B
i2
a1,a2p(a2, i3, . . . , iN ), (B.4)

for r2 ≤ r1d, and elements Bi2a1,a2 form a r1 × r2 matrix. At the end

p(i1, . . . , iN ) =

r1,...,rN∑
a1,...,aN

Bi1a1B
i2
a1,a2 · · ·B

iN−1
aN−2,aN−1

BiNaN−1, (B.5)

and also

|p〉 =

d∑
i1,...,iN

〈B[1]
i1
|B[2]
i2
· · ·B[N−1]

iN−1
|B[N ]
iN
〉|i1 . . . iN 〉 (B.6)
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such that each S[n] :=
∑
in
B

[n]
in

is column stochastic. The dimension of B matrices is upper

bounded by dN/2−1×dN/2. Note this is a left-canonical form, a right-canonical form and mixed

form can also be derived analog with the quantum case [4]. Also two boundary probability

vectors 〈`| and |r〉 can be pulled out such that

|p〉 =
∑

i1,...,iN

〈`|B[1]
i1
· · ·B[N ]

iN
|r〉|i1 . . . iN 〉. (B.7)

The next problem now is to automatically decouple the correlator from the system at the

final step. The method is to apply NMF sequentially again. Let Sn =
∑
in
B

[n]
in
|in〉. Now

assume the bond dimension is χ. First, as the matrix (1 ⊗ 〈`|)SN is non-negative, it can be

factorized as

(1⊗ 〈`|)SN = S′NTN (B.8)

for S′N column stochastic and TN non-negative. The matrix TNSN−1 can be factorized again,

and then

|p〉 = S′N · · ·S′1|r′〉, (B.9)

for each S′n column stochastic and a probability vector |r′〉. Now each S′n can be embedded

into a column stochastic matrix Sn of size dχ× χ and as the result,

|p〉 = SN · · · S2S1|r′〉. (B.10)

Given Sn =
∑
in
|in〉B[n]

in
, a non-unique square column-stochastic matrix Qn of dimension dχ

can be defined such that Sn occupies its first block-column. The matrix Qn can be viewed

as SEn , the stochastic version of TEn for a quantum channel En according to section 2.1.

As the result, any probability vector can be generated sequentially using stochastic matrices

{Qn}, each acting on the correlator and a pbit initialized at |0〉, such that the correlator is

automatically decoupled at the end.
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