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If two quantum players at a nonlocal game G achieve a superclassical score, then their

measurement outcomes must be at least partially random from the perspective of any

third player. This is the basis for device-independent quantum cryptography. In this
paper we address a related question: does a superclassical score at G guarantee that one

player has created randomness from the perspective of the other player? We show that

for complete-support games, the answer is yes: even if the second player is given the
first player’s input at the conclusion of the game, he cannot perfectly recover her output.

Thus some amount of local randomness (i.e., randomness possessed by only one player)

is always obtained when randomness is certified from nonlocal games with quantum
strategies. This is in contrast to non-signaling game strategies, which may produce

global randomness without any local randomness. We discuss potential implications for
cryptographic protocols between mistrustful parties.

Keywords: Bell inequalities, nonlocal games, random number generation, quantum cryp-

tography
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1 Introduction

When two quantum parties Alice and Bob play a nonlocal game G and achieve a score that

exceeds the best classical score ωc(G), their outputs must be at least partially random. In

other words, all Bell inequality violations certify the existence of randomness. This fact is at

the center of protocols for device-independent quantum cryptography, where untrusted devices

are used to perform cryptographic procedures. In particular, this notion of certification is the

basis for device-independent randomness expansion, where a small random seed is converted

into a much larger uniformly random output by repeating Bell violations [4, 21, 5, 27, 22, 12,

6, 7, 19, 18, 11, 2].
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596 Randomness in nonlocal games between mistrustful players

A natural question arises: is new randomness also generated by one player from the

perspective of the other player? Specifically, if X denotes Alice’s outputs, Z denotes the

post-measurement state that Bob has at the conclusion of the game, and F denotes all side

information (including Alice’s input), is there a certified lower bound for the conditional

entropy H(X | ZF )? Besides helping us understand the nature of certified randomness, this

particular kind of randomness (local randomness) has applications in mutually mistrustful

cryptographic settings, where Alice and Bob are cooperating but have different interests.

Quantifying local randomness (i.e., randomness that is only known to one player) is chal-

lenging because many of the known tools do not apply. Lower bounds for the total randomness

(i.e, randomness from the perspective of an outside adversary) have been computed as a func-

tion of the degree of the Bell violation (see Figure 2 in [21]) but are not directly useful for

certifying local randomness. One of the central challenges is that we are measuring random-

ness from the perspective of an active, rather than passive, adversary: Bob’s guess at Alice’s

output occurs after Bob has carried out his part of the strategy for G. Current tools for

device-independent randomness expansion are not designed to address the case where the

adversary is a participant in the nonlocal game.

Does the generation of certified randomness always involve the generation of local certified

randomness? The answer is not obvious: for example, in the non-signaling setting, Alice and

Bob could share a PR-boxcwhich generates 1 bit of certified randomness per use, but no new

local randomness – Bob could perfectly guess Alice’s output from his own if he were given

Alice’s input.

Motivated by the above, we prove the following result in this paper (see Theorem 7 for a

formal statement).

Theorem 1 (Informal) For any complete-support gamedG, there is a constant CG > 0

such that the following holds. Suppose Alice and Bob use a strategy for G which achieves

a score that is δ above the best classical score (with δ > 0). Then, at the conclusion of the

strategy and given Alice’s input, Bob can guess her output with probability at most (1−δ2/CG).

We note that similar problems have been studied in the literature in settings different from

ours. There has been other work examining the scenario where a third party tries to guess

Alice’s output after a game (e.g., [20], [15], [1]), and single-round games have appeared where

Bob is sometimes given only Alice’s input, and asked to produce her output (e.g., [16], [26],

[29]). (We believe the novelty of our scenario in comparison to these papers is that we consider

the randomness of Alice’s output after Bob has performed his part of a quantum strategy, and

thus has potentially lost information due to measurement.) Two recent papers also address

randomness between multiple players, under assumptions about imperfect storage [14, 23].

In addition to the above, we prove a structural theorem for quantum strategies that allow

perfect guessing by Bob. Not only do such strategies not achieve Bell inequalities, but they

are also essentially classical in the following sense. Let D,E denote the quantum systems

possessed by Alice and Bob, respectively

Theorem 2 (Informal) Suppose that Alice’s and Bob’s strategy is such that if the game

G is played and then Bob is given Alice’s input, he can perfectly guess her output. Then, there

cThat is, the unique 2-part non-signaling resource whose input bits a, b and output bits x, y always satisfy
x⊕ y = a ∧ b
dThat is, a game in which each input pair occurs with nonzero probability.
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is an isometry mapping Bob’s system to E1⊗E2 such that Bob’s strategy for G involves only

E1, and all of Alice’s observables commute with the reduced state on DE1.

(See Theorem 3 and Corollary 1 for a formal statement.) Thus, in the case of perfect guessing,

the strategy is equivalent to one in which Alice’s measurements have no effect on the shared

state.

1.1 Structure of the paper

We begin with the case of perfect guessing. We formalize the concept of an essentially classical

strategy, using a definition of equivalence between strategies which is similar to definitions

used in results on quantum rigidity. We then give the proof of Theorem 2. It is known

that two sets of mutually commuting measurements on a finite-dimensional space can be

expressed as the pullback of bipartite measurements. This fact is used along with matrix

algebra arguments to show the necessary splitting of Bob’s system into E1 ⊗ E2.

Then we proceed with the proof of Theorem 1. It has been observed by previous work

(e.g., [16], [28]) that if a measurement {Pi} on a system D from bipartite state ρDE is highly

predictable via measurements on E, then the measurement does not disturb the reduced state

by much:
∑

i PiρDPi ∼ ρD. In this paper we give a simplified proof of that fact (Proposition

11). The interesting consequence for our purpose is that if Alice’s measurements are highly

predictable to Bob, then Alice can copy out her measurement outcomes in advance, thus

making her strategy approximately classical. We take this a step further, and show that if

Bob first performs his own measurement on E the resulting classical-quantum correlation is

also approximately preserved by Alice’s measurements (which is not necessarily true of the

original entangled state ρAB). This is sufficient to show that an approximately-guessable

strategy yields an approximately classical strategy.

The subtleties in the proof are in establishing the error terms that arise when Alice copies

out multiple measures from her side of the state. We note that the proof crucially requires

that the game G has complete support. An interesting further avenue is to explore how local

randomness may break down if the condition is not satisfied.

In section 5 we discuss the implications of our result.

2 Preliminaries

For any finite-dimensional Hilbert space V , let L(V ) denote the vector space of linear au-

tomorphisms of V . For any M,N ∈ L(V ), we let 〈M,N〉 denote Tr[M∗N ]. If S ⊆ V is a

subspace of V , let PS ∈ L(V ) denote orthogonal projection onto V .

Throughout this paper we fix four disjoint finite setsA,B,X ,Y, which denote, respectively,

the first player’s input alphabet, the second player’s input alphabet, the first player’s output

alphabet, and the second player’s output alphabet. A 2-player (input-output) correlation is a

vector (pxyab ) of nonnegative reals, indexed by a, b, x, y ∈ A×B×X ×Y, satisfying
∑

xy p
xy
ab = 1

for all pairs (a, b), and satisfying the condition that the quantities

pxa :=
∑

y p
xy
ab , pyb :=

∑
x p

xy
ab (1)

are independent of b and a, respectively (no-signaling).

A 2-player game is a pair (q,H) where

q:A× B → [0, 1] (2)
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is a probability distribution and

H:A× B × X × Y → [0, 1] (3)

is a function. If q(a, b) 6= 0 for all a ∈ A and b ∈ B, the game is said to have a complete

support. The expected score associated to such a game for a 2-player correlation (pxyab ) is∑
a,b,x,y

q(a, b)H(a, b, x, y)pxyab . (4)

We will extend notation by writing q(a) =
∑

b q(a, b), q(b) =
∑

a q(a, b), and q(a | b) =

q(a, b)/q(b) (if q(b) 6= 0).

A 2-player strategy is a 5-tuple

Γ = (D,E, {{Rx
a}x}a, {{S

y
b }y}b, γ) (5)

such that D,E are finite dimensional Hilbert spaces, {{Rx
a}x}a is a family of X -valued positive

operator valued measures (POVMs) on D (indexed by A), {{Sy
b }y}b is a family of Y-valued

positive operator valued measures on E, and γ is a density operator on D ⊗ E. The second

player states ρxyab of Γ are defined by

ρxyab := TrD

[√
Rx

a ⊗ S
y
b γ
√
Rx

a ⊗ S
y
b

]
(6)

(These states are, more explicitly, the subnormalized states of Bob’s system that arise after

both Alice and Bob have performed their measurements.) Define ρxa by the same expression

with Sy
b replaced by the identity operator. (These represent the pre-measurement states of

the second-player.) Define ρ := TrD(γ) =
∑

x ρ
x
a for any a.

We say that the strategy Γ achieves the 2-player correlation (pxyab ) if pxyab = Tr[γ(Rx
a⊗S

y
b )]

for all a, b, x, y. If a 2-player correlation (pxyab ) can be achieved by a 2-player strategy then we

say that it is a quantum correlation.

If (pxyab ) is a convex combination of product distributions (i.e., distributions of the form

(qxa)⊗ (ryb ) where
∑

x q
x
a = 1 and

∑
y r

y
b = 1) then we say that (pxyab ) is a classical correlation.

Note that if the underlying state of a quantum strategy is separable (i.e., it is a convex

combination of bipartite product states) then the correlation it achieves is classical. The

maximum expected score that can be achieved for a game G by a classical correlation is

denoted ωc(G).

3 Perfect Guessing

We first address the case of perfect guessing — that is, the case when the second-player states

{ρxyab}x that remain after the game is played are perfectly distinguishable by Bob. It turns

out that this condition will imply some strong structural conditions on the strategy used by

Alice and Bob, and it will imply in particular that Alice’s and Bob’s score at the game G

cannot be better than that of any classical strategy.

3.1 Congruent strategies

It is necessary to identify pairs of strategies that are essentially the same from an operational

standpoint. We use a definition that is similar to definitions from quantum self-testing (e.g.,

Definition 2.13 in [17]).
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A unitary embedding from a 2-player strategy

Γ = (D,E, {{Rx
a}x}a, {{S

y
b }y}b, γ) (7)

to another 2-player strategy

Γ = (D,E, {{Rx

a}x}a, {{S
y

b}y}b, γ) (8)

is a pair of unitary embeddings i:D ↪→ D and j:E ↪→ E such that γ = (i ⊗ j)γ(i ⊗ j)∗,
Rx

a = i∗R
x

ai, and Sy
b = j∗S

y

b j.

Additionally, if Γ is such that D = D1 ⊗D2, and Rx
a = Gx

a ⊗ I for all a, x, then we will

call the strategy given by

(D1, E, {{Gx
a}a}x, {{S

y
b }y}b,TrD2

γ) (9)

a partial trace of Γ. We can similarly define a partial trace on the second subspace E if it is

a tensor product space.

We will say that two strategies Γ and Γ′ are congruent if there exists a sequence of

strategies Γ = Γ1, . . . ,Γn = Γ′ such that for each i ∈ {1, . . . , n − 1}, either Γi+1 is a partial

trace of Γi, or vice versa, or there is a unitary embedding of Γi into Γi+1, or vice versa. This

is an equivalence relation. Intuitively, two strategies are congruent if one can be constructed

from the other by adding or dropping irrelevant information. Note that if two strategies are

congruent then they achieve the same correlation.

3.2 Essentially classical strategies

We are ready to define the key concept in this section and to state formally our main theorem.

Definition 1 A quantum strategy (5) is said to be essentially classical if it is congruent to

one where γ commutes with Rx
a for all x and a.

Note that if the above condition holds, then applying the measurement map

X 7→
∑
x

√
Gx

aX
√
Gx

a (10)

to the system D leaves the state γ of DE unchanged.

We are interested in strategies after the application of which Bob can predict Alice’s

output given her input. This is formalized as follows. If χ1, . . . , χn are positive semidefinite

operators on some finite dimensional Hilbert space V , then we say that {χ1, . . . , χn} is perfectly

distinguishable if χi and χj have orthogonal support for any i 6= j. This is equivalent to the

condition that there exists a projective measurement on V which perfectly identifies the state

from the set {χ1, . . . , χn}.
Definition 2 A quantum strategy (5) allows perfect guessing (by Bob) if for any a, b, y,

{ρxyab}x is perfectly distinguishable.

Theorem 3 (Main Theorem) If a strategy for a complete-support game allows perfect

guessing, then it is essentially classical.

(We note that the converse of the statement is not true. This is because even in a classical

strategy, Alice’s output may depend on some local randomness, which Bob cannot perfectly

predict.)



600 Randomness in nonlocal games between mistrustful players

Before giving the proof of this result, we note the following proposition, which taken

together with Theorem 3 implies that any strategy that permits perfect guessing yields a

classical correlation.

Proposition 4 The correlation achieved by an essentially classical strategy must be classical.

Proof. We need only to consider the case that γ commutes with Rx
a for all a, x. For

each a ∈ A, let Va = CX , and let Φa:L(D)→ L(Va ⊗D) be the nondestructive measurement

defined by

Φa(T ) =
∑
x∈X
|x〉 〈x| ⊗

√
Rx

aT
√
Rx

a. (11)

Note that by the commutativity assumption, such operation leaves the state ofDE unchanged.

Since the measurements {Rx
a}x do not disturb the state of DE, Alice can copy out all of

her measurement outcomes in advance. Without loss of generality, assume A = {1, 2, . . . , n}.
Let Λ ∈ L(V1 ⊗ . . .⊗ Vn ⊗D ⊗ E) be the state that arises from applying the superoperators

Φ1, . . . ,Φn, in order, to γ. For any a ∈ {1, . . . , n}, the reduced state ΛVaE is precisely the

same as the result of taking the state γ, applying the measurement {Rx
a}x to D, and recording

the result in Va. Alice and Bob can therefore generate the correlation (pxyab ) from the marginal

state ΛV1···VnE alone (if Alice possesses V1, . . . , Vn and Bob possesses E). Since this state is

classical on Alice’s side, and therefore separable, the result follows. �.

Corollary 1 If a strategy for a complete-support game allows perfect guessing, the correlation

achieved must be classical. �

3.3 Proving Theorem 3

The proof will proceed as follows. First, we show that Alice’s measurements Ra := {Rx
a}x

induce projective measurements Qa := {Qx
a}x on Bob’s system. Next, we argue that Qa

commutes with Bob’s own measurement Sb := {Sy
b }y for any b. This allows us to isometrically

decompose Bob’s system into two subsystems E1⊗E2, such that Sb acts trivially on E2, while

E2 alone can be used to predict x given a. The latter property allows us to arrive at the

conclusion that Ra commutes with γDE1
.

We will need the following lemma, which is well-known and commonly attributed to

Tsirelson. We will only sketch the proof, and more details can be found in Appendix A

of [10]. The lemma asserts that for families of positive semidefinite operators {Mj}, {Nk}
on a finite-dimensional space V , commutativity (i.e., the condition that Mj , Nk commute for

and j, k) implies bipartiteness (i.e., the condition that {Mj} and {Nk} can be obtained as

pullbacks via a map V → V1 ⊗ V2 of operators on V1 and V2, respectively).

Lemma 1 Let {Mj}, {Nk} be positive semidefinite operators on a finite-dimensional Hilbert

space V such that MjNk = NkMj for all j, k. Then, there exists a unitary embedding i:V ↪→
V1 ⊗ V2 and and positive semidefinite operators Mj on V1 and Nk on V2 such that Mj =

i∗(M j ⊗ I)i and Nk = i∗(I⊗Nk)i for all j, k, `,m.

Proof sketch. Via the theory of von Neumann algebras, there exists an isomorphism

V ∼=
⊕
`

V` ⊗W` (12)
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under which

Mj
∼=

⊕
`

M `
j ⊗ I, (13)

Nk
∼=

⊕
`

I ⊗N `
k. (14)

Let V1 =
⊕

` V`, V2 =
⊕

`W`, and let M j =
⊕

`M
`
j , Nk =

⊕
`N

`
j . �

Proof of Theorem 3. Express Γ as in (5). Without loss of generality, we may assume

that Supp ρ = E. By the assumption that Γ allows perfect guessing, for any a, the second-

player states {ρxa}x must be perfectly distinguishable (since otherwise the post-measurement

states {ρxyab}x would not be). Therefore, we can find projective measurements {{Qx
a}x}a on

E such that

Qx
aρQ

x
a = ρxa. (15)

Note that for any fixed a, if Alice and Bob were to prepare the state γDE and Alice were

to measure with {Rx
a}x and Bob were to measure with {Qx

a}x, their outcomes would be the

same.

We have that the states

ρxyab =
√
Sy
bQ

x
aρQ

x
a

√
Sy
b (16)

ρx
′y

ab =
√
Sy
bQ

x′

a ρQ
x′

a

√
Sy
b (17)

have orthogonal support for any x 6= x′. Since Supp ρ = E, we have cI ≤ ρ for some c > 0.

Therefore, 〈√
Sy
b cQ

x
a

√
Sy
b ,
√
Sy
b cQ

x′

a

√
Sy
b

〉
= 0, (18)

which implies, using the cyclicity of the trace function,∥∥∥Qx
aS

y
bQ

x′

a

∥∥∥
2

= 0. (19)

Therefore, the measurements {Qx
a}x and {Sy

b }y commute for any a, b. (This is clear from

writing out the matrix Sy
b in block form under the subspaces determined by the projections

{Qx
a}x.)

By Lemma 1, we can find a unitary embedding i:E ↪→ E1⊗E2 and POVMs {Sy

b}y, {Q
x

a}x
on E1, E2 such that Sy

b = i∗(S
y

b ⊗ I)i and Qx
a = i∗(I⊗Qx

a)i. With

γ = (ID ⊗ i)γ(ID ⊗ i∗), (20)

the strategy Γ embeds into the strategy

Γ′ :=
(
D,E1 ⊗ E2, {{Rx

a}x}a, {S
y

b ⊗ IE2
}y}b, γ

)
.

For any fixed a, the state γ is such that applying the measurement {Rx
a}x to the system D

and the measurement {Qx

a}x to the system E2 always yields the same outcome. In particular,

if we let

τxa = TrE2

(
Q

x

aγ
)
, (21)



602 Randomness in nonlocal games between mistrustful players

then Tr[Rx′

a τ
x
a ] will always be equal to 1 if x = x′ and equal to 0 otherwise. Therefore {Rx

a}x
commutes with the operators {τxa }x, and thus also with their sum

∑
x τ

x
a = TrE2

γ.

Thus if we trace out the strategy Γ′ over the system E2, we obtain a strategy (congruent

to the original strategy Γ) in which Alice’s measurement operators commute with the shared

state. �

4 Approximate Guessing

Next we address the case where the second-player states ρxyab are not necessarily perfectly

distinguishable as x varies, but are approximately distinguishable. (Thus, if Bob were given

Alice’s input after the game was played and asked to guess her output, he could do so with

probability close to 1.) We begin by quantizing “approximate” distinguishability.

Definition 3 Let {ρi}ni=1 denote a finite set of positive semidefinite operators on a finite

dimensional Hilbert space V . Then, let

Dist{ρi} = max
∑
i

Tr(Tiρi), (22)

where the maximum is taken over all POVMs {Ti}ni=1 on V .

Note that if
∑

i Tr(ρi) = 1, and each ρi is nonzero, then this quantity has the following

interpretation: if Alice gives Bob a state from the set {ρi/Tr(ρi)} at random according to the

distribution (Tr(ρi))i, then Dist{ρi} is the optimal probability that Bob can correctly guess

the state. This quantity is well-studied (see, e.g., [24]).

When we discussed perfect distinguishability, we made use of measurements that com-

muted with a given state. In the current section we will need an approximate version of such

commutativity, and thus we make the following definition.

Definition 4 Let Φ:L(V )→ L(V ) denote a completely positive trace-preserving map over a

finite-dimensional Hilbert space V . Let β ∈ L(V ) denote a density operator on V . Then we

say that Φ is ε-commutative with β if

‖Φ(β)− β‖1 ≤ ε. (23)

Note that this relation obeys a natural triangle inequality: if Φ1 is ε1-commutative with β,

and Φ2 is ε2-commutative with β, then

‖Φ2(Φ1(β))− β‖1 ≤ ‖Φ2(Φ1(β))− Φ2(β)‖1 + ‖Φ2(β)− β‖1
≤ ‖Φ1(β)− β‖1 + ε2

≤ ε1 + ε2.

The following known proposition will be an important building block. We give a proof

that is a significant simplification of a method from Lemma 29 in [28]. (See also Lemma 2 in

[16] for a related result.)

Proposition 5 Let Λ ∈ L(A⊗B) be a density operator and {Fi}ni=1 a projective measurement

on A such that the induced states ΛB
i := TrA(FiΛ) satisfy

Dist{ΛB
i } = 1− δ. (24)

Then, the superoperator X 7→
∑

i FiXFi is (2
√
δ + δ)-commutative with ΛA := TrBΛ.
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Proof. Let α = ΛA. By assumption, there exists a POVM {Gi} on B such that∑
i

Tr[(Fi ⊗Gi)Λ] = 1− δ. (25)

By standard arguments, we can assume without loss of generality that {Gi} is a projective

measurement and that Λ is pure.e

There is a linear map M :Cs → Cr such that TrAΛ = M∗M and α = TrBΛ = MM∗. Upon

choosing an appropriate basis for A and B, we can write M with a block form determined by

the spans of {Fi} and {Gj}:

M =


M11 M12 · · · M1n

M21 M22 · · · M2n

...
. . .

Mn1 Mn2 · · · Mnn

 . (26)

Let

M =


M11 0 · · · 0

0 M22 · · · 0
...

. . .

0 0 · · · Mnn

 . (27)

Note that the probability of obtaining outcome Fi for the measurement on A and outcome

Gj for the measurement on B is given by the quantity ‖Mij‖22, and the probability that the

outcomes of the measurements disagree is exactly
∥∥M −M∥∥2

2
. We have∥∥M −M∥∥2

2
= δ. (28)

Additionally, we can compare MM
∗

to the post-measurement state
∑

i FiαFi. The latter

quantity is given by
∑

kM1kM
∗
1k 0 · · · 0

0
∑

kM2kM
∗
2k · · · 0

...
. . .

0 0 · · ·
∑

kMnkM
∗
nk

 ,
and therefore the difference (

∑
i FiαFi −MM

∗
) is equal to

∑
k 6=1M1kM

∗
1k 0 · · · 0

0
∑

k 6=2M2kM
∗
2k · · · 0

...
. . .

0 0 · · ·
∑

k 6=nMnkM
∗
nk,


eWe can construct an enlargement B ⊆ B such that PBGiPB = Gi for some projective measurement {Gi}
on B, and we can construct an additional Hilbert space E and a pure state Λ ∈ L(A ⊗ B ⊗ E) such that
TrEΛ = Λ. The joint probability distribution of the measurements {Fi} and {Gi ⊗ IE} on Λ are the same as
those of {Fi} and {Gi} on Λ.
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which is a positive semidefinite operator whose trace is exactly
∑

i6=j ‖Mij‖22 = δ. Thus,∥∥∥∥∥∑
i

FiαFi −MM
∗
∥∥∥∥∥
1

= δ. (29)

Therefore we have the following, using the Cauchy-Schwarz inequality:∥∥∥∥∥α−∑
i

FiαFi

∥∥∥∥∥
1

=

∥∥∥∥∥MM∗ −
∑
i

FiαFi

∥∥∥∥∥
1

=

∥∥∥∥∥M(M −M∗) + (M −M)M
∗

+MM
∗ −

∑
i

FiαFi

∥∥∥∥∥
1

≤
∥∥∥M(M −M∗)

∥∥∥
1

+
∥∥∥(M −M)M

∗
∥∥∥
1

+

∥∥∥∥∥MM
∗ −

∑
i

FiαFi

∥∥∥∥∥
1

≤ ‖M‖2
∥∥∥M −M∗∥∥∥

2
+
∥∥M −M∥∥

2

∥∥∥M∗∥∥∥
2

+ δ

≤ 1 ·
√
δ +
√
δ · 1 + δ

≤ 2
√
δ + δ,

as desired. �.

The previous proposition showed that if a measurement by Alice is highly predictable to

Bob, then it does not disturb Alice’s marginal state by much. The next corollary asserts

Alice’s measurement must also approximately preserve any existing classical correlation that

Bob has with Alice’s state.

Corollary 2 Let Λ ∈ L(A⊗B ⊗ C) be a density operator which is classical on C. (That is,

Λ =
∑

k Λk ⊗ |ck〉 〈ck| for some orthonormal basis {c1, . . . , ck} ⊆ C.) Suppose that {Fi}ni=1 is

a projective measurement on A such that the induced states ΛBC
i := TrA(FiΛ) satisfy

Dist{ΛBC
i } = 1− δ. (30)

Then, the superoperator X 7→
∑

i(Fi ⊗ I)X(Fi ⊗ I) is (2
√
δ + δ)-commutative with ΛAC .

Proof. Let C be a Hilbert space which is isomorphic to C, and let Λ ∈ L(A⊗B⊗C⊗C)

be the state that arises from Λ by copying out along the standard basis: |ci〉 7→ |cici〉.
This copying leaves the state ABC unaffected, so assumption (30) still applies. Thus by

Proposition 5, the operator X 7→
∑

i(Fi ⊗ I)X(Fi ⊗ I) is (2
√
δ + δ)-commutative with ΛAC ,

and the same holds for the isomorphic state ΛAC . �.

Now we prove a preliminary version of our main result. We assume that the states {ρxyab}x
are highly distinguishable on average, and then deduce that Alice’s and Bob’s correlation

must be approximately classical.
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Proposition 6 Let

Γ = (D,E, {{Rx
a}x}a, {{S

y
b }y}b, γ) (31)

be a two-player strategy. Let

δ = 1− 1

|A||B|
∑
aby

Dist{ρxyab | x ∈ X}. (32)

Then, there exists a classical correlation (pxyab ) such that

1

|A||B|
∑
abxy

|pxyab − p
xy
ab | ≤

√
3δ |A| . (33)

Proof. We can assume without loss of generality that the measurements {{Rx
a}x}a are

all projective. We begin with the same strategy as in the proof of Proposition 4. For each

a ∈ A, let Va = CX , and let Φa:L(D) → L(Va ⊗ D) be the nondestructive measurement

defined by

Φa(T ) =
∑
x∈X
|x〉 〈x| ⊗Rx

aTR
x
a. (34)

Let ΦVa
a = TrD ◦ Φa and let ΦD

a = TrVa
◦ Φa. Likewise let Wb = CY for each b ∈ B, let

Ψb:L(E)→ L(Wb ⊗ E) be the nondestructive measurement defined by

Ψb(T ) =
∑
y∈Y
|y〉 〈y| ⊗

√
Sy
b T
√
Sy
b . (35)

Let ΨWb

b = TrE ◦Ψb and ΨE
b = TrWb

◦Ψb.

Assume without loss of generality that A = {1, 2, . . . , n}. Let Λ ∈ L(V1⊗ . . .⊗Vn⊗D⊗E)

be the state that arises from applying the superoperators Φ1 ⊗ IE , . . . ,Φn ⊗ IE , in order, to

γ. Let (pxyab ) be the correlation that arises from Alice and Bob sharing the reduced state

ΛV1...VnE , Alice obtaining her output on input a from the register Va, and Bob obtaining

his output from his prescribed measurements {{Sy
b }y}b to E. Since the state ΛV1...VnE is a

separable state over the bipartition (V1 . . . Vn | E), the correlation (pxyab ) is classical.

Let

δab := 1−
∑
y

Dist{ρxyab | x ∈ X}. (36)

If Alice and Bob share the measured state (ID ⊗ Ψb)(γ) partitioned as (D | EWb), then

the probability that Bob can guess Alice’s outcome when she measures with {Rx
a}x is given

by (1 − δab). By Corollary 2, the operator (ΦD
a ⊗ IWb

) is (2
√
δab + δab)-commutative with

(ID ⊗ΨWb

b )γ.

We wish to compare (pxyab ) and (pxyab ). For any a, b the probability vector (pxyab )xy describes

the joint distribution of the registers VaWb under the density operator

((ΦVa
a ◦ ΦD

a−1 ◦ ΦD
a−2 ◦ · · · ◦ ΦD

1 )⊗ΨWb

b )γ, (37)
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which by the previous paragraph is within trace-distance
∑a−1

i=1 (2
√
δab + δab) from the distri-

bution described by (pxyab )xy:

(ΦVa
a ⊗ΨWb

b )γ. (38)

Thus we have the following, in which we use the Cauchy-Schwarz inequality:

∑
abxy

|pxyab − p
xy
ab | ≤

∑
ab

a−1∑
i=1

(2
√
δib + δib) (39)

=
∑
ab

(n− a)(2
√
δab + δab). (40)

≤
∑
ab

(n− a)3
√
δab (41)

≤ 3

√∑
ab

(n− a)2
√∑

ab

δab (42)

= 3

√∑
ab

(n− a)2
√
n|B|δ (43)

= 3

√
|B|
∑
a

(n− a)2
√
n|B|δ (44)

= 3|B|
√∑

a

(n− a)2
√
nδ (45)

≤ 3|B|
√
n3/3

√
nδ, (46)

which simplifies to the desired bound. �.

Proposition 6 is useful for addressing any game (q,H) where the distribution q is uniform

(i.e., q(a, b) = 1/(|A||B|).) We prove the following theorem which applies to more general

games.

Theorem 7 Let G = (q,H) be a complete-support game and let

Γ = (D,E, {{Rx
a}x}a, {{S

y
b }y}b, γ) (47)

be a two-player strategy. Let

ε = 1−
∑
ab

q(a, b)
∑
y

Dist{ρxyab | x ∈ X}. (48)

Then, the score achieved by Γ exceeds the best classical score ωc(G) by at most CG
√
ε, where

CG = (3/2)

√∑
ab

q(b) (q(a | b))−1. (49)

Proof. Define pxyab and δab as in Proposition 6. We have the following (again using the

Cauchy-Schwartz inequality):∑
abxy

q(a, b)|pxyab − p
xy
ab | (50)
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≤
∑
ab

q(a, b)

a−1∑
i=1

(2
√
δib + δib) (51)

≤
∑
ab

q(a, b)

a−1∑
i=1

3
√
δib (52)

=
∑
ab

(
n∑

k=a+1

q(k, b)

)
3
√
δab (53)

=
∑
ab

(∑n
k=a+1 q(k, b)√

q(a, b)

)
3
√
q(a, b)δab (54)

≤ 3

√√√√∑
ab

(
∑n

k=a+1 q(k, b))
2

q(a, b)

√∑
ab

q(a, b)δab (55)

≤ 3

√√√√∑
ab

(
∑n

k=a+1 q(k, b))
2

q(a, b)

√
ε (56)

≤ 3

√∑
ab

q(b)2

q(a, b)

√
ε (57)

≤ 2CG

√
ε (58)

Note that for any probability vectors t = (t1, . . . , tm) and s = (s1, . . . , sm) and any arbitrary

vector (u1, . . . , um) ∈ [0, 1]m, we have∑
i

ui(ti − si) ≤
1

2

∑
|ti − si| . (59)

Applying this fact to the probability vectors (q(a, b)pxyab )abxy and (q(a, b)pxyab )abxy and the

vector (H(a, b, x, y))abxy implies that the difference between the score achieved by (pxyab ) and

the score achieved by (pxyab ) is no more than half the quantity (58), which yields the desired

result. �.

5 Discussion

When two players achieve a superclassical score at a nonlocal game, their outputs must be

at least partially unpredictable to an outside party, even if that party knows the inputs that

were given. This fact is one of the bases for randomness expansion from untrusted devices

[4], where a user referees a nonlocal game repeatedly with 2 or more untrusted players (or,

equivalently, 2 or more untrusted quantum devices) to expand a small uniformly random seed

S into a large output string T that is uniform conditioned on S. The players can exhibit

arbitrary quantum behavior, but it is assumed that they are prevented from communicating

with the adversary. At the center of some of the discussions of randomness expansion (e.g.,

[21]) is the fact that the min-entropy of the outputs of the players can be lower bounded by

an increasing function of the score achieved at the game.

In this paper we have proven an analogous result for the case where one player in a game

wishes to generate randomness that is unknown to the other player — in other words, we
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have achieved (one-shot) blind randomness expansion. (The second party, Bob, is “blind”

to the randomness generated by Alice.) We have also proven a general rate curve for any

game G, which relates the score achieve at G to the predictability of Alice’s output from the

perspective of Bob – specifically, if G is a complete support game and Alice and Bob achieve

score w, then Bob’s probability of guessing her output given her input is at most

fG(w) =

{
1− (w − ωc(G))2/CG if w ≥ ωc(G)

1 otherwise,
(60)

where CG denotes the constant defined in equation (49).

A possible next step would be to prove a multi-shot version of Theorem 7, e.g., a proof that

Alice’s outputs across multiple rounds have high smooth min-entropy from Bob’s perspective.

With the use of a quantum-proof randomness extractor (e.g., [9]) this would imply that Alice

has the ability to generate uniformly random bits, known only to her, through interactions

with Bob. In the device-independent setting, this would mean that one device could be be

reused in multiple iterations of randomness expansion without affecting the security guarantee,

and in particular would decrease the minimum number of quantum devices needed to perform

unbounded randomness expansion from four (as in [19, 3]) down to three.

The recent entropy accumulation theorem [11] proves lower bounds on smooth min-entropy

in various scenarios where a Bell inequality is violated. It will be interesting to see if it can

be generalized to cover blind randomness expansion as well. (The current results apply under

a Markov assumption which is not satisfied in our case.)

A corollary of our result is that, for any complete-support game G, the range of scores

that certify randomness against a third party are exactly the same as the range of scores that

certify randomness for one player against the second — in both cases, any superclassical score

is adequate. We point out, however, that the certified min-entropy can be different. A simple

example of this is the Magic Square game, where Alice and Bob are given inputs a, b ∈ {1, 2, 3}
respectively, and must produce outputs (x1, x2, x3), (y1, y2, y3) ∈ {0, 1}3 respectively which

satisfy

x1 ⊕ x2 ⊕ x3 = 0, (61)

y1 ⊕ y2 ⊕ y3 = 1, (62)

xb = ya. (63)

Self-testing [30] for the Magic Square game implies that if Alice and Bob achieve a perfect

score, Alice’s output contains two bits of perfect randomness from the perspective of a third

party, but only one perfect bit of randomness from the perspective of Bob. Optimizing the

relationship between the game score and min-entropy in the blind scenario is an open problem.

A potentially useful aspect of Corollary 1 is that it contains a notion of certified erasure

of information. For the example of the Magic Square game mentioned above, if Bob were

asked before his turn to guess Alice’s output given her input, he could do this perfectly. (The

optimal strategy for the Magic Square game uses a maximally entangled state and projective

measurements, so each party’s measurement outcomes can be perfectly guessed by the other

player.) Contrary to this, when Bob is compelled to carry out his part of the strategy before

Alice’s input is revealed, he loses the ability to perfectly guess Alice’s output. Requiring a

superclassical score from Alice and Bob amounts to forcing Bob to erase information. Different
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variants of certified erasure are a topic of current study [25, 14, 23]. An interesting research

avenue is to determine the minimal assumptions under which certified erasure is possible.

Finally, we note that the scenario in which the second player tries to guess the first player’s

output after computing his own output fits the general framework of sequential nonlocal

correlations [13]. In [8] such correlations are used for ordinary (non-blind) randomness

expansion. A next step is to explore how our techniques could be applied to more general

sequential nonlocal games.
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randomness certification using sequences of measurements. Phys. Rev. A, 95:020102, Feb 2017.

9. Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner. Trevisan’s extractor in
the presence of quantum side information. SIAM J. Comput, 41(4):915–940, 2012.

10. Andrew C. Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie Wehner. The quantum
moment problem and bounds on entangled multi-prover games. arXiv:0803.4373, 2008.

11. Frederic Dupuis, Omar Fawzi, and Renato Renner. Entropy accumulation. arXiv:1607.01796,
2016.

12. Serge Fehr, Ran Gelles, and Christian Schaffner. Security and composability of randomness ex-
pansion from Bell inequalities. Phys. Rev. A, 87:012335, Jan 2013.

13. Rodrigo Gallego, Lars Erik Wurflinger, Rafael Chaves, Antonio Acin, and Miguel Navascues.
Nonlocality in sequential correlation scenarios. New Journal of Physics, 16(033037), 2014.

14. Jedrzej Kaniewski and Stephanie Wehner. Device-independent two-party cryptography secure
against sequential attacks. New Journal of Physics, 18, May 2016.

15. Julia Kempe, Hirotada Kobayashi, Keiji Matsumoto, Ben Toner, and Thomas Vidick. Entangled
games are hard to approximate. SIAM Journal on Computing, 40(3):848–877, 2011.
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