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Although it is believed unlikely that NP-hard problems admit efficient quantum algo-
rithms, it has been shown that a quantum verifier can solve NP-complete problems
given a “short” quantum proof; more precisely, NP ⊆ QMAlog(2) where QMAlog(2) de-
notes the class of quantum Merlin-Arthur games in which there are two unentangled

provers who send two logarithmic size quantum witnesses to the verifier. The inclusion
NP ⊆ QMAlog(2) has been proved by Blier and Tapp by stating a quantum Merlin-Arthur
protocol for 3-coloring with perfect completeness and gap 1

24n
6 . Moreover, Aaronson et

al. have shown the above inclusion with a constant gap by considering Õ(
√

n) witnesses
of logarithmic size. However, we still do not know if QMAlog(2) with a constant gap
contains NP. In this paper, we show that 3-SAT admits a QMAlog(2) protocol with the
gap 1

n
3+ǫ for every constant ǫ > 0.
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1. Introduction

QMA is the class of problems that can be solved by a quantum polynomial time verifier

(Arthur), given a polynomial size quantum proof by Merlin. The notion of quantum nonde-

terminism was first discussed by Knill [1], and then studied by Kitaev [2] and Watrous [3].

Later by the profound result of Kiteav et al. [4], who showed that the local Hamiltonian

problem is QMA-complete, QMA was turned to an important complexity class. Although

QMA and the local Hamiltonian problem are considered as the quantum analogue of NP

and 3-SAT, respectively, there are other types of quantum Merlin-Arthur games without any

classical analogue.

In the classical case, k Merlins, each one of which sends Arthur his own witness, is the

same as one Merlin who sends all the messages together. However, in the quantum case we

may consider the case where the k Merlins are not entangled and then send a separable state

to Arthur. Thus, we cannot argue that one Merlin can send all the witnesses since he may

cheat by sending an entangled state. So we obtain the non-trivial complexity class QMA(k)

which has been first defined by Kobayashi et al. [5].

By definition, we have QMA = QMA(1) ⊆ QMA(2) ⊆ QMA(3) ⊆ · · ·, so a question

that arises is that whether we have equality somewhere or whether all the inclusions are

strict. Also, the gap amplification problem is not an easy one for QMA(k). The first idea
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toward proving gap amplification is to ask each Merlin to send polynomially many copies

of his witness and then repeat the verification procedure many times. But this idea fails

because one of the Merlins may cheat by entangling his copies. Then after the first round of

the procedure we end up with some entanglement between different messages, which is not

allowed. So there are two important questions regarding QMA(k): first, is there some k such

that QMA(k + 1) = QMA(k), and second, can we amplify the gap in QMA(k) protocols? It

is interesting that these two questions are related [5, 6, 7]; if we could amplify the error in

QMA(k) protocols, then QMA(2) = QMA(k), for any k ≥ 2. Also, it has been proved by

Aaronson et al. [7] that we can amplify the gap if the Weak Additivity Conjecture holds.

Other than changing the number of Merlins, we can consider the case where the size of

the witnesses is less than poly(n). For instance, in the classical case log(n)-size witnesses

never help the verifier to solve any problem beyond P because he can check all such witnesses

in polynomial time. But this argument fails in the quantum case and we can define the

complexity classes QMAlog(k). Although the strong gap amplification protocol of [13] for

QMA = QMA(1) shows that for k = 1 we have QMAlog = BQP, which is the same situation

as in the classical case, we do not know any non-trivial upper bound for QMAlog(2).

Recently, Blier and Tapp [8] have shown that QMAlog(2) with perfect completeness and

soundness 1 − 1
24n6 contains the 3-coloring problem, turning this complexity class to an in-

teresting one which contains both BQP and NP. The only issue regarding this result is that

the gap should be small ( 1
24n6 ). In contrast, Aaronson et al. [7] have proved that NP has a

constant gap quantum Merlin-Arthur protocol in which there are Õ(
√
n) Merlins each one of

which sends a log(n)-qubit state.

In this paper, we show that 3-SAT is in QMAlog(2) with the gap 1
n3+ǫ for any constant

ǫ > 0. Comparing to [8], we improve the gap at the cost of losing perfect completeness.

1.1. Main idea

Suppose that Arthur is given a quantum state over two registers of size log(n), and wants to

recognize whether this state is entangled or not. We do not know any algorithm to recog-

nize entanglement, but if two unentangled Merlins give Arthur two witnesses, by comparing

them to his state he can check whether the state is separable or not. It means that a two-

prover Merlin-Arthur protocol can recognize separable states. On the other hand, Gurvits

[9] has shown that given the classical description of a quantum state over two registers, it

is NP-complete to decide whether the state is separable or not. Therefore, we have a way

of comparing QMAlog(2) and NP. This is the main idea behind our result, but it should be

slightly changed in order to obtain a larger gap.

2. Definitions and basic properties

Through this paper we assume the basic knowledge on theory of quantum computing [10] and

complexity theory [11, 12].

2.1. QMAlog(2)

Definition 1 Let k be an integer, and a = a(n), b = b(n) be functions such that, 0 ≤ b <

a ≤ 1. Also, let f(n) be a function of n. Then the complexity class QMAf(n)(k, a, b) consists
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of languages L for which there exists a quantum polynomial time verifier V such that for any

x ∈ {0, 1}n,

• Completeness: if x ∈ L, then there are O(f(n))-qubit states |ψ1〉, . . . , |ψk〉 such that

Pr [V accepts |x〉|ψ1〉 . . . |ψk〉] ≥ a.

• Soundness: if x /∈ L, then for any O(f(n))-qubit states |ψ1〉, . . . , |ψk〉 we have

Pr [V accepts |x〉|ψ1〉 . . . |ψk〉] ≤ b.

Here, by convention when the number k or function f(n) are not mentioned we mean that

k = 1 and f(n) is a polynomial of n. Also, we let QMAf(n)(k) to be

QMAf(n)(k) =
⋃

a(n),b(n)

QMAf(n)(k, a, b), (1)

where the union is taken over all functions a(n) and b(n) such that 0 ≤ b(n) < a(n) ≤ 1, and

a(n) − b(n) > n−c holds for sufficiently large n and some constant c.

Other than the usual case f(n) = poly(n), f(n) = log(n) is also of interest. Marriott and

Watrous [13] have considered f(n) = log(n) for the first time.

Theorem 1 [13] QMAlog = BQP.

Proof of this theorem is based on a gap amplification argument without increasing the

size of witness, which is not known for QMA(2). So we cannot argue that QMAlog(2) is the

same as BQP. Indeed, it is a non-trivial complexity class due to the result of Blier and Tapp.

Theorem 2 [8] 3-coloring belongs to QMAlog(2, 1, 1 − 1
24n6 ).

2.2. 2-out-of-4-SAT

To prove the containment NP ⊆ QMAlog(2) we should find a protocol to solve some NP-

complete problem in QMAlog(2). Although the most well-known such problem is 3-SAT, it is

convenient for us to use a variant of this problem called 2-out-of-4-SAT.

Any instance of 2-out-of-4-SAT consists of some clauses each of which contains exactly four

literals, and is satisfied if in each clause exactly two of the literals are true. 2-out-of-4-SAT

can also be expressed as follows.

The clauses of the problem are vectors |a1〉, |a2〉, . . . , |am〉 of the form

|ak〉 =
n∑

j=1

ckj |j〉, (2)

where ckj = 0 or ± 1
2 , and for each k there are exactly four non-zero ckj , 1 ≤ j ≤ n. We say

that the j-th variable appears in clause |ak〉 if ckj is non-zero. Now the problem is to decide

whether there exists a vector |ψ〉 orthogonal to all |ak〉’s and of the form

|ψ〉 =

n∑

j=1

± 1√
n
|j〉. (3)
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Lemma 1 [7] There exists a polynomial time Karp reduction that maps a 3-SAT instance α

to a 2-out-of-4-SAT instance β such that

• If α has n variables and n′ ≥ n clauses, then β has O(n′poly log(n′)) variables and

O(n′poly log(n′)) clauses.

• Every variable of β occurs in at most c clauses, for some constant c.

• The reduction is a PCP, meaning that satisfiable instances map to satisfiable instances,

while unsatisfiable instances map to instances in which at most a constant fraction of

the clauses can be satisfied at the same time.

3. Complexity of recognizing entanglement

Let H be a hermitian matrix of polynomial size (over log(n) qubits). Then, the problem of

maximizing 〈φ|H|φ〉 over all states |φ〉 is an eigenvalue problem and can be solved efficiently.

Now assume that we restrict |φ〉 to be a separable state. (Here we assume that H acts over

two registers.) Then the above maximization is an NP-hard problem due to the following

observation by Gurvits [9].

Let H be of the form

H =




0 B1 · · · Bs
B1 0 · · · 0
...

...
. . .

...
Bs 0 . . . 0


 , (4)

where Bj , 1 ≤ j ≤ s, is a hermitian matrix. Observe that

〈ψ|〈φ|H|φ〉|ψ〉 = 〈φ|H(|ψ〉)|φ〉,

where

H(|ψ〉) =




0 〈ψ|B1|ψ〉 · · · 〈ψ|Bs|ψ〉
〈ψ|B1|ψ〉 0 · · · 0

...
...

. . .
...

〈ψ|Bs|ψ〉 0 . . . 0


 . (5)

This means that the maximum of 〈ψ|〈φ|H|φ〉|ψ〉, for a fixed |ψ〉, is equal to the maximum

eigenvalue ofH(|ψ〉). H(|ψ〉) is a rank-two matrix and its eigenvalues can be simply computed.

Hence,

max
|φ〉|ψ〉

〈ψ|〈φ|H|φ〉|ψ〉 = max
|ψ〉

[
〈ψ|B1|ψ〉2 + · · · + 〈ψ|Bs|ψ〉2

]1/2
. (6)

Gurvits [9] has referred to [14] (which states that estimating the right hand side of Eq. (6) is

NP-hard) and concluded the NP-hardness of computing the left hand side of Eq. (6).

In this paper, we take the advantage of Eq. (6) in another direction. Suppose two

(unentangled) quantum provers send the state |φ〉|ψ〉 to a quantum polynomial time verifier.

Then the verifier can estimate 〈ψ|〈φ|H|φ〉|ψ〉 (using the idea of [4, 15]) or equivalently the
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right hand side of Eq. (6). Thus, we conclude that QMAlog(2) contains NP. Here we slightly

change this idea in order to obtain a larger gap in the QMAlog(2) protocol.

4. NP ⊆ QMAlog(2)

In this section we prove our main result.

Theorem 3 For every constant ǫ > 0, 3-SAT is in QMAlog(2, a, a − 1
n3+ǫ ) for some a inde-

pendent of ǫ.

To prove this theorem we give a Merlin-Arthur protocol for the 2-out-of-4-SAT problem.

This protocol consists of two parts: first, given a satisfying assignment we should check

whether it is a proper state, i.e., a state of the form of Eq. (3); second, we should check

whether it is orthogonal to all vectors in the 2-out-of-4-SAT instance. We state each one of

these parts in a separate lemma.

Lemma 2 Let ǫ > 0 be a constant. Then there exists a Merlin-Arthur protocol in which

Arthur upon receiving the state |φ〉|ψ〉 can check whether |ψ〉 is (5n−ǫ/4)-close, in trace dis-

tance, to a proper state or not. More precisely, if |ψ〉 is proper (and |φ〉 is chosen correctly),

then Arthur accepts with probability

1

2
+

1

3n

(
2 − 2

n

)1/2

, (7)

and if it is not (5n−ǫ/4)-close to a proper state, then he accepts with probability at most

1

2
+

1

3n

(
2 − 2

n

)1/2

− 1

20n3+ǫ
. (8)

Note that the acceptance probability of this protocol is never more than Eq. (7).

Now consider an instance α of 3-SAT. Arthur can reduce α to an instance β of 2-out-of-

4-SAT with the conditions in Lemma 1, and ask Merlin to send him a satisfying assignment

of β. Then if β is satisfiable, Arthur by measuring Merlin’s state can verify whether it is

orthogonal to |ak〉’s or not. This idea is elaborated by Aaronson et al. [7] to give a protocol

for checking whether a given proper state is a satisfying assignment for β or not.

Lemma 3 [7] Let us assume that Merlin is restricted to send a proper state. Then Arthur

can solve 3-SAT with perfect completeness and constant soundness.

The following corollary is a straightforward consequence of this lemma.

Corollary 1 [7] Let us assume that Merlin is restricted to send a state that is δ-close, in

trace distance, to a proper state for a constant δ > 0. Then Arthur can solve 3-SAT with

perfect completeness and constant soundness.
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Now we prove Theorem 3 assuming Lemma 2.

Proof of Theorem 3: Given a 3-SAT instance α of size n (for a sufficiently large n), Arthur

reduces it to a 2-out-of-4-SAT instance β over m variables according to Lemma 1, and asks

Merlins to send him |φ〉|ψ〉 where |ψ〉 is (a proper state and) a satisfying assignment for β.

Then he applies one of the tests in Lemmas 2 or 3, each with probability 1/2.

If α is satisfiable, then Arthur accepts with probability

a =
1

2
+

1

2

[
1

2
+

1

3m

(
2 − 2

m

)1/2
]
. (9)

If it is not satisfiable, then there are two cases. If |ψ〉 is not (5m−ǫ′/4)-close to a proper state,

then Arthur accepts with probability at most

b1 =
1

2
+

1

2

[
1

2
+

1

3m

(
2 − 2

m

)1/2

− 1

20m3+ǫ′

]
. (10)

Also, if |ψ〉 is (5m−ǫ′/4)-close (and then 2−10-close) to a proper state (which is not a satisfying

assignment), then he accepts with probability at most

b2 =
1

2
s+

1

2

[
1

2
+

1

3m

(
2 − 2

m

)1/2
]
, (11)

where the constant s denotes the soundness of the test of Corollary 1 corresponding to δ =

2−10. Here we use the fact that the maximum acceptance probability of the protocol of

Lemma 2 is given by Eq. (7).

Now observe that b2 < b1 for sufficiently large m. Therefore, 3-SAT is in QMAlog(2, a, b),

where

b =
1

2
+

1

2

[
1

2
+

1

3m

(
2 − 2

m

)1/2
]
− 1

n3+ǫ
= a− 1

n3+ǫ
. (12)

Here we replace ǫ′ with ǫ to consider the poly-logarithmic blowup in the size of problem by

reducing it from a 3-SAT instance to a 2-out-of-4-SAT instance, and to eliminate the constants

appeared in Lemma 2. 2

So the only remaining part is the proof of Lemma 2.

4.1. Proof of Lemma 2

Consider a Hilbert space with the orthonormal basis {|1〉, . . . , |n〉}. For any 1 ≤ j < l ≤ n

define the hermitian matrix

Bjl = |j〉〈l| + |l〉〈j|,
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and let

H =




0 B1,2 · · · B(n−1)n

B1,2 0 · · · 0
...

...
. . .

...
B(n−1)n 0 · · · 0


 , (13)

where all Bjl, 1 ≤ j < l ≤ n, appear as a submatrix of H.

We show that the maximum of 〈ψ|〈φ|H|φ〉|ψ〉 over all states |ψ〉 and |φ〉 occurs when |ψ〉
is a proper state. In this case, given the state |φ〉|ψ〉 one can estimate 〈ψ|〈φ|H|φ〉|ψ〉 in order

to check whether |ψ〉 is a proper state or not. However, H is not a measurement operator

and it is not clear how we can estimate 〈ψ|〈φ|H|φ〉|ψ〉. So we need some modifications.

It is easy to see that λ 6= 0 is an eigenvalue of H iff λ2 is an eigenvalue of
∑
j,lB

2
jl. Then,

‖H‖∞, the infinite-norma of matrix H, satisfies

‖H‖2
∞ = ‖

∑

j,l

B2
jl‖∞ ≤

∑

j,l

‖Bjl‖2
∞ =

(
n

2

)
≤ n2.

Therefore, 1
2I + 1

3nH is a positive semi-definite matrix (and in fact an O(log(n))-local Hamil-

tonian) with norm ‖ 1
2I + 1

3nH‖∞ < 1. Thus, by the techniques presented in [4, 15], having

the state |φ〉|ψ〉 Arthur can throw a coin with probability of head being

〈ψ|〈φ|
(1

2
I +

1

3n
H

)
|φ〉|ψ〉, (14)

and accept if it is head. Hence, by Eq. (6), if |φ〉 is the right state, the probability of

acceptance is equal to

1

2
+

1

3n
max
|ψ〉




∑

j,l

〈ψ|Bjl|ψ〉2



1/2

. (15)

Now we need the following lemma.

Lemma 4
∑
j,l〈ψ|Bjl|ψ〉2 ≤ 2 − 2

n , and equality holds iff |ψ〉 is a proper state. Also, for

sufficiently large n if
∑

j,l

〈ψ|Bjl|ψ〉2 ≥ 2 − 2

n
− 1

n2+ǫ
, (16)

then |ψ〉 is (5n−ǫ/4)-close to a proper state in trace distance.

Using this lemma, if |ψ〉 is a proper state, the probability of acceptance is equal to

1

2
+

1

3n

(
2 − 2

n

)1/2

, (17)

and if it is greater than

1

2
+

1

3n

(
2 − 2

n

)1/2

− 1

20n3+ǫ
, (18)

a‖X‖∞ denotes the maximum eigenvalue of |X| =
√

XX†.



148 NP vs QMAlog(2)

then |ψ〉 is (5n−ǫ/4)-close to a proper state. 2

So it remains to prove Lemma 4.

Proof of Lemma 4: Let

|ψ〉 =
n∑

j=1

xj |j〉 (19)

be a normalized state. Then

∑

j,l

〈ψ|Bjl|ψ〉2 =
∑

j<l

(xjxl + xjxl)
2

=
∑

j<l

(
x2
jx

2
l + x2

jx
2
l + 2|xj |2|xl|2

)

=
( ∑

j

x2
j

)( ∑

j

x2
j

)
−

∑

j

|xj |4 + 2
∑

j<l

|xj |2|xl|2

= |
∑

j

x2
j |2 +

( ∑

j

|xj |2
)2 − 2

∑

j

|xj |4, (20)

where x denotes the complex conjugate of the number x.

Using equation
∑n
j=1 |xj |2 = 1 we obtain the inequalities

∑

j

|xj |4 ≥ 1

n
(21)

and

|
∑

j

x2
j |2 ≤ 1. (22)

Hence, combining with Eq. (20) we find that
∑
j,l 〈ψ|Bjl|ψ〉2 ≤ 2 − 2

n , and equality holds iff

both Eqs. (21) and (22) are equalities, i.e., for any 1 ≤ j ≤ n

x2
j =

1

n
eiθ, (23)

for a constant θ, or equivalently iff |ψ〉 is a proper state.

Now assume that Eq. (16) holds; we show that |ψ〉 is close to a proper state. By Eq. (20)

we have

∑

j,l

〈ψ|Bjl|ψ〉2 = |
∑

j

x2
j |2 +

( ∑

j

|xj |2
)2 − 2

∑

j

|xj |4 ≥ 2 − 2

n
− 1

n2+ǫ
. (24)

So comparing to Eqs. (21) and (22) we find that

∑

j

|xj |4 ≤ 1

n
+

1

n2+ǫ
, (25)
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and

|
∑

j

x2
j |2 ≥ 1 − 1

n2+ǫ
. (26)

Observe that

∑

j

(
|xj |2 −

1

n

)2

=
∑

j

(
|xj |4 +

1

n2
− 2

n
|xj |2

)
=

∑

j

|xj |4 −
1

n
. (27)

Therefore, by Eq. (25) for every j

| |xj |2 −
1

n
| ≤ 1

n1+δ
, (28)

where δ = ǫ/2, and then

| |xj | −
1√
n
| ≤

√
n

n1+δ
. (29)

Also, using Eq. (26) we have

( ∑

j

|xj |2
)2 − |

∑

j

x2
j |2 ≤ 1

n2+ǫ
, (30)

and since

(
∑

j

|xj |2)2 − |
∑

j

x2
j |2 = 2

∑

j<l

(|xjxl|2 − Rex2
j x̄

2
l ), (31)

and |xjxl|2 − Rex2
j x̄

2
l is always non-negative we obtain

|xjxl|2 − Rex2
jx

2
l ≤

1

n2+ǫ
, (32)

for every j and l.

Now let xj = sjrje
iθj , where sj ∈ {+1,−1}, rj is a non-negative real number, and

−π
2 < θj ≤ π

2 . Then Eq. (29) is equivalent to

|rj −
1√
n
| ≤

√
n

n1+δ
. (33)

Also, by Eqs. (28) and (32)

1 − Re e2i(θj−θl) ≤ 1

n2+ǫ

( 1

n
− 1

n1+δ

)−2
= (nδ − 1)−2 ≤ 2

nǫ
, (34)

for sufficiently large n. Without loss of generality, we assume that θ1 = 0; thus for every j we

have

1 − Re e2iθj ≤ 2

nǫ
, (35)

and since −π
2 < θj ≤ π

2 ,

1 − Re eiθj ≤ 2

nǫ
. (36)
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Now using (Re eiθj )2 + (Im eiθj )2 = 1, it is easy to see that

|1 − eiθj | ≤ 2

nδ
. (37)

Therefore, by Eqs. (33) and (37)

| rjeiθj − 1√
n
| ≤ |rj −

1√
n
| + |ri(1 − eiθj )|

≤
√
n

n1+δ
+

(
1√
n

+

√
n

n1+δ

)
2

nδ
, (38)

and then

| rjeiθj − 1√
n
| ≤ 10

√
n

n1+δ
. (39)

Now define the proper state

|ψ′〉 =
∑

j

sj√
n
|j〉. (40)

We have

| 〈ψ′|ψ〉 | = |
∑

j

1√
n
s2jrje

iθj |

=
1√
n
|
∑

j

rje
iθj |

≥ 1√
n


√

n− |
∑

j

(
rje

iθj − 1√
n

)
|




≥ 1 − 1√
n

∑

j

|rjeiθj − 1√
n
|. (41)

Using Eq. (39) we obtain

| 〈ψ′|ψ〉 | ≥ 1 −
√
n

10
√
n

n1+δ
= 1 − 10

nδ
. (42)

Therefore,

‖ |ψ〉〈ψ| − |ψ′〉〈ψ′| ‖tr =
(
1 − |〈ψ′|ψ〉|2

)1/2 ≤
(

20

nδ

)1/2

< 5n−δ/2. (43)

We are done. 2

5. Conclusion

Although the gap in our QMAlog(2) protocol for 3-SAT is larger than the gap in the proof

of Blier and Tapp ( 1
n3+ǫ versus 1

24n6 ), their protocol is one-sided error. So one direction to

improve this result is to turn it into a protocol with perfect completeness.

Another open question is that whether the optimal gap depends on n, or whether there

exists a constant gap QMAlog(2) protocol for NP. This question is related to the problem of
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whether recognizing states that are δ-close to a separable state, for some constant δ > 0, is

NP-hard or not.
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