
Journal of Web Engineering, Vol. 17, No.3&4 (2018) 270-283

© The Authors

HIDDEN WEBPAGES DETECTION USING DISTRIBUTED LEARNING

AUTOMATA

MANISH KUMAR

PEC University of technology, Chandigarh India

manishkamboj3@gmail.com

RAJESH BHATIA

PEC University of technology, Chandigarh India

rbhatiapatiala@gmail.com

Received July 7, 2017

Revised January 22, 2018

Webpages directly connected to each other on the Web can be reached easily by following hyperlinks. Those

webpages that are not linked by hyperlinks comprises hidden Web and it is challenging to find them.

Furthermore, most of webpages in hidden Web are generated dynamically. This paper proposes first time an

algorithm to find webpages in hidden Web using distributed learning automata. Learning automata use its

self-learning characteristic of taking action based on the action probabilities using <keyword-value> pairs.

These actions may lead the current webpage to hidden webpages that are generated dynamically. At each

stage of the proposed algorithm, we determine the edge that should be chosen to reach webpage of interest.

The proposed algorithm is validated on four different websites from dmoz.org. Precision-recall curve and

coverage plot in the results section shows the effectiveness of the proposed algorithm.

Keywords: hidden Web; learning automata; distributed learning automata; DLA

Communicated by: B. White & E. Mendes

1 Introduction

It is easy to locate any information on World Wide Web (WWW) using search engines. When a user

seeks some information, only Publically Indexable Web (PIW) is searched. While the PIW has trillion

of linked HTML webpages, tonnes of information is “hidden” in the hidden or deep Web. It also includes

webpages or information that is behind query forms or login forms. However, hidden Web mainly

comprises of webpages that are generated dynamically [1]. Our proposed algorithm will uncover the

dynamically generated webpages. Hidden Web is important, as the information in it is around 500 times

larger than PIW. Using overlap analysis, a white paper [2] estimated the size of dynamically generated

webpages to be around 7,500 terabytes. Also, the information in the hidden Web is growing

exponentially. This large size of information in hidden Web raises an urgent need to have an algorithm

for acquiring dynamically generated webpages.

As already stated the part of Web that past login form, search and query interfaces is called hidden

Web. This part of Web is not accessible by following hyperlinks present on the webpages. Traditional

M. Kumar and R. Bhatia 271

crawler moves from one webpage to other by using these hyperlinks only and hence they cannot reach

to hidden Web [1]. The content of the hidden Web can be accessed by using a direct URL or these can

be generated by some user action. Crawling hidden Web is a challenging task because: firstly, the scale

of information on hidden Web is very large and secondly, on some website there are restrictions on

accessing data of hidden Web.

This paper uses Learning Automata (LA) to find webpages in hidden Web. The problem this paper

handles is “to find webpages from hidden Web that are generated dynamically by performing an action

on the current webpage.” To solve this issue, LA is used as it can model dynamically generated webpages

in hidden Web effectively. LA has a finite set of states, transitions between various states are using the

transition map. These webpages are viewed as the states of LA that can be reached from the starting state

by using a set of actions. The states of LA represent two types of webpages: PI and hidden webpages.

Hidden webpages are considered as those states of LA that can only be reached from a current state by

making a transition based on some action probability. The action probabilities of the LA are updated on

reaching to a new webpage that is represented as another state of LA. Section 3 discusses the detailed

algorithm for exploration of dynamic webpages. The webpage reached may be PI webpage or hidden

webpage depending upon the type of link used to reach upto that webpage.

In the literature, learning automata have been successfully utilized in some applications like solving

the NP-Complete problem [3], network routing [4], capacity assignment [5] and neural network [6], [7].

Learning automata is also used for solving uniform partitioning method [3]. Given a graph, the motive

is to partition the nodes into two equal size sets to minimize the sum of cost of edges having endpoints

in different sets. An adaptive routing in telephone network using learning methods is used in [4]. It uses

an algorithm that updates the routing probabilities on the basis of network feedback. Capacity assignment

[5] deals with the problem in a prioritized network. It focuses on finding the links with a best possible

set of capacities that satisfies the traffic requirement while minimizing the cost. They propose three

different solutions to this problem. Meybodi and Beigy [6] discussed a new learning automata based

algorithm for adaptation of backpropagation parameters. The various parameters that are used include

learning rate, momentum factor and steepness. Authors also study the ability of learning automata based

schemes in escaping from local minima when backpropagation fails to find the global minima [7]. The

remainder of the paper is organized as section 2 discusses the basis of learning automata and its various

tuples, section 3 presents the proposed hidden Web distributed learning automata and algorithm for

finding the hidden webpages. Result and analysis of the proposed algorithm are given in section 4.

2 Learning Automata

LA is an abstract model of a finite state machine that can perform a particular action from finite set of

actions. These actions are chosen either randomly or according to a fixed initial probability. For the

action chosen, the neighboring LAs that constitute the environment generate response as reward or

penalty. The feedback of environment is used to select next action to be taken by LA. During this process,

LA learns to choose the best action from an allowed set of actions [8]. Figure 1 depicts the interaction

between LA and its environment. LA chooses an action from a finite set of actions with some probability

and passes it to the environment. The environment consists of neighboring LAs that in turn generate a

response that is given back as feedback to the action generating LA.

272 Hidden webpages detection using Distributed Learning Automata

Figure 1 Interaction between LA and its environment.

A fixed structure stochastic learning automata can be defined by using five tuples (α, Φ, β, F, G)

where

i. α = {α1, α2. . . α𝑟} is the finite set of actions that can be chosen with associated action probability

vector p.

ii. Φ = {Φ1, Φ2 …Φ3} is the set of states of the automata.

iii. β is the set of inputs that can have two values 0 for penalty and 1 for reward.

iv. F is the transition map. It maps the current state to the next state on receiving an input.

Mathematically, 𝐹: Φ × β → Φ.

v. G is the output map that determines the action taken by the automata if it is in some state.

Mathematically, Φ → α.

As it is evident from the definition abovementioned automata is deterministic. The action is input

𝛼(𝑘) at a given time 𝑘 to environment that gives back response 𝛽(𝑛) to the automata. Depending upon

the response generated, environment penalizes or rewards the automata according to equations 1 and 2.

At time (𝑘 + 1) state of the automata, become Φ(k + 1) according to a new action chosen. Also, the

penalties and rewards values are chosen randomly at initial point and it is desired that the interaction

with the environment always rewards the automata.

The automata action probability vector is always updated depending upon the β or output from the

environment. Learning algorithm of the automata is a recurrence relation and is used to modify the action

probability vector p as given below [9]. Let 𝛼𝑖(𝑘) is the action chosen by LA at time 𝑘 then

M. Kumar and R. Bhatia 273

 (1)

When β(k) = 0 i.e. penalty.

 (2)

When β(k) = 1 i.e. reward.

Parameters 0 < 𝑏 ≪ 𝑎 < 1 where 𝑎 and 𝑏 are the regularization terms for determining the increase

or decrease in the action probabilities. The values of 𝑎 and 𝑏 can be decided based on learning rate in

terms of iterations of algorithm, its accuracy and number of nodes under consideration. Also, 𝑟 is the

number of actions for LA from set α. Further if 𝑎 == 𝑏, this algorithm is called linear reward penalty

and if 𝑏 == 0 it is called linear reward inaction. The action selected by the neighboring LAs of any

particular LA determines the signal to the LA and constitutes its environment.

2.1 Distributed Learning Automata

A basic LA can be considered as a simple agent that can do simple things. The full potential of the LA

is recognized when they are interconnected to work together. A Distributed Learning Automaton (DLA)

is a network of LAs cooperating to solve a problem. In such a distributed network, each time just one

automaton is active. The number of actions that may be performed by an automaton is equal to the LAs

connected to it. The model of DLA network is shown in figure 2, it represents a graph in which each

vertex is an automaton.

Figure 2 A DLA with four learning automata.

𝑃𝑗(𝑘 + 1) =

𝑃𝑗(𝑘) + 𝑎 × 1 − 𝑃𝑗(𝑘) 𝑖𝑓 𝑖 = 𝑗

𝑃𝑗(𝑘) − 𝑎 × 𝑃𝑗 (𝑘) 𝑖𝑓 𝑖 ≠ 𝑗

𝑃𝑗(𝑘 + 1) =

𝑃𝑗(𝑘) × (1 − 𝑏) 𝑖𝑓 𝑖 = 𝑗

𝑏

𝑟 − 1
+ 𝑃𝑗(𝑘)(1 − 𝑏) 𝑖𝑓 𝑖 ≠ 𝑗

274 Hidden webpages detection using Distributed Learning Automata

As shown in figure 2, nodes represent 𝐿𝐴𝑖 i.e. a learning automaton and an edge between nodes 𝐿𝐴𝑖

and 𝐿𝐴𝑗 shows the action 𝛼𝑗
𝑖 in 𝐿𝐴𝑖 that triggers the node 𝐿𝐴𝑗. The action probability vector will be 𝑝𝑘 =

{𝑝1
𝑘 , 𝑝2

𝑘…𝑝𝑟
𝑘} such that 𝑝𝑚

𝑘 is the probability of action 𝛼𝑚
𝑘 that triggers 𝐿𝐴𝑚 [10]. Number of actions for

an LA is equal to number of other LAs connected to it. Any action chosen by an LA activates a connected

LA on the other side of edge. The working of DLA graph can be explained as: In the starting, one of the

LA chooses an outgoing action edge according to the action probability. The LA on the other side of

action edge gets activated and is added to the list of explored nodes. This process of choosing an action

edge and activating another LA is repeated until all the nodes in the DLA graph are explored. So, starting

from one of the webpage (considered as node) other webpages (nodes) are explored using action

probabilities. In hidden Web, when a user is on a particular webpage other webpages can be generated

by performing some action. This action can be a form-filling event, value submission, query form

submission or any event that generate a new hidden webpage. The edge between webpages does not

necessarily represent a hyperlink between them. Edge between a PI webpage and hidden webpage

represent the action edge, the action that needs to be taken by the user to reach to that particular hidden

webpage. A user can pass some values to the current webpage that result in the generation of a new

webpage. The action is considered as the set of values passed by the user for the generation of webpage.

The next section discusses the detailed algorithm for the exploration of dynamically generated webpages

in hidden Web.

3 The Proposed Algorithm

In this Section, we propose an algorithm to find webpages from hidden Web using distributed learning

automata. The input to our proposed automata named Hidden Web Distributed Learning Automata

(HWDLA) will be a starting URL or seed URL of the website from which hidden webpages are to be

uncovered. It is to be noted that webpages in any website imprint a DLA graph structure [11]. Any

website, considered as DLA has two types of webpages assumed as nodes: PI webpages that are

connected by hyperlinks and hidden webpages that can be reached only when any of the PI nodes perform

some action. Further, the DLA is assumed to have two types of edges: first is a boldface edge that

connects any two PI webpages. Second is a washy edge that connects PI webpages to the hidden

webpages as shown in figure 7. These two type of edges are adopted to distinguish hyperlink and action

edge between the webpages. The purpose of our algorithm is to find hidden webpages from any given

website assuming DLA structure. We believe this is the first attempt to visualize the hidden Web from

this point of view.

The proposed HWDLA can be defined by using 7 tuples (Φ, ϒ, £, α, β, Q, G):

i. Φ is the set of states where each state represents a webpage in the given website. This includes

both PI webpages and hidden webpages.

ii. ϒ: ϒ ⊂ Φ is the set of hidden states. The webpages in this set are hidden and are not accessible

by following the hyperlinks. This set is assumed to be unknown at the beginning and purpose of the

proposed algorithm is to uncover this set.

iii. £: £ ∈ Φ is the starting state or the seed URL of the website under consideration. It is to be

noted that £ ∉ ϒ as seed URL can never be from hidden states.

M. Kumar and R. Bhatia 275

iv. α = {α1, α2. . . α𝑟} is the finite set of actions that can be chosen with associated action

probability vector 𝑝 for each webpage. In this case, the action will be <keyword-value> pair that are

required to generate the hidden webpage. These pairs are stored in a table called Labelled Value Set

(LVS) which have keywords and their corresponding values that need to be passed on to the current

webpage for generating a hidden webpage. The LVS table have labelled keywords and corresponding

values that can be used to fill the forms found on PI webpages to reach hidden webpages. LVS table is

used only when the domain of the form element is infinite, it is not required in case of finite domain

elements like dropdown list, selection list, radio button etc.

v. β is the set of inputs that can have two values 0 for penalty and 1 for reward.

vi. 𝑄: (Φ − ϒ) × α → Φ is the transition function that explains how the next webpage (hidden

webpage desired) is generated from the current webpage. It is to be noted that the range of this function

Φ specifies that it is always not necessary that from the current webpage, hidden webpage will be

reached. This function will be explained in detail, later in this section.

vii. 𝐺 is a function that decides the set of states {Φ(𝑗−1)𝑀+1…Φ𝑗𝑀} for each action α𝑗 such that 𝑀

is output state of the initial state.

𝐺(Φ𝑖) = α𝑗 if (𝑗 − 1)𝑀 + 1 ≤ 𝑖 ≤ 𝑗𝑀 (3)

This 𝐺 can be adjusted so that from PI states we always reach to hidden states. LA in DLA will

choose α1 if it is in any of the first 𝑀 states. α2 will be chosen if it is in any of the states from Φ𝑀+1to

Φ2𝑀. In this way for every action, we have fixed action that can be performed in association with some

particular states from where we are starting.

When starting from a given seed URL or state £ the starting state can make any transition depending

upon the action chosen. HWDLA learns that transitions from any state in Φ should result in the

exploration of a state from ϒ using 𝐺. Also, 𝐺 function decides the action with some probability and LA

is either penalized or rewarded as in equation 4, 5 and 6 by modifying equation 1 and 2 [12]. If we move

from webpage σ𝑘 to σ𝑚 then LA𝑘 updates the probability vectors 𝑝𝑚
𝑘 of action 𝛼𝑚

𝑘 as follows:

𝑝𝑚
𝑘 (𝑛 + 1) = 𝑝𝑚

𝑘 (𝑛) + 𝑎𝑚
𝑘 ⌊1 − 𝑝𝑚

𝑘 (𝑛)⌋ (4)

𝑝𝑖𝑗
𝑘 (𝑛 + 1) = (1 − 𝑎𝑚

𝑘)𝑝𝑗
𝑘(𝑛) 𝑗 ≠ 𝑚 ∀𝑗 (5)

𝑎𝑚
𝑘 =

𝐸𝑚
𝑘

1+𝐸𝑚
𝑘 (6)

𝐸𝑚
𝑘 = −(𝑝𝑚

𝑘 log 𝑝𝑚
𝑘 + (1 − 𝑝𝑚

𝑘) log(1 − 𝑝𝑚
𝑘)) (7)

The value of 𝐸𝑚
𝑘 in equation 7 denotes the relation between webpage σ𝑘 to σ𝑚. In equation 6 the

regularization term also increases as the probability among webpages is updated. This decision of

penalizing or rewarding a LA is taken based on the action edge being explored is boldface or washy. The

algorithm rewards the LA on exploring a node connected by washy edge and penalizes it on exploring a

node connected by boldface edge.

Now, function 𝑄 for each operation is explained in detail.

i. Transitions for rewards: webpages from the hidden Web found without error by PI webpage:

This is the case when making a transition from a webpage in the set Φ to any state Φ(𝑗−1)𝑀+1 results in

a webpage from ϒ. In this case, from a PI webpage we have found a hidden webpage.

276 Hidden webpages detection using Distributed Learning Automata

ii. Transitions for rewards: webpages from the hidden Web found without error by another

hidden webpage: This is the case when a webpage ϒ𝑗 is generating another webpage ϒ𝑗+1 for an

action Φ𝑗.

iii. Transitions for penalties: PI webpage transit to another PI webpage: As we are only interested

in finding the hidden webpages. In this case, a PI webpage makes a transition to another PI webpage

instead of making transition to a hidden webpage. This is the case encountered when Φ𝑖 is the state such

that Φ𝑖 ∈ { Φ(𝑘−1)𝑀+1 … Φ𝑘𝑀} and makes a transition to Φ𝑗 ∈ { Φ(𝑗−1)𝑀+1 … Φ𝑗𝑀}.

Figure 3 Flowchart for the proposed algorithm.

Depending upon the response generated the probability vector is updated so that the next correct

action can be taken. The flowchart for the proposed algorithm is shown in figure 3. As shown, after the

initialization, a connected edge is activated according to action probability. Decision block corresponds

to the penalty or reward accomplishment depending upon the edge explored is washy or boldface. The

more detailed description of the algorithm is given next.

The algorithm 1 can be described as follows: At first, a network of LA is created based on the

webpages of the website whose seed URL is provided. In DLA, each node represents an LA and each

outgoing edge from the node is one of the actions that can be taken by LA. At time 𝑘, source LA that is

the starting node £ of the graph chooses one of its action by using the action probability vector and using

the values in the LVS, say action α𝑚. This action activates the other LA Φ𝑘 on the other side of edge

starting from £. Depending upon whether this edge is boldface or washy edge, the environment penalizes

or rewards the automaton. This corresponds to the webpage explored is PI or hidden webpage. The

process of choosing an action and activating an LA is repeated until all the LAs on the other side of

washy edges are reached or a threshold number of iterations are reached.

M. Kumar and R. Bhatia 277

Algorithm 1: Algorithm for finding webpages in the hidden Web

Input: A seed URL £ ∈ Φ and α = {α1, α2. . . α𝑟} with LVS having preliminary values.

Output: The set 𝜏 of webpages explored from the hidden Web ϒ ⊇ 𝜏.

Construct a DLA for the current set of webpages with given seed URL taking £ as the starting state.

Let 𝑘 be the step number, initialized to 0.

Initialize the probability vector.

repeat

 Taking £ as the source node

 while (𝜏 ≠ ϒ or 𝑘 ≤ 𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

 do

 For the present state Φ𝑗, selects an action from α𝑗
𝑖 where 𝑖 varies upto connected

 neighbors of Φ𝑗.

 Using function G determines the next feasible state Φ𝑠.

 if (Φ𝑠 is connected to Φ𝑗 with washy edge)

 Reward the selected action as case (i) and (ii) of 𝑄

 Update the probability vector and action values

 if (Φ𝑠 ∉ 𝜏)

 Add Φ𝑠 to 𝜏

 else

 Penalize the selected action as case (iii) of 𝑄

 Update the probability vector and action values

 end if

 Increment the step number k

 end do while

 When some of the parameters are unknown and stabilizing input can be generated by following the

estimation of unknown parameters based on the repeated trials LA is the best option to use [8]. The main

objective of the proposed algorithm is to determine how the past actions and responses guide the current

278 Hidden webpages detection using Distributed Learning Automata

action and state. To compare various DLA we consider 𝑴(𝒏) as the average penalty for a given action

probability vector.

𝑀(𝑛) = 𝐸[𝛽(𝑛) 𝑝(𝑛)]⁄ = 𝑃𝑟[𝛽(𝑛) = 1 𝑝(𝑛)]⁄ (8)

= ∑ Pr [𝑟
𝑖=1 𝛽(𝑛) = 1 𝛼(𝑛) = 𝛼𝑖] Pr [𝛼(𝑛) = 𝛼𝑖]⁄ (9)

where 𝛽, 𝛼 are the input set and action set respectively. Further, as a website can have vast number of

webpages, the LA becomes 𝜖-optimal i.e. lim
𝑛→∞

𝐸[𝑀(𝑛)] < 𝑐𝑙+𝜖 , where 𝑐1, 𝑐2 …𝑐𝑟 are the penalty

probabilities and 𝜖 is any arbitrary value 𝜖 > 0 chosen by a proper choice of automaton parameters.

Performance of any LA is mainly affected by two factors, first is the initial condition and second is the

set of penalty probabilities of the environment. The above algorithm was implemented and tested to

check its applicability to explore hidden webpages.

3.1 Learning methodology

In the first step, a learning automaton is assigned to each vertex of the graph and action probability is

initialized. The following steps are repeated until the stopping criteria are met. The stopping criteria are

predefined as a total number of iterations or when the value of probability vector exceeds a threshold.

Various LAs are adapted to learn through reinforcement learning. Here, the meaning of

reinforcement learning is making an optimal decision using rewards or punishment received from

neighboring LAs. Unlike supervised learning in this learners are never told about the correct action to a

particular state. The LA uses feedback from the environment to learn about the action expressed in terms

of scalar reward.

Learner uses a set of PI states which are webpages already retrieved i.e. 𝑤 ∈ (Φ − ϒ) and a set of

hidden webpages ϒ. The goal of reinforcement learning is to learn a policy Ω that maps (Φ − ϒ) → ϒ

and maximizes the sum of its rewards over time. Value of long term reward is computed by summing

up the rewards from each step.

An infinite-horizon discounted model is used for computing the overall value of reward. Consider a

starting state 𝑠, using policy Ω we will get a sequence of state-action pairs (𝑥𝑡 , 𝑦𝑡). The sequence of

reward is given by

𝑅𝑡 = 𝑟𝑡(𝑥𝑡 , 𝑦𝑡) 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1, 2, 3… ..

The total reward from the policy Ω will be

𝑉𝜆
Ω(𝑠) = lim

𝑁→∞
𝐸𝑠

Ω [∑ 𝜆𝑡−1𝑁
𝑡=1 𝑟(𝑥𝑡 , 𝑦𝑡)] where 𝜆 ∈ [0,1) is the discount factor.

An evaluation is said to be optimal if it maximizes the overall reward. If 𝑄∗(𝑠, 𝑙) denotes value of

choosing an action 𝑙 from a starting state 𝑠 and afterward it follows the optimal policy. So the overall

value become 𝑄∗(𝑠, 𝑙) = 𝑅(𝑠, 𝑙) − 𝜆𝑉∗𝑇(𝑠, 𝑙) where 𝑅 is the reward function and 𝑇 is any other

transition. Here 𝑉∗is the total value from each node to other node 𝑉Ω(𝑠) = ∑ 𝜆𝑟𝑡
𝑁
𝑡=0 . Where 𝑟𝑡 is the

reward action-state pair after 𝑡 time stamps and following policy Ω. So 𝑄 function maps an action to a

scalar value.

M. Kumar and R. Bhatia 279

4 Results and Discussions

For validating the effectiveness of the proposed algorithm, it is implemented and various outcomes are

discussed in this section. All experiment were performed on Intel Xenon CPU E5620 having 20 GB of

RAM running Windows Server 2012 R2 standard. For our experiment, we took four random websites

from following domains: Artificial Intelligence (Db1), Software (Db2), Home Automation (Db3) and

Virtual Reality (Db4). The process of creation of a Database (Db) for these four websites was following:

these domains were chosen randomly from dmoz.org (the site is officially closed from March 2017).

From each randomly chosen domain, we extracted one website. We used in-house developed hidden

Web crawler to crawl all type of webpages from these four websites. The webpages crawled includes

both hidden and PI webpages. The crawler was able to detect webpages having forms of any type: Search

form, login form, subscription form, single and multi-attribute forms.

These forms act as the entry point to the hidden Web. Further depending upon the domain of the

website to be crawled, the crawler LVS table was populated to fill the values in the corresponding fields

of the form. Also, all the websites were analyzed manually to include any webpage (hidden or PI

webpage) that may be missed out by our crawler. Altogether, we collected a total of 58,251 webpages

of which 29,395 were hidden webpages. This includes manually extracted webpages.

After gathering all the webpages, a graph structure was created in which hidden and PI webpages

were marked separately, along with the edges connecting them. This was done using matplotlib in

Python. A separate graph was created for each website. The initial state of each graph was the seed URL

from where crawling was initiated. These graphs are used to validate our proposed algorithm for the

exploration of hidden webpages from a website.

We used two standard metrics from the field of information retrieval for the evaluation of our

proposed crawler: Precision and Recall. Precision with a threshold value p can be defined as the number

of hidden webpages extracted correctly divided by total number of webpages extracted at or above

threshold value p. Recall with a threshold value r can be defined as number of hidden webpages

extracted correctly at or above threshold r divided by total number of webpages extracted at all

probabilities. Figure 4 shows the Precision-Recall (PR) curve constructed by plotting precision-recall

pairs that are obtained by using different threshold probabilities. PR curve illustrates the tradeoff

between the two values as we vary the strictness of the algorithm.

To compute the value of precision and recall, we compared the number of hidden webpages

extracted by our algorithm with the previously constructed databases. This is done for all the databases

to compute precision recall value with a different threshold.

In figure 4, each point on the curve for a particular database shows precision and recall of finding a

hidden webpage with a particular threshold probability. For example, the curve for Db1 has precision

0.86 at recall 0.1 and drops to 0.66, 0.65 at recall values of 0.2 and 0.3 respectively. For all the four

280 Hidden webpages detection using Distributed Learning Automata

databases precision starts out high for low values of recall but decreases gradually as recall increases till

a certain point. Precision value starts increasing again until it reaches a maximum and again decline a

bit until the end. It is also to be noted that the precision value hits the lowest value of 0.62 for Db1. The

performance of the proposed algorithm over four datasets is rather even. The precision is high in the

starting as at initial time overall a few webpages are extracted. As the time passes and more webpages

are extracted, value of recall increases and precision drops gradually. But after around halfway of recall

the value of precision starts increasing again.

Figure 4 Precision-Recall curve for all the four databases.

In figure 5, we present the metric coverage for each database, coverage denotes the fraction of

hidden webpages that can be found starting from seed URLs. In figure 5, the coverage is treated as a

function of PI webpages. X-axis, represents a total number of PI webpages explored by the algorithm,

and y-axis has the total number of hidden webpages explored. First observation from the graph is that

for all databases hidden webpages are found after around 10% of PI webpages are explored, for Db3 it

is around 30%. One of the reasons for such trend is that the seed URL always represent a PI webpage

and further linked to many other PI webpages. It can also be concluded from figure 5 that with time

more hidden webpages are explored but the number of hidden webpages always remain lower than the

PI webpages. It is worth noticing that the overall we have around an equal number of PI and hidden

webpages in the databases. The proposed algorithm explores an average of 90% of the hidden webpages.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

Db1 Db2 Db3 Db4

M. Kumar and R. Bhatia 281

Figure 5 Hidden vs. PI nodes discovered by the algorithm.

Figure 6 Depth of crawling vs. Hidden webpage explored.

Figure 6 reveals an interesting observation, considering 0 level as the starting of crawling i.e. seed

URL, most of the hidden webpages are found at depth 2, also figure 6 represents that this behavior is

repetitive for all 4 databases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

FR
A

C
TI

O
N

 O
F

H
ID

D
EN

 N
O

D
ES

D

IS
C

O
V

ER
ED

FRACTION OF PI NODES DISCOVERED

Db1

Db2

Db3

Db4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7fr
ac

ti
o

n
 o

f
h

id
d

en
 w

eb
p

ag
es

 e
xp

lo
re

d

Depth of crawling

Db1 Db2 Db3 Db4

282 Hidden webpages detection using Distributed Learning Automata

Figure 7 An example HWDLA.

To understand our algorithm in a better way, we use figure 7 for a dry run of the algorithm 1.

Consider figure 7, in a stage say 𝑡, 𝐿𝐴1chooses one of its action 𝛼2
1 that activates 𝐿𝐴2 connected by a

washy edge. In the process of performing action the values from LVS table are also passed-on to reach

 𝐿𝐴2. These values are dependent on the environment of 𝐿𝐴1. The process of selecting an action and

activating the resultant LA is repeated until all the webpages of hidden Web namely 2 and 4 in this case,

are found. Once we reach to 𝐿𝐴2 from 𝐿𝐴1the action probability is updated and 𝐿𝐴1 is rewarded.

In another case, it is entirely possible to choose action 𝛼3
1 by 𝐿𝐴1 that activates 𝐿𝐴3 but as in this

case the connected edge (𝐿𝐴1, 𝐿𝐴3) is boldface. This action will penalizes the 𝐿𝐴1 and action probability

will be updated. After reaching 𝐿𝐴3, there is a probability of choosing action 𝛼2
3 that activates 𝐿𝐴2 that

is already not being explored. Use of LA has not been explored earlier in hidden webpage exploration.

So, we do not have sufficient work available in literature with which comparative analysis can be carried

out.

5 Conclusions

The large size of important data present in hidden Web makes it necessary to crawl and index that data.

The webpages in hidden Web are not connected by hyperlinks so it becomes difficult to get them. In this

paper, a new algorithm for hidden webpages detection was proposed using distributed learning automata.

Various tuples of proposed HWDLA were discussed alongwith the transitions for rewards and penalties.

LAs were penalized or rewarded depending upon whether they reach to other LAs using boldface or

washy edges. The main objective of the proposed algorithm is to determine how the past actions and

response guide the current action and state. Various functions used by the algorithm are also explained.

The performance of the proposed algorithm was compared using four different websites from dmoz.org.

The metrics used for comparison include PR plot, coverage and depth at which hidden webpages were

found. Our experimental results show that our strategy is effective in detecting hidden webpages. The

proposed algorithm explores an average of around 90% of the hidden webpages.

M. Kumar and R. Bhatia 283

Acknowledgement

We are thankful to the Department of Science and Technology, Government of India for financially

supporting the research work presented in this paper.

References

[1] He B., Patel M., Zhang Z., and Chang K. C., Accessing the Deep Web : A Survey, 2000.

[2] Bergman M. K., White Paper: The Deep Web: Surfacing Hidden Value, J. Electron. Publ., 7(1),

Aug. 2001.

[3] Oommen B. J. and de St. Croix E. V , Graph partitioning using learning automata, IEEE Trans.

Comput., 45(2), Feb. 1996, 195–208.

[4] Srikantakumar P. R. and Narendra K. S., A Learning Model for Routing in Telephone Networks,

SIAM J. Control Optim., 20 (1), 1982, 34–57.

[5] Oommen B. J., T Roberts. D., Continous learning automata Solutions to the capacity assignment

problem, IEEE Transactions on Computers, 49(6), 2000, 608-620.

[6] Meybodi M. R. and Beigy H., New learning automata based algoritbms for adaptation of

backpropagation algorithm pararmeters, Int. J. Neural Syst., 12(3), 2002, 45–67.

[7] Meybodi M. R. and Beigy H., A note on learning automata-based schemes for adaptation of BP

parameters, Neurocomputing, vol. 48, 2002, 957–974.

[8] Narendra K. S. and Thathachar M. A. L., Learning Automata - A Survey, IEEE Trans. Syst.

Man. Cybern., vol. SMC-4 (4), Jul. 1974, 323–334.

[9] Mousavian A., Rezvanian A., and Meybodi M. R., Cellular learning automata based algorithm

for solving minimum vertex cover problem, in 2014 22nd Iranian Conference on Electrical

Engineering (ICEE), 2014, 996–1000.

[10] Beigy H. and Meybodi M. R., utilizing distributed learning automata to solve stochastic shortest

path problems, Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., 14(5), Oct. 2006, 591–

615

[11] Broder A. et al., Graph structure in the Web, Comput. Networks, 33(1), Jun. 2000, 309–320.

[12] Khomami M. M. D, Bagherpour N., Sajedi H., and Meybodi M. R., A new distributed learning

automata based algorithm for maximum independent set problem, in 2016 Artificial Intelligence

and Robotics (IRANOPEN), 2016, 12–17.

