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Patent topic discovery is critical for innovation-oriented enterprises to hedge the patent application 
risks and raise the success rate of patent application. Topic models are commonly recognized as an 
efficient tool for this task by researchers from both academy and industry. However, many existing 
well-known topic models, e.g., Latent Dirichlet Allocation (LDA), which are particularly designed for 
the documents represented by word-vectors, exhibit low accuracy and poor interpretability on patent 
topic discovery task. The reason is that 1) the semantics of documents are still under-explored in a 
specific domain 2) and the domain background knowledge is not successfully utilized to guide the 
process of topic discovery. In order to improve the accuracy and the interpretability, we propose a new 
patent representation and organization with additional inter-word relationships mined from title, 
abstract, and claim of patents. The representation can endow each patent with more semantics than 
word-vector. Meanwhile, we build a Backbone Association Link Network (Backbone ALN) to 
incorporate domain background semantics to further enhance the semantics of patents. With new 
semantic-rich patent representations, we propose a Semantic LDA model to discover semantic topics 
from patents within a specific domain. It can discover semantic topics with association relations 
between words rather than a single word vector. At last, accuracy and interpretability of the proposed 
model are verified on real-world patents datasets from the United States Patent and Trademark Office. 
The experimental results show that Semantic LDA model yields better performance than other 
conventional models (e.g., LDA). Furthermore, our proposed model can be easily generalized to other 
related text mining corpus.  
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1 Introduction  
Patent topic discovery is a key issue in patent knowledge mining as it is beneficial to innovation-
oriented enterprises, decision makers, and so on [1]. Patent topic analysis can not only identify novel 
patents [2] and analyse technology distribution [3], but also track and predict technology evolution 
process [4][5]. For example, in refrigerator domain, there are numerous critical technologies, such as 
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energy-saving, fresh-keeping, intelligence etc. Through mining the patent knowledge in refrigerator 
domain, we could discover a number of hidden topics that can further contribute to identify critical 
technologies and improve enterprise invention ability significantly. In a specific domain, discovering 
key techniques and their relationships by topics can help enterprises enhance product innovation and 
identify potential competitors. Therefore, topic-level patent analysis in a specific domain becomes 
more and more important on quickly and accurately discovering vital technologies [6]. 

Patent documents have been provided basic 
category information with predefined taxonomy code 
for efficient patent analysis [7], e.g., CPC (Cooperative 
Patent Classification). Taxonomy code can help to fast 
and accurately retrieve patent document. However, 
these taxonomy codes are too rigid and general as 
patent topics. For instance, in refrigerator domain, a 
patent with multiple classification can be in the field of 
"A" and "G" ("A" represents human necessities and "G" 
represents physics) etc. However, it is inefficient to 
analyze this domain from the patents in "A" and "G", 
because most of patents in "A" and "G" are irrelevant 
with the refrigerator. For the emerging topic of 
technology, the taxonomy codes of patents are 
unknown to researchers. It is impossible to 
automatically find relevant patents from massive 
documents. Therefore, the topics of technologies are 
still difficult to be analysed by taxonomy code. 

Existing patent topic discovery models could be 
mainly categorised as follow: 1) distance-based 
models, such as K-means [8]; 2) density-based models, 
such as density-based spatial clustering of applications 
with noise [9]; 3) hierarchical agglomerative clustering 
[10]; and 4) probabilistic models, e.g., latent dirichlet 
allocation [11] and probabilistic latent semantic 
analysis [12]. Besides, a number of patent retrieval 
systems, such as Google Patent and PatentMiner [13], 
have provided an efficient search for patents based on 
discovered topics.  

However, the above mentioned models often 
mingle several different concepts/domains to discover 
patent topics. The performance often gets worse when 
the patents are limited in a specific domain, because domain words are widely distributed throughout 
all patent documents which make the semantic distinction ability of these words much weaker than in 
multi-domains. Hence, it is an enormous challenge to discover latent topic in a specific domain. 
What’s more, these models, e.g., LDA, usually highlight the word frequency. It is obviously 
inadequate that they represent patent knowledge just using bag-of-words as the only feature. Besides, 
topics discovered by bag-of-words based models suffer from problem of poor interpretability. As 
shown in Table 1, the topic that is represented by a word vector which has poor 
interpretability/semantics, because it is hard to reveal the knowledge association and help researchers 
dig implicit knowledge in a specific domain.  

In this paper, to overcome the above limitations of traditional models, we propose an innovative 
probabilistic topic model: Semantic LDA. Based on classical LDA, our model involves Association 

Table 1: The topic discovered by traditional LDA 
shows as a bag of simplicity words with weak 
semantics which cannot be used to better explain 
topics. 
word probability 

graphene 0.0246 

hydrazine 0.0212 

emit 0.0211 

cyclohexane 0.0113 

semimetal 0.0018 

fluoroplastic 0.0015 

detector 0.0013 

memristor 0.0011 

 
Fig.1 The topic discovered by the proposed Semantic 
LDA model has rich semantics, which shows as a 
network consisted of detailed keywords and 
association relationships. 
 



 

 

Wen Ma, Xiangfeng Luo, Junyu Xuan, Ruirong Xue, and Yike Guo     655

Link Network (ALN) [14] to discover patent semantic topics. By incorporating word relationships, 
ALN can provide rich patent semantics. ALN’s relationships are derived to discover semantic topics, 
and can express more semantics than only use bag-of-words. Hence, we name the model as Semantic 
LDA. Specifically, the discovered topics are determined by not only the bag-of-words but also the 
extracted word relationships, which can be called semantic topics. As shown in Fig.1, Semantic LDA 
can generate semantic topics involving words and words’ association relationships. In particular, 
relationships and weights between words can be clearly revealed. 

The main contributions of this paper are: 
1) Patent semantic topics discovered by the proposed Semantic LDA model have better 

interpretability and rich semantics, which can reveal the explicit and implicit knowledge of 
the patent documents in a specific domain. 

2) Domain background knowledge mined and represented by Association Link Network is 
utilized to improve the accuracy and the interpretation of topic discovery process. 

The rest of this paper is structured as follows: Sections 2 reviews the related works. In section 3, 
we introduce the overview of our model and its Gibbs sampling-based inference algorithm. The 
experiment setup and results are summarized in Section 4, and we also include a case study to show 
the semantic topic result in this section. Finally, we draw our conclusions and present possible future 
studies in Section 5. 

2 Related Work 
In this section, we introduce the structure of patents in section 2.1, and the existing well-known models 
for patent topic discovery in section 2.2. Section 2.3 is mainly about Association Link Network (ALN) 
based models. 

2.1 Patent Structure in Technological Research 
A typical patent document often contains several necessary sections, including title, front page 
(announcement, bibliography, classification, abstract, etc.), detailed specifications, claims, declaration, 
and/or a list of drawings to illustrate the idea of the solution. The patent document is often lengthy, 
taking advantage of all sections to mine the patent knowledge is inefficiency and noisy. In this work, 
we take three sections of the patent to discover meaningful semantic topics. Because these sections 
contain more abundant information than the other sections, e.g., 1) title includes a few core words, can 
be regarded as the patent keywords in a paper, 2) abstract contains the patent core concept and 
describes the invention methods in brief paragraph, 3) claims as the most significant part of the 
semantic distinction, declare the listed items in this patent which are protected by law. This paper 
utilizes patent title, abstract and claims as the main resources for topic discovery. 

2.2 Patent Topic Discovery Models 
Topic discovery has been studied for years. Existing researches on patent topic discovery can be 
divided into 1) probabilistic models and 2) non-probabilistic models. 

2.2.1 Probabilistic Models 
In probabilistic models, the document is represented as the bag-of-words because of its simplicity. 
Even the outstanding probabilistic models, such as probabilistic latent semantic analysis (PLSA) and 
latent Dirichlet allocation (LDA) are no exception. In the patent area, a variety of LDA-based models 
depending on the different aspects of patent data are widely adopted. Inventor-Company-Topic (ICT) 
Model [15] combined the patent features with LDA-based topic model to discover latent semantic 
topics. Subhashini et al. [16] used the topic model to offer a reduced-form representation of the 
knowledge content in a patent. Kim et al. [17] applied LDA to analyse technological trend. Segmented 
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topic model (STM) [18] took advantage of documents’ structure to explore patents correlated segment 
topics. Xuan et al. [19] used Bernoulli distributions to model the edges between nodes in a graph, it 
can describe graphs better than the ones from LDA. 

2.2.2 Non-probabilistic Models 
In non-probabilistic models, Kim et al. [20] clustered patent documents keywords by k-Means, and 
then built a semantic network of keywords for patent analysis. Che et al. [21] used neural network 
based approach for discovering patent topics, however, the approach is less precise when data is large. 
Shih et al. [22] constructed the patent ontology network by calculating four types of nodes and eight 
types of edges relationships, and discovered topics by extracting k-nearest neighbour. Chen et al. [23] 
proposed a fuzzy set based topic development measurement (FTDM) model to estimate and evaluate 
the topics.  

To sum up, although various models have considered several characters of patent documents, they 
do not perform well on patent topic discovery for the following reasons: 1) traditional models pay less 
attention to investigate the effect of patent content semantics between words association relationships; 
2) topic discovery process has not included the domain patent knowledge successfully. In order to 
address these hiatus, this paper emphasizes on the words association relationships, and utilizes the 
domain knowledge as background knowledge to discover patent topic in a specific domain. 

2.3 ALN-based Models 
ALN is a type of semantic link network to organize various resources, which can briefly represent the 
knowledge of documents. It is combined by semantic nodes and semantic chain which links the node. 
The node can be a document, a web page or even a website. ALN is composed of associated links 
between nodes, and it can be represented as follows: 

                                                               (1) 
where  is a set of the resource nodes, and  is a set of weighted semantic links. The keyword level 
ALN is a weighted network, in which a node represents a word and the edges represent word 
relationships. In the network, nodes semantically related always links with each other, the links 
strength represents the relevancy between them. ALN-cedm [24] is one of the well-known ALN-based 
models, which builds keyword-level ALN to represent the core semantics, the method can be used to 
timely discover newly occurring hot events. 

In ALN, for example, when <electronic, device> are discovered as strongly correlated 
relationships, either as <semiconductor, device>, it is highly probable that these relationships are 
related to one topic, e.g., "device". Therefore, we can use keyword-level ALN to help discover topics 
with more accurate and semantic. 

3 Semantic LDA Model 
In this section, we first present the overall framework for discovering patent semantic topics, and each 
detailed step is illustrated. Then we introduce Semantic LDA model in detail, and followed by Gibbs 
sampling for this model. 

3.1 Framework 
The overall framework of discovering semantic topic in patent documents is shown in Fig.2. Firstly, 
we acquire the target words (e.g. graphene) of a specific domain, and collect relative patents. Then we 
extract the patents’ title, abstract, claim and CPC code as the resource for topic discovery. As the 
words and relationships can provide more rich semantics of a patent, we present the patent knowledge 
with words and relationships. At stage 2, we extract the patent keywords by considering domain 
characteristic. Stage 3 builds backbone association link network by combining domain association link 
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network with patent association link network. The detailed procedures can be seen in Section 3.2.2. 
Subsequently, by incorporating patent keywords and relationships from backbone association link 
network, we construct a Semantic LDA model to discover topics of patents. Finally, we use the Gibbs 
sampling to train this model to estimate the unknown parameters. 
 

 
Fig.2 Framework architecture of discovering patent semantic topics in a specific domain 

3.2 Patent Feature Selection 
As we discussed previously, we consider that a patent knowledge can be represented by words and 
their association relationships. In various domains, the features of the patent knowledge are diverse. In 
this paper, we extract 1) patent keywords and 2) patent word relationships based on domain features to 
represent a patent knowledge. 

3.2.1 Patent Keywords  
Traditional models pay little attention to words’ feature based on various domains, except the word 
frequency. Actually, in a specific domain, each word’s semantic discrimination capability is diverse. 
We have known that the document frequency distribution of words follows the power-law distribution 
[25]. As shown in Fig.3, in a domain, the words can be divided into three parts: 1) high frequency 
words which occur many times in nearly each patent of this domain; 2) medium frequency keywords 
which can represent the main semantics of the patent; 3) low frequency words ,which always change 
over time, reveal the new knowledge and technologies. Generally, high frequency words are too 
common to be used in distinguishing semantics between different topics in a specific domain. Herein, 
high frequency words do not mean common stop words. High frequency words are determined by the 
domains, but make little contribution to the topic discovery. To some extent, using these high 
frequency words will decrease the accuracy of discovering topics. 

Therefore, the medium and low frequency words are deemed to be better candidates for topic 
discovery. This paper uses the two modules to select patents’ representative keywords in our model: 

1) Remove stop words such as digital number, that, these, or, and, etc. 
2) Remove comparatively high frequency words that are lack of semantic distinction in a specific 

domain. 
For example, Fig.4 lists the top 17 stemming keywords of a graphene domain. It is obvious that 

silicon, graphene, oxide, graphite, etc. occurs in most of the patents. The topic results mostly contain 
these words which make little contribution to discover topic. 
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Fig.3 Words document frequency distributions in a specific domain, the high frequency words occurs nearly each patent 

document with weak distinguish ability. 

 
Fig.4 Top 17 words distinction with weak semantics in the graphene domain, since these words are too common at each patent 

to discover topics for their poor discrimination capability. 

3.2.2 Patent Word Relationships  
Bag-of-words based topic models can only get the distribution of words which usually lack of 
semantics. To overcome the limitation, in this paper, we add the word association relationships into the 
topic model. It takes three steps to mine a patent’s association relationships between words 1) building 
Domain Association Link Network (Domain ALN) to represent the domain background knowledge; 2) 
building Patent Association Link Network (Patent ALN) to mine internal semantics of a patent; 3) 
building Backbone Association Link Network (Backbone ALN) by combining Domain ALN with 
Patent ALN to enrich a patent semantics in a specific domain. Finally, besides the patent words 
extracted from section 3.2.1, the patent’s Backbone ALN will be incorporated into to form the 
Semantic LDA model. 

3.2.2.1 Building Domain Association Link Network (Domain ALN) 
Domain background knowledge contains high level semantics in a specific domain, it reveals the 
implicate relations between patents. In order to find implicate knowledge of the domain, we build the 
Domain ALN. However, it is inefficient and noisy to use all parts of patent structure to build the 
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Domain ALN. For a patent, because the title information is the essence of the whole patent, the 
collection of a patent title can be best candidate to mine the core semantics of this domain.  

Definition 1 Domain Association Link Network (Domain ALN): A specific domain association link 
network is defined as an undirected graph  which is composed of a pair of sets, where  is 
the set of words all coming from the fixed vocabulary .  is the edge between words, where 

, the edge indicates the occurrence of semantic interactions between the 
corresponding word terms, the value describes the strength of such interaction. 

The association strength between keywords is defined as: 

                                                         (2) 

where  is the title set of the patents,  is the total co-occurrence frequency of word  and 
 in .  is the word  occurrence frequency in the . As Fig.5 shows, we can build the 

Domain ALN as follows: 
 

Algorithm 1: Building Domain ALN of a specific domain 
Input:  

Output: Domain ALN|  
1) extract word set  from ; 

2) for each pair of word : 
3) calculate the  through Eq. (2); 

4) construct Domain ALN by combine  with ; 

 
 

 

Fig.5 Building a Domain Association Link Network using patent title set since it represents the core semantics of this domain, 
and process is efficient because title is the most refined information in a patent 

3.2.2.2 Build Patent Association Link Network (Patent ALN) 
Abundance patent knowledge is implied in words and relationships. A Patent ALN which consists of 
keywords and relationships between inter-words of a patent can represent the patent internal semantics. 
The title, abstract, claims of the patent can represent its summarized information. Based on valuable 
information, we build Patent ALN to mine the patent knowledge. Through using slide window to 



 

 

660      Discover Semantic Topics in Patents within a Specific Domain

 

generate transactions [26] of a patent, we could obtain the association rules and build Patent ALN as 
Fig.6.  
 

w6

w2

w1

w5w4

w7

w3

 

Fig.6 Building Patent Association Link Network by keywords and association rules mined from patent content in a specific 
domain 

 
Definition 2 Patent Association Link Network (Patent ALN): Like ALN, Patent ALN is graph of 

the patent words association strength , where  is the set of words,  is the edge 
between words of the patent. A Patent ALN can represent patent words association relations, and 
describes the strength of such interaction in a patent itself. 

The association strength between keywords in the document can be defined as follows: 

                                                        (3) 

where  is the  transaction of patent document,  is the total co-occurrence times that 
word  and word  in the transaction of the document.  is the word  occurrence  times in 

the 。As Fig.4 shows, we can mine the patent content to build Patent ALN. 
 
 

Algorithm 2: Building a Patent ALN 
Input: patent ’s title, abstract and claims of a specific domain 
Output: a Patent ALN 

1) segment  by the slide window to generate transaction set ; 
2) extract word set  from ; 
3) for each pair word : 
4)    calculate the  through Eq. (3); 

5) construct Patent ALN by combine  with  ; 

3.2.2.3 Build Patent Backbone Association Link Network (Backbone ALN) 
A Backbone ALN can represent a patent explicit and implicit knowledge/semantics with background 
knowledge in a specific domain. We build patent Backbone ALN by combining Domain ALN with 
Patent ALN with the purpose of balancing the power of both global semantics and patent internal 
semantics. The process can be described as follows: 
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Algorithm 3: Building patent ’s Backbone ALN 
Input: ’s Patent ALN, Domain ALN, , parameters ,  and  
Output: patent ’s Backbone ALN in a specific domain 

1) extract candidate word set  from  which are included in top  percentage 
of all the words in ; 

2) extract candidate word set  from Patent ALN which edges are included in 
top  percentage of all relationships in Patent ALN 

3)  
4) extract the relationships set  by  which edges exists in top 

 percentage of Domain ALN 
5) extract the relationships set  included in top  percentage of Patent 

ALN 
6) construct Backbone ALN by combine  with ; 

 
 

 
Fig.7 Selecting words in top percentage word set as candidates to enrich semantics in Domain ALN, then combines with Patent 

ALN to build Backbone ALN of patent in a specific domain 

 

 
Fig.8 A Backbone ALN which constructed by Domain ALN and Patent ALN 
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In Algorithm 3, ,  are the percentage parameters to balance the importance of Domain ALN 

and Patent ALN. As illustrated in Fig. 7, there is no relation  ( ) in Patent ALN, but 
the word  is selected as the candidate to expand relationship from Domain ALN. As to ’s Patent 
ALN, the relationship of  ( ) is weaker than threshold which is excluded from top 

 percentage. It means that this relationship contributes less importance to this patent, so we cut it 
down to cohere semantics. Finally, we combine expanded relation from Domain core relations with 
Paten ALN to represent a patent semantics network. Fig.8 shows a Backbone ALN of patent textual 
"Method for producing graphene in a magnetic field" in the graphene domain.  

3.3 Semantic LDA Model 
This paper assumes that not only the words but also the word relationships in patents can refine the 
semantics topics of a domain. In a specific domain, if  is a patent collection and  is the number of 
the patent, the words’ topic in  will be defined as , and the words’ relation topic in  
will be defined as . 

Some other important notations are listed in Table 2. 
 

Table 2: Notations of the patent semantic topic discovery model 
Notation Description 

 the ith word in patent d 

 the ith relationship in patent d 

 topic distribution of document in a specific domain 

 topic of word i in document d  

 topic of edge j in document d 

 word distribution of topic k 

 edge distribution of topic k 

 dirichlet prior hyper-parameter  
 

    The Semantic LDA model is also a generative model, the generative process of a patent in a 
specific domain is as follows: 

1) For each patent  of a specific domain, n=1,…,N, 
Draw a patent’s topic . 

2) Words generative process: 
For each topic t =1,…, K, draw the topic-word distribution . 
a) Draw a topic . 

b) Draw a word ( ). 

3) Edges generative process: 
For each edge topic q =1,…, K, draw the topic-relation distribution . 
a) Draw a topic . 

b) Draw a relationship . 
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Fig.9 Graphical model of Semantic LDA:  is the patent words extracted by specific domain characteristic,  is the Backbone 

ALN relations constructed in this domain, unlike traditional LDA, the topic  is influence by word matrix  and relationship 

matrix  

 We can see from Fig.9,  is one of the patents of  in a specific domain,  is ’s keyword 

with better semantic discrimination capability,  is edge extracted from ’s Backbone ALN, which 

constructed by combining Domain ALN with ’s Patent ALN. The edge definition  is a description 

of the observed data, so as the keyword . Different from LDA, our topics are determined not only 

by the words but also by the extracted edge relations. Semantic LDA model overcomes the drawback 
of bag-of-words based models by drawing edge topic assignment . Especially, Semantic LDA 

model considers the domain background knowledge to guide the process of topic discovery. In the next 
section, the detailed learning process for Semantic LDA is illustrated.  

3.4 Gibbs Sampling for Semantic LDA Model 
For Semantic LDA model learning, a diversity of methods [27] can be used to estimate the unknown 
parameters. This section mainly illustrates the detailed process for Gibbs sampling by jointly 
considering the words and relationships in Semantic LDA model. In the previous section, we described 
the generative process of the word and edge relationships. For estimating the latent variables, by given 
observable keywords (w) and relationships (r) of a patent in the domain, we need to find the 
conditional distributions for each latent variable in posterior distribution. 

 In Semantic LDA model,  represents the patent topic distribution of the patent , it is a 
probability of each topics, where .  is a Dirichlet distribution, its posterior conditional 
distribution on other variables can be observed as, 

                                  (4) 
where  represents the topic assignment of , as well as  represents  topic assignment. For all 

patent documents,  is the number of tokens with word  that are assigned to topic , and 

 is the number of tokens with relationship  that are assigned to topic . 

 For the unknown variable , it is topic ’s word vocabulary distribution, the posterior 
distribution should be, 

                                      (5) 

where  is the word item  number under topic k. 

 As well, we define word relationships having the relationship vocabulary distribution. The 
posterior distribution can be refined as, 

                                     (6) 
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where  is the number of the item  which assigned to topic k. 

 Here, we obtain , , , then we sample the word and relation topic ， ， 

                                                (7) 

                                                 (8) 

 Then we iteratively sample , , ,  and . The sampling process is summarized in 
Algorithm 4: 

 
Algorithm 4: Gibbs sampling for Semantic LDA model 

  Input: The number of topic , hyper parameters , ,  
  Output: multinomial distribution ,  and  
  initialize topic assignments randomly for all the keywords and word relationships 
  for iter = 1 to do 
      if iter>burn-in 
        for each document ,d = 1…N do: 
          draw  from  
          draw  from  
          draw  from  
          update  in Eq. (7) and  in Eq. (8) 
  compute the distribution ,  and  on the sample average 

4 Experiments and Results Analysis 
We used LDA and ALN-cedm model as the baseline models. In following sections, we conduct 
experiments on real-world datasets to evaluate the proposed method by exploiting topic discovery 
results. The detailed datasets are introduced in Section 4.1, whereas we discuss experiment results and 
detailed analysis in Sections 4.2, 4.3, and 4.4.  

4.1. Data Sets 
To evaluate the quality of the proposed model, we need public patent datasets in some specific domain. 
However, such ideal datasets do not exist. Therefore, we programmed the spider to fetch patent 
documents from U.S. Patent and Trademark Office (USPTO: www.uspto.gov) database, and then 
manually refined four datasets as follows: 

 Microelectronic Material Dataset covers patents about "microelectronic material" 
("graphene", "silicon"). "graphene" and "silicon" are two mainly materials in 
microelectronics industry. Overall, 6206 patents have been collected from the database. 
Then, four human annotators have manually confirmed these patent documents in the 
"microelectronic material" field and are associated with the appropriate topic, e.g., graphene 
or silicon. As showing in Table 3, the result dataset contains 1033 silicon patent documents 
and 1183 graphene patent documents. 

 
 

Table 3: Statistics of patent number in Microelectronic Material dataset 

Domain Topic name Patent number Label type 

microelectronic material 
graphene 1183 Single-label 

silicon 1033 Single-label 
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The other three datasets collected by searching keywords "graphene", "car" and "bacterial", 
which are widely applied in each aspect and belong to three domains. It is difficult to obtain the 
ground truth for evaluating our model’s performance. The CPC classification system is a five-level 
classification schema. A patent document can cover 9 sections at first level. We extract first level 
sections of CPC, and map them to multi-labels which have nine dimensions. Table 4 is the patent 
number and the label type of the datasets. Table 5 shows the sample of the CPC code of the patents. 

 
Table 4: Statistics of patent number in three specific domains 

Specific Domain Patent Number Label Type 

graphene 2340 Multi-label 

car 1008 Multi-label 

bacterial 1121 Multi-label 

 
 

Table 5: The example of patent multi-label, we extract CPC code’s first level section as each patent’s multi-label, such as 
"H01M" can be extracted to "H" 

Patent Number Cooperative Patent Classification  Multi-Label 
(A B C D E F G H Y) 

5,543,021 H01M  0 0 0 0 0 0 0 1 0 
6,400,091 B82Y, H01J, Y10S 0 1 0 0 0 0 0 1 1 
7,014,829 B82Y, D01F, Y10S, Y10T 0 1 0 0 1 0 0 0 1 

4.2. Experimental on Microelectronic Material Dataset 
To verify the effectiveness of Semantic LDA model on single-label topics, we will conduct 
experiments on Microelectronic Material dataset. Then we will compare our model with LDA. 

4.2.1 Evaluation Metrics 
In the Microelectronic Material dataset, each patent is a single-labelled document that belongs to one 
topic. In this experiment, the solution calculates the most possible label. We analyse the results from 
each of the perspectives of precision, recall, and F-measure [28]. Precision is the fraction of detections 
which are true positives. Recall is the fraction of true positives which are detected. F-measure is the 
ultimate measure of performance of the method. 

4.2.2 Experimental Results 
In this collection, we set the number of topics K=2 for all the models. In the experiment, both in LDA 
and Semantic LDA model, we removed the words that frequency is one. The recommended value of  
in LDA is 50 divided by the number of topics [29],  = 0.1 and  = 0.1, in our model, special 
parameters = 0.0016, =0.001 and = 0.0005. In our Gibbs sampling, we set the number of 
iterations = 4000, burn-in = 1000 and sample-lag = 4.  

 
Table 6: Average score of three metrics repeated 10 times by Semantic LDA model and LDA, the best performance is printed in 

bold for each performance measure. 

Method Precision Recall F1-Measure 
Semantic LDA 0.7834 0.7505 0.7665 
LDA 0.5670 0.5473 0.5669 
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Table 6 presents the results for those models on the Microelectronic Material dataset, in specially, 
we can observe precision of Semantic LDA is 0.7834. The performance of LDA turns out to be much 
worse than Semantic LDA model. Evidently, the result illustrates that our domain relationship can 
highly enhance the topic discovery result. 

4.3. Experimental on Graphene Dataset 
As shown in the above section, Semantic LDA model can significantly improve the performance of 
discovering topics in wider domain. For proving that our model can discover better topics at different 
levels, hence, we will apply our model into a narrower domain dataset.  

4.3.1 Evaluation Metrics 
It is obviously that the patents in a same topic are more likely assigned to the same CPC code. For a 
relatively fair comparison, we can judge the estimation from how it fitting the actual CPC code 
distribution. Considering each patent has multi-label of CPC code, we extract patent’s label set 

 from the patent first level section as,  represents a patent document,  is the 
’s label set;  returns the real-value indicating the confidence for  to be a proper label if ; 

 represents the rank of  derived from . Four evaluation metrics widely-used in multi-
label learning [30] are employed in this paper: 

1) Hamming loss: 

                                                        (9) 

where  is the ground truth,  is the predicated label set and  stands for the symmetric difference 
between two labels. The hamming loss represent the ratios of patent topic labels are missed or 
irrelevant labels are predicted. 

2) Average precision: 
, where 

                                 (10) 
The average precision evaluates the average fraction of proper labels ranked above a particular 

label . 
3) Coverage: 
                                   (11) 

The coverage evaluates how many steps are needed to move down the label list in order to cover 
all the proper labels of the dataset. It can reveal the step numbers which are need to move down to 
cover all test dataset relevant labels. 

4) Ranking loss: 

                          (12) 

where   
Here  represents the complementary set  in . Smaller values of  metrics correspond to 

higher classification quality. The ranking loss evaluates the average fraction of label pairs that are 
disordered for the test dataset labels. 

The above metrics get the averaged value by evaluating the classification models’ performance on 
the test samples. Hamming loss considers classification quality. Meanwhile, the other metrics evaluate 
performance in ranking quality. 
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4.3.2 Result and Analysis 
Our experiment is implemented in the following way. In the pre-treatments, LDA removed the words 
that frequency is one. The ALN-cedm used the same method [26] with Semantic LDA by constructing 
patent ALN to obtain relations. While, not only had the Semantic LDA excluded the high frequency 
keywords with weak semantic distinction, but also contracted the Backbone ALN as the relations. 

Ten-fold cross-validation is performed on graphene dataset. Every experiment repeats 10 times by 
randomly re-splitting the dataset into the training and the testing sets. We set the topic number from 10 
to 50. We defined training dataset’s labels set as ,  is the doc-topic matrix,  is mapping 
matrix. The problem can be written as a non-negative matrix factorization problem [31], so we 
estimate  by training dataset, and use it to predict test dataset labels. 

The parameters need to be specified for Semantic LDA model are  = 0.5,  = 0.1 and  = 0.1. For 
LDA,  = 0.5,  = 0.1. Through a large number of parameter selection, as Table 7 shows, we use three 
sets of parameters to build three kinds of average Backbone ALN graph density, and then add these 
Backbone ALN into Semantic LDA. This experiment compares LDA, ALN-cedm, Semantic-LDA-
0.1089 (average Backbone ALN density is 0.1089), Semantic-LDA-0.2066 (average Backbone ALN 
density is 0.2066), and Semantic-LDA-0.3199 (average Backbone ALN density is 0.3199) in four 
metrics.  
 

Table 7: The three parameters to build Backbone ALN 

   average Backbone ALN density 
0.29 0.4 0.78 0.1089 
0.15 0.2 0.8 0.2066 
0.1 0.27 0.85 0.3199 

 
Fig.10 shows the performance of the models in four matrices. For each evaluation metric, "↓" 

indicates "the smaller the better" while "↑" indicates "the larger the better". Although LDA and ALN-
cedm can achieve better some performance in some case, the efficiency of Semantic LDA is generally 
better than LDA and ALN-cedm in different topic numbers on graphene database across all evaluation 
metrics. Besides, the density of average Backbone ALN has impacts on the efficiency of Semantic 
LDA. The best is Semantic-LDA-0.1089, and we believe that this value is not fixed and depends on 
specific dataset. These results indicate that the Semantic LDA topic model proposed in this research is 
a plausible model that can improve the performance of topic discovery. 

 
(a) Hamming loss of models shows the mispredicted topic label ratios, the lower ratios of our model prove better performance 

(i.e.,↓) 
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(b) Average precision of models are ratios of predicted labels ranked above a particular label. The higher values than baseline 

demonstrate that our model has satisfying accuracy (i.e.,↑) 

 
(c)   Coverage represent predicted labels need to take how many steps to cover instance labels, our model has an obvious 

advantage in fewer steps (i.e.,↓) 

 

(d) Ranking loss of models evaluate that irrelevant label ranked higher than its relevant one, our model has less loss in most 
cases (i.e.,↓) 

Fig.10 Predictive performance of each comparing algorithm on graphene dataset 
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4.3.3 Sensitivity Analysis of Parameters 
So far, we have investigated the performance of our model for topic discovery. It is obvious that the 
Backbone ALN can help to enhance the performance for the topic result. From previous introduction 
of patent relationships, parameters needed to be specified for building Backbone ALN with various 
graph densities. In this section, we intend to analyse the effect of the parameters which are used in 
building Backbone ALN, such as ,  and , and we will show the results of sensitivity analysis on 
three datasets. Top  words are selected to expand the relationship in the Domain ALN.  and  
determine the expand scope of Domain ALN and Patent ALN. 

From Fig.11 (a), (b) shows the effect of the patent words, we can observe the changing routes of 
Backbone ALN density while ranging from 0.1 to 1. We set  as 0.2,  as 0.9. We use different  
to build Backbone ALN considering top 20% domain relations and top 90% patent internal 
relationships. According to Fig.11 (a), we can observe that the density of Backbone ALN decline with 
the increase of . As the  increases, word items grow faster than edge relationships, leads to the 
average Backbone ALN’s density decreases. Fig.11 (b) shows the accuracies as the average Backbone 
ALN density changing. The average precision is noticeably volatile on three datasets when  is 0.7. 
When the value of the average Backbone ALN density is becoming smaller, the average precision is 
more volatile. We can consider that the performance is disadvantaged by much word and too much 
word is a noise. 

 
(a) Average Backbone ALN density influenced by percentage of words candidates ( ), horizontal axis represents different 

range of , and vertical axis is density value, the density of Backbone ALN declines as the increase of  

 
(b)  Average precision influenced by , the average precision value carves changed with  fluctuate wildly, so it has an evident 
effect on precision of topic discovery 
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(c) Percentage of domain relations ( ) has effect on average Backbone ALN density, horizontal axis represents different range 
of , and vertical axis is density value,  can lead average Backbone ALN density increase as the value increases 

 
(d)   has influence on average precision, the curves which adjusted by  are most volatile, it can better prove that the effect of 
Domain ALN on extending patent semantics is obvious 

 
(e) Percentage of Patent ALN relations ( ) has influence on average Backbone ALN density, horizontal axis represents 
different range of , and vertical axis is density value, the average Backbone ALN density goes steadily up as  increases 
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(f)  Average precision influenced by , the influence on average precision is relative steady on bacteria dataset. 
From the figure, it is obvious that the changes of precisions are various in different domains 

Fig.11 The influence of three parameters such as ,  and  on three datasets in Semantic LDA model 

 
However, in section 4.3.2 Fig.10 (b), in graphene dataset, when the topic number is 12, the 

average precision of Semantic-LDA-0.1089 is relative high than Fig.11 (b). Even through the density 
is around 0.1, the average precision results have a great discrepancy between two figures. Because 
even the average Backbone ALN density is the same, it is hard to ensure that the nodes and relation 
edges are same, so the average precision is still a little sensitive. 

For demonstrating the effect of the Domain ALN scope, we changed the proportion of the  from 
top 10% to 100% with the ascending steps of 10%. From the Fig.11 (c), (d), the changes of  can lead 
average Backbone ALN density to increase. As the range of Domain ALN increases, more edges are 
expanded to rebuild Backbone ALN. From Fig.11 (d), the Semantic LDA has slightly worse 
performance when the value of average Backbone ALN density is 1.  

As shown in Fig.11 (e), (f), it is the influence of  on three datasets, when the number of  
increases, the average Backbone ALN density goes steadily up. We tested model on ten different 
ranges of patent network. The average Backbone ALN graph density ranges from 0.0290 to 0.2880.  

Overall, from Fig.11 (b), (d), (e), in the graphene dataset, when the average Backbone ALN 
density is around 0.1, we can easily get better performance. In three datasets, the average Backbone 
ALN density is from 0.02 to 0.3. Even we set =1， =1 and =1, the density cannot reach to 1. 
Since not all words have edge relations, the highest average Backbone ALN density depends on the 
strategy of selecting edge relations. We can observe that ,  and  can sensitively influence on the 
average Backbone ALN density. According to the results, it does not mean that the more relationship, 
the better average precision. The change of parameters cannot lead to linear or nonlinear relations 
between densities and precisions. Besides, the average precision is noticeably volatile on different 
thresholds in the different specific domain. Therefore, it needs some experience to select appropriate 
parameters to get better performance. 

4.4. Semantic LDA Topic Analyzer 
All results proved that the Semantic LDA model has better generalization performance. Moreover, the 
advantage of Semantic LDA is more notable for topic analysis. To investigate the quality of topics 
discovered by Semantic LDA, we fetch four topics (total topic number is 16) in graphene domain for 
visualization.  
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As Table 8 shows, each topic shows top 10 words and their conditional probabilities, while we 
show the top 10 relationships with probabilities. For each topic, we combine top 50 relationships with 
words to generate semantic topic net. 

Topic-1 shows the battery semantic topic in the graphene domain. From the semantic net, it can 
easily find the clue that the battery how to correlate with graphene. The graphene as a material of the 
battery, the key technologies of battery topic include {fullerene, graphene}, {acid, sulfur}, {oxide, 
titanium} etc. The details of the semantic topic are shown in Fig.12.  

As we can see from Topic-2, more relationships which are implicated in screen topic can be 
found, as Fig.13 shows, the key point to link screen with graphene is nanowire. The key technologies 
of screen topic include {composite, graphene}, {graphene, nanowire}, {screen, print} etc. 

Topic-3 shows the fiber semantic topic, except graphene node, the degree of oxide is five. From 
the degree value, we can observe that oxide is key point in fiber. The key technologies of fiber topic 
can be found in {portion, surface}, {carbide, nitride}, {diode, emit} etc. The details of the semantic 
topic are shown in Fig.14. 

 
Table 8: We selected four topics’ top 10 words and relationships with their probability of selected four topics, the first row 
presents the topic number and quoted topic summary. From our patent sematic topic, we can not only obtain the internal 
knowledge of the patent content but also gain the global knowledge enriched by domain background knowledge. 
 

Topic-1 "battery" sematic topic 
word probability relationships probability 

Fig.12 Semantic network of battery topic 

battery 0.1380 battery cell 0.0026 
solution 0.0542 fullerene graphene 0.0023 
nanocomposit 0.0351 acid sulfur 0.0012 
dopant 0.0216 mixture oxide 0.0011 
interact 0.0124 active electrode 0.0011 
encapsulate 0.0068 battery electrolytic 0.0081 
ester 0.0059 battery recharge 0.0007 
reactor 0.0053 solid electrolyte 0.0068 
hydrophilic 0.0052 pressure temperature 0.0061 
lithium-air 0.0048 oxide titanium 0.0057 

 
Topic-2 "screen" sematic topic 

word Probabi. relationships probability  

 
Fig.13 Semantic network of screen topic  

image 0.0346 composite graphene 0.0036 
power 0.0309 graphene nanowire 0.0035 
hydrogen 0.0285 screen print 0.0032 
capacitor 0.0237 dioxide titanium 0.0024 
interconnect 0.0231 ultraviolet light 0.0021 
screen 0.2105 nanowire screen 0.0019 
molecular 0.0171 nitride sulfide 0.0009 
aqueous 0.0123 epoxy Polyurethan

. 
0.0008 

mesoporous 0.0089 zinc magnesium 0.0018 
curvature 0.0076 ethyl methyl 0.0006 
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Topic-3 "fiber" sematic topic 
word probability relationships probability 

 
 
Fig.14 Semantic network of fiber topic  

temperature 0.0539 portion surface 0.0028 
fiber 0.0490 carbide nitride 0.0019 
compound 0.0397 diode emit 0.0017 
liquid 0.0375 drain gate 0.0016 
signal 0.0355 germanium silicon 0.0025 
anodic 0.0339 polyethylene terephthalat

e 
0.0023 

storage 0.0292 degree heat 0.0016 
alloy 0.0217 atmosphere inert 0.0014 
wire 0.0212 aluminum magnesium 0.0013 
aluminum 0.0190 nanotube electrode 0.0013 

 
Topic-4 "circuit" sematic topic 

word probability relationships probability 

 
Fig.15 Semantic network of circuit topic  

radiate 0.0282 graphene oxide 0.0098 
adjacency 0.0234 circuit electron 0.0053 
flow 0.0201 nitride oxide 0.0044 
circuit 0.0199 graphene platelet 0.0039 
block 0.0188 insult semiconductor 0.0031 
wireless 0.0145 radiate electromagnet 0.0027 
polysilicon 0.0125 interconnect electron 0.0023 
ultra-low 0.0116 gate voltage 0.0019 
colloid 0.0098 dope silicon 0.0017 
condense 0.0086 bridge switchable 0.0014 

 
Topic-4 shows circuit semantic topic, we can see from this topic, circuit is a part of current-

carrying, graphene is the important role to make up the main material. As Fig.15 shows, the key 
technologies of circuit topic can be found in {graphene, oxide}, {circuit, electron}, {nitride, oxide} 
etc. 

In the case study, the overview graphene technology topics can be generated with less effort by 
Semantic LDA model. Our semantic topics provide an overall understanding about the detail 
development and current stage of technology in graphene domain. The topic results can help to 
identify critical technologies and their interconnectedness. In a specific domain, these critical 
technologies can become important breakthrough for enhancing product innovation.  

5      Conclusions and Future Work 
In this paper, we have proposed a Semantic LDA model to discover semantic topics in a specific 
domain. In order to overcome the limitations (i.e., low accuracy and poor interpretability) brought by 
bag-of-words based models, our model has extended LDA by gracefully incorporating ALN 
considering not only words but also inter-word relationships. First, we have extracted the patent 
keywords with more semantic distinction ability by considering domain characteristic. Second, we 
have constructed Domain ALN to mine domain background knowledge while building Patent ALN to 
represent internal semantics. Then we have built the Backbone ALN with the purpose of balancing the 
power of both global semantics (Domain ALN) and patent internal semantics (Patent ALN). Finally, 
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by incorporating patent keywords and relationships from Backbone ALN, we have constructed a 
Semantic LDA model to discover patent semantic topics. Experimental results have proved that our 
model can achieve higher accuracy than baseline models. The case study has shown that our semantic 
topics with higher precision can be easily interpreted. Our work is expected to help identify the key 
technologies and enhance technology innovation. 

In the future, we aim to use the variational inference to improve the inference efficiency of the 
proposed Semantic LDA model, and extend the model to parallel processing [32][33]. Also, it would 
be valuable to extend the current model to locate topic changes, to evaluate and analyse the 
development of the technology topics. Semantic LDA model is fairly generic and can be naturally 
extend to other complex research area including text mining corpus and image semantics mining [34]. 
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