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The ontology matching process has become a vital part of the (semantic) web, enabling interoperability 

among heterogeneous data. To enable interoperability, similar entity pairs across heterogeneous data are 

discovered using a static set of matchers consisting of linguistic, structural and/or instance matchers that 

discover similar entities. Numerous sets of matchers exist in the literature; however, none of the matcher 

sets are capable of achieving good results across all data. In addition, it is both tedious and painstaking for 

domain experts to select the best set of matchers for the given data to be matched. In this paper, we 

propose two bootstrapping-based approaches, Bottom-up and Top-down, to automatically select the best 

set of matchers for the given ontologies to be matched. The selection is processed, based on the 

characteristics of the ontologies which are quantified by a set of quality metrics. Two new structural 

quality metrics, the Concept External Structural Richness (CESR) and the Concept Internal Structural 

Richness (CISR), have also been proposed to better quantify the structural characteristics of the ontology. 

The best set of matchers is chosen using the sets of patterns learned through the proposed Bottom-up and 

Top-down bootstrapping approaches. The proposed metrics and the patterns constructed using these 

approaches are evaluated using the COMA matching tool with existing benchmark ontologies 

(Benchmark, Conference and Benchmark2 tracks of the OAEI 2011). The proposed Bottom-up based 

patterns, along with the two proposed quality metrics, achieved better effectiveness (F-measure) in 

selecting the best set of matchers in comparison with the static set of matching, supervised ML algorithms  

and the existing automatic matching. Specifically, the proposed Bottom-up patterns achieve a 

14.6% Average Gain/Task and a significant improvement of 129% in comparison with the existing KNN 

model’s Average Gain/Task. 

Key words: Automatic Matching, Ontology Matcher Selection, Bootstrapping Patterns, 
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1 Introduction  

Ontology matching systems have gained considerably in significance, given that they form the basis 
for information systems that use heterogeneous data. These data are represented in different formats 
with different levels of specifications such as unstructured raw text, semi-structured XML and 
structured data such as tables, schema, and ontologies. Basically, ontology matching systems 
comprising of a set of element matchers aim at finding a set of semantically-similar entity pairs, called 
an alignment set, across the input data to be matched. The set of element matchers can be categorised, 
based on the information used, as follows: (i) Lexical matchers (L) that explore textual information 
such as an entity’s name, label, and comments, (ii) Structural matchers (S) that use details of entities 
like attributes, domain, range, relations, depth, and path, and (iii) Instance matchers (I) that use 
information from the tuples or instances of the data. 

The alignments of matching systems are used in various applications of the web (Euzenat & 
Shvaiko, 2007), such as heterogeneous web data integration, data translation, peer-to-peer information 
sharing, web service composition, multi-agent communication on the web, query answering on the web 
and the Deep Web. In all these applications, matching systems are designed to eliminate assorted 
heterogeneities and semantic ambiguities prevailing among the data using the discovered alignments. 
Diverse existing ontology matching systems, their applications and various challenges are outlined in a 
number of survey papers [6, 16, 27, 30, 32, 34] and books [4, 13], which represent state-of-the-art 
developments in this field. 

Generally, ontology matching systems use a static set of matchers to explore the two input 
ontologies to be matched from different perspectives so as to discover similarities between the entities. 
The two input ontologies which need to be matched are termed a matching task. However, based on 
the application, one of the inputs to the matching system can be a user query, schema, or catalogue. 
The static set of matchers comprising linguistic, structural and/or instance-based matchers is deployed 
for all matching tasks, irrespective of their characteristics. However, it is not mandatory for all 
matching tasks to have all the three types of information incorporated in them. Hence, these static set 
of matchers have shown reduced efficiency and/or effectiveness in a significant number of cases. For 
example, let us consider two ontologies, O1 and O2, with n and m number of entities respectively and 
no instances. An ontology matching system with the static set of matchers comprising linguistic, 
structural and instance matchers is deployed to find similarities across the entities of these two 
ontologies. Each of these matchers compares each entity of ontology O1 with each entity of ontology 
O2, leading to n*m computations. In total, for all the three matchers, 3*n*m computations are 
required. Such a huge number of computations would culminate in scalability issues like memory 
insufficiency and extremely time-consuming process. Let us consider a reverse scenario where the 
static set of matchers does not have an instant matcher and the matching task has instances. In this 
case, certain potential alignments will be left undiscovered by the static set of matchers. 

Therefore, there is no single set of matchers [34] which can effectively and efficiently discover 
alignments for all matching tasks. In addition, as the size and heterogeneity [2] of the ontologies 
increase, the need for scalable, robust and automated ontology matching systems becomes inevitable. 
Also, manually choosing the best set of matchers with an appropriate combination strategy for the 
given matching task is a painstaking requisite for domain experts, owing to the availability of a large 
numbers of matchers and their corresponding combination strategies. There is, consequently, a great 
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need for an automated ontology matching system which can choose, combine and tune a set of 
matchers automatically, based on the given matching task. Such an automatic selection of a set of 
matchers, its combination strategy, as well as the automatic tuning of each matcher, are open 
challenges in the field of ontology matching [34]. In this paper, we propose an approach that tackles 
the automatic matcher selection issue where a set of matchers is selected, based on the characteristics 
of the matching task. 

In the scenario above, if an automatic matcher selection strategy is deployed, only linguistic and 
structural matchers are selected and the number of computations reduced to 2*n*m. Generally, the 
benefits of the automatic selection of matchers are twofold: First, choosing an appropriate set of 
matchers leads to a robust system, i.e., more effective matching results are obtained. Second, 
eliminating unnecessary matchers leads to a more scalable system, resulting in greater efficiency. An 
automated matcher selection-based ontology matching system can be used in applications where data 
have varying characteristics. For example, a candidate application would be an integration of sets of 
schema pairs with varying characteristics. That is, one schema pair may have linguistic and structural 
characteristics, while the other pair may have only linguistic characteristics, and so on. 

Hence, the objective of this research is to develop an approach for choosing the best set of 
matchers automatically from a pool of matchers, based on the characteristics of the matching task. To 
enable automatic choosing, the proposed approaches should learn which combination of characteristics 
of the matching task quantified using a set of ontology quality metrics is best matched by which set of 
matchers. To accomplish this, two new semi-supervised machine learning approaches, Bottom-Up 
bootstrapping (BUB) and Top-Down bootstrapping (TDB), have been proposed that learn the sets of 
patterns for each set of matchers. Each pattern consisting of a set of ontology quality metrics represents 
the required linguistic, structural and instance characteristics for a particular set of matchers. After the 
learning process, sets of patterns are used to automatically select the best set of matchers for the given 
matching task, based on its characteristics. Further, for an accurate selection of the best set of 
matchers, the characteristics of the matching task should be precisely quantified.  Therefore, two new 
ontology quality metrics for computing ontology structural characteristics called the Class External 
Structural Richness (CESR) and the Class Internal Structural Richness (CISR) are proposed, which are 
designed to compute the percentage of concepts which have attributes and relations. 

The rest of the paper is organised as follows. Section 2 presents the related work. Section 3 
describes the construction procedure of the training dataset. Section 4 details the two new semi-
supervised bootstrapping approaches. The experimental results and inferences are discussed in Section 
5. Section 6 concludes the paper with a note on future work. 

2 Current Practice and Research 

There has been a growing number [13] of different automation strategies deployed in different stages 
of the matching system. The first stage of automation occurs in the selection of matchers which 
automatically choose a set of matchers from a pool of matchers. In the second stage, the tuning of the 
matchers is carried out, where the selected matcher’s parameters are fixed automatically. In the final 
stage, the sets of outputs (sets of similar entity pairs) of the various selected matchers are combined 
automatically. Of the three stages, the first stage of automation is crucial because the rest of the two 
stages are dependent on the first. Also, to yield good results, the correct choice of matchers is 
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mandatory and hence this paper aims to automatically select them. This section details the existing 
work related to the automatic selection of matchers. Further, it also outlines miscellaneous ontology 
matching systems that automatically combine and tune matchers.  

For the automatic tuning of the matchers, Yang et al. [39] used the particle swam optimization 
technique based on the parameter, space sampling, to automatically tune the matcher’s parameters. 
Ehrig, Staab and Sure [12] employed the heuristic combination strategy and determined the threshold 
of each matcher using varied machine learning algorithm(s) such as decision trees (e.g., C4.5), neural 
networks, and support vector machines.  

For an automatic combination of the matchers, different strategies have been used as follows. In 
[38], the weight of each matcher is computed for every pair of entities to be matched, depending on the 
features of the pair. Based on the features, the accuracies of certain sets of matchers are calculated 
using manual rules and others are predicted using a multilayer perceptron. Finally, for the given entity 
pair, the matchers are dynamically combined based on the weights.  

In [9], machine learning techniques are used to discover alignments. A set of learners is trained to 
match, based on user-created training data and combined by means of a meta-learner which weighs 
each learner based on the accuracy of the matching results.  

HADAPT: The harmony-based adaptive aggregation method [22] combines the matching results 
based on a measure called harmony (aka dominants [14]). The measure computes a weight for each 
matcher based on the number of correctly-matched entity pairs by the matcher. Matchers are then 
dynamically combined, based on the harmony value for the given matching task. HADAPT is 
classified as a global method by Ngo and Bellahsene [26], stemming from the use of the semantic 
context of the entity for aggregation.  

Sagi and Gal [32] designed a set of matching predictors to access the accuracy of the matcher in 
discovering similar entity pairs. The predictors are combined to analyse the matcher using the 
statistical method, stepwise regression,  

In [20], a particular matcher is used to combine the other matchers [20], and in [36], matchers are 
combined iteratively where pervious iteration alignments are used for the combination. Domain 
experts manually select suitable combination strategies for the chosen set of matchers [3, 8, 16]. Other 
methods such as user feedback-based learning methodologies [10, 33], Multi-agent techniques [32], 
linear combination of the matchers [21] are also used. 
 

 In the initial versions of matcher selection, semi-automated or manual selection strategies have been 
used as follows. Mochol, Jentzsch & Euzenat [25] used domain experts to answer a set of questions 
based on which appropriate matchers are chosen. Huza, Harzallah & Trichet [19] and Mochol & 
Jentzsch [24] used input ontology characteristics, output specifications [19] and the matcher 
descriptions available to manually construct a rule-based system for choosing the matchers. Peukert, 
Eberius & Rahm [28] used a graphical user interface through which a set of matchers can be selected. 
Mochol, Jentzsch, & Euzenat [25] used approximately 40 characteristic factors specifying details on 
the input ontology, available matchers, usage of the results, output and documentation describing the 
requirements of the application. These factors are represented in a hierarchical tree fashion and an 
Analytical Hierarchy Process (AHP) is used to choose the matcher from a pool of matchers. The major 
drawback of this work is that, all the factors mentioned above, as well as the description of each 
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matcher in the pool, is required to be manually described by domain experts, which can lead to serious 
bottlenecks. But, the proposed system, however, requires no domain experts, user intervention or 
manual selection. 

    
  Ontology matching systems falling under the category of automatic matcher selection are briefly 

described below. The ontology matching system, Rimom, [21] is designed to perform matcher 
selection and combination automatically. It uses linguistic and structural metrics to quantify the 
characteristics of input ontologies. Based on the two metrics, matchers are selected from both the 
lexical and structural category of matchers and the matching results are combined automatically. In our 
proposed approaches, unlike in this system, there is no constraint in choosing at least one matcher from 
each category, given that all matching tasks have little information in all categories. Also, despite being 
fully automated, the Rimom system uses only two categories of matchers, and instance matchers are 
not considered. This is a smaller number when compared to the eight metrics used in our proposed 
system for the precise quantification of the characteristics of the matching task. 

A self-configuring matching system was introduced by Peukert et al. [29] that is able to select and 
combine the matchers dynamically, based on the matching task. A set of schema features, as well as 
features based on the intermediate matching results, are used to analyse the characteristics of the given 
matching task and rules are applied to select and combine the matchers based on the features. 
However, these rules are limited and designed manually, based only on the features and matchers used 
in this system. On the other hand, the proposed bootstrapping approach learns patterns automatically 
for any given set of features and matchers. 

Hariri et al. [17] selected the best set of matchers and its combination strategy using the neural 
networks learning algorithm. It chooses the best set of matchers from a given pool of matchers, 
irrespective of the characteristics of the input ontologies. Further, the matchers are categorised into 
string, linguistic, structural metric and the like, and at least one matcher from each category is chosen 
compulsorily, which is unnecessary for all the matching tasks. 

Marie & Gal [15, 23] used boosting, a machine learning algorithm, to select and combine the 
matchers. The training dataset consists of a set of entity pairs, one from each of the ontologies, labelled 
with a binary value indicating whether or not the entity pair is similar. An element in the hypothesis 
space is a similarity matrix for the two input ontologies obtained using the set of matchers and its 
combination strategy. Based on the hypotheses, the system selects the best set of matchers and its 
combination strategy from a given pool of matchers similar to Hariri et al. [17], irrespective of the 
characteristics of the input ontologies. However, our proposed system chooses only the necessary 
category matchers based on the characteristics of the matching task, in contrast to the two approaches 
above. 

Cruz et al. [7] proposed a supervised KNN (K-Nearest Neighbour) learning algorithm for 
automatic matcher selection, based on the characteristics of the input ontologies. Their work chooses 
matchers from a particular category of matchers, if the characteristics of the matching task possess 
sufficient quantitative information needed for the particular category. To quantify the characteristics of 
the matching task, a set of nine ontology quality metrics categorised as lexical, structural, syntactic and 
instance have been used. Further matchers from the pool of matchers are combined to form sets of 
matchers whose matching results are combined in a predefined manner where each such set of 
matchers is called a configured matcher. Five such configured matchers are presented, each designed 
to match a unique set of characteristics. Any new matching task will be quantified using these nine 
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metrics and the constructed KNN model will choose the best configured matcher based on the said 
metrics.  

However, no open datasets were available to construct the KNN model and hence this system had 
to construct the required dataset. Despite this, only 233 labelled datasets are constructed from the 
matching tasks of the OAEI 2011 (Ontology Alignment Evaluation Initiative) [46], since the 
construction of the labelled data requires matching tasks along with reference alignments. 
Nevertheless, its availability is limited as a result of the protracted creation process of reference 
alignment sets by domain experts. Consequently, the use of a very limited training dataset for 
modelling a supervised KNN model is the prime drawback of their work. Generally, any supervised 
learning algorithm needs a sufficient number of labelled training datasets to avoid the underfitting and 
overfitting of the model. Owing to the limited availability of the labelled data, our system proposes two 
new semi-supervised bootstrapping algorithms which require a little labelled data and large unlabelled 
data. 233 labelled training and 11,589 unlabelled training datasets have been constructed, which is a 
very large number compared to the system above. The following section will discuss the construction 
of the training dataset. 

3     Construction of the Training Dataset 

In this section, the ontology metrics and the set of configured matchers used in the construction of the 
training dataset are described. Following this, the construction methodology for the labelled and 
unlabelled training datasets is discussed in detail. 

3.1. Ontology Quality Metrics 

Various ontology quality metrics exist in the literatures which quantify the characteristics of the 
ontology with respect to linguistic, structural, instance, and quality. However, in the context of an 
ontology matching system, each entity pair across the given two input ontologies is matched in terms 
of the linguistic, structural and instance similarities prevailing between them. So then, a set of metrics 
which is used to quantitatively define the presence of the characteristics is to be chosen. But prior to 
that, it should be noted that Hu, Qu & Cheng [18] stated that at least 50% of the final matching entity 
pairs can be found just by lexical matchers using linguistic information such as the concept’s name, 
comment, label, etc. This proves that, by default, almost all ontology pairs have rich linguistic 
characteristics. Therefore, no linguistic metrics are assigned to explicitly ensure the presence of 
linguistic characteristics. The system only checks for the presence of structural and instance 
characteristics by a set of corresponding metrics chosen from the literature [7, 37]. Further, two new 
structural quality metrics, the Concept External Structural Richness (CESR) and the Class Attribute 
Richness (CAR), are also proposed to further accurately quantify the structural characteristics of any 
given ontology. The set of chosen and proposed metrics used in the bootstrapping approaches is briefly 
discussed below.                                                                                                                     

3.1.1.  Structural Characteristic Metrics 

Structural metrics are chosen and proposed such that both the external and internal structural 
characteristics of a given ontology are quantified. External structural characteristics such as the depth 
of the concepts, and taxonomical and non-taxonomical relations, are quantified by metrics such as 
Average Depth, Inheritance Richness, Relational Richness. and Concept External Structural Richness 
(CESR). Attribute, an internal structural characteristic, is quantified by metrics such as Attribute 
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Richness and Class Attribute Richness (CAR). The list of structural characteristic metrics used in this 
system, alongside the two new proposed structural characteristic metrics, are defined in the following 
subsections. In all the definitions of the metrics, ci  represents the ith concept over the set of concepts C 
in the given ontology. 

Relationship Richness 

The Relationship Richness [37] of an ontology is defined as the ratio of non-taxonomical relationships 
to the total number of relations in the ontology.  

|ISA||ISA_Non|

|ISA_Non|
RR


          (1) 

In the definition above, |Non_ISA| represents the number of non-taxonomical relationships and 
(|Non_ISA| + |ISA|) represents the total number of relations in the ontology. 

Inheritance Richness 

Inheritance Richness [37] of an ontology is defined as the average number of subconcepts for each 
concept of the ontology. 

|C|

∑ |)c(sSubConcept|

IR
C∈c

i
i            (2) 

where the |SubConcepts(ci)| represents the number of sub-concepts for the class ci.  

Average Depth 

Average depth [7] of an ontology is used to determine the average specificity of each concept in the 
ontology.  It is defined as the ratio of the sum of the depth of each concept (D(ci)) in the ontology to 
the total number of concepts in the ontology. 

|C|

∑ )c(D

AD
C∈c

i
i              (3) 

Attribute Richness 

Attribute Richness [37] of an ontology is defined as the average number of attributes defined for each 
concept in the given ontology. 

|C|

|att|
AR               (4) 

In the definition above, |att| represents the total number of attributes defined in the ontology.  

The various existing structural metrics compute the average number of attributes [37], average 
number of taxonomical relations [37], count of children [11], count of ancestors [11], count of 
properties [11], and so on. But the average number and count of the entities’ computations can be 
biased by a few concepts with a huge number of relations or attributes, leading to defective greater 
values. Hence, the percentage of concepts which have relation(s) and the percentage of concepts which 
contain attribute(s) should also be quantified. This is incorporated by the proposed two new structural 
metrics, the Concept External Structural Richness (CESR) and the Concept Internal Structural 
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Richness (CISR). This percentage (P) and average number (A) together can convey the information 
that P% of concepts have, on average, A number of attributes or relations. Such a precise measure of 
structural characteristics will aid in the process of selecting the best configured matcher. 

Concept External Structural Richness (CESR) 

The proposed metric, CESR, of an ontology is defined as the percentage of the number of concepts 
with taxonomical or non-taxonomical relations which are represented by the subclass of relations and 
object properties respectively. 

CESR = 
|C|

)c(R iCci
 

         (5) 

where R(ci) is a Boolean function which returns a value of 1 if the concept ci has any relation 
associated with it, else 0 is returned.  The summation of this function value for all the concepts will 
give the number of classes associated with the relation(s) from which the CESR percentage can be 
computed. 

Concept Internal Structural Richness (CISR) 

The proposed CISR metric of an ontology is defined as the percentage of the number of concepts 
containing attributes, where the attributes are represented by the data property in the ontology. 

CISR = 
|C|

)c(P iCci
 

          (6) 

where P(ci) is a Boolean function which returns 1 if the concept ci contains an attribute, else 0 is 
returned.  

3.1.2. Instance Characteristic Metrics 

The metrics Average Population and Class Richness are chosen, so that both the average number of 
instances and the percentage of the concepts with the instance are computed. 

Average Population 

Average Population [37] of an ontology is the average number of instances per class. In the definition, 
|I| represents the number of instances available in the ontology. The metric is represented in real values 
ranging from 0 to infinity. 

|C|

|I|
AP            (7) 

Class Richness 

Class Richness [37] of an ontology is the percentage of the concepts for which the instances exist.  

CR=
|C|

)c(I iCci
 

          (8) 

where I(ci) is a binary function which returns 1 if the concept ci contains an instance, or else 0 is 
returned. The metric is represented in real values ranging from 0 to 1.  
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All the metrics are represented in real numbers. RR, CESR, CISR, AP and CR range from 0 to 1, 
while the rest of the 3 metrics range from 0 to infinity. Further, the larger value of each metric 
represents the richness of the corresponding characteristics while the smaller value represents the 
deficiency of the characteristics in the ontology. The metrics listed above form a numerical vector with 
8 values which quantifies the characteristics of the ontology in terms of structural and instance 
richness. For any given matching task, two metric vectors are computed, one for each of the input 
ontologies which are combined by an aggregating function called the FS-A [7]. The two metric vectors 
should be combined to summarize the characteristics of both the input ontologies, since the configured 
matchers are chosen based on the characteristics in question. The inputs of the FS-A function are the 
two values of the same metric m from two metric vectors belonging to the two input ontologies. The 
output of the FS-A is the single aggregated value for that metric m, formally defined as follows. 

2/
2

mm

)1)1mm(log(m

m
AFS HL

LHH

L
m 

















 










          (9) 

where mL and mH represent the lower value and higher value respectively between the two values of the 
metric m from two metric vectors. Similarly, the aggregate function FS-A is applied for all the metrics 
in the two vectors to obtain a combined metric vector. These combined metric vectors are used as 
follows. In the training phase of the approaches, the set of combined metric vectors computed for the 
set of matching tasks is used for the creation of the unlabelled and labelled data. In the testing phase of 
the approaches, any input ontology pair’s characteristics are represented by this combined metric 
vector, which is subsequently processed by the learned patterns to identify the best configured matcher.  

3.2. Configured Matchers 

This subsection outlines the configured matchers recommended by the learned patterns. The set of 
matchers which forms the configured matchers can be categorised into lexical (L), structural (S) and 
instance (I) matchers. These sets of matchers are combined in all possible combinations to obtain the 
possible set of configured matchers, CM, as follows: a configured matcher consisting of lexical, 
structural and instance matchers denoted by L+S+I, (ii) L, (iii) L+S, (iv) L+I, (v) S+I, (vi) S,            
and (vii) I. 

    However, configured matchers which have no lexical matcher are ignored for two reasons: (i) The 
presence of a lexical characteristic is by default [19] and hence the matchers cannot be ignored, and (ii) 
Based on the experiment conducted to construct labeled training data, configured matchers without 
lexical matchers are never chosen as the best configured matchers for matching tasks. Hence the set of 
configured matchers used in our system is as follows: (i) L+S+I,, called the configured matcher  cm1, 
(ii) L, called cm2, (iii) L+S, called cm3, and (iv) L+I, called cm4. These sets of configured matchers 
and the set of combined metric vectors are used to create the set of labelled data described in the next 
section. 

    Among the configured matchers, cm1 is chosen the default matcher. That is, any matching task 
that would not be recommended with the best configured matcher by the learned patterns will be 
matched using cm1. Therefore, any given matching task will be selected with cm1 for the following 
reasons: (i) The given matching task contains all the three characteristics and hence the learned 
patterns recommend cm1, and (ii) The learned patterns are unable to recommend the best matcher. 



 

 

628      A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

 

This is either due to a lack of information in the matching task or the set of metrics considered is 
insufficient.  

    Even though existing ontology matching systems such as the Falcon [18], COMA++[8], and 
Rimom [21] used the L+S (cm3) as a default matcher, the proposed approaches use the L+S+I (cm1) 
as a default matcher for the following reasons. First, when the learned patterns are unable, 
occasionally, to recommend the best configured matcher, the presence of the characteristics for the 
given matching task becomes ambiguous. In this case, deploying configured matchers like cm2, cm3 
or cm4 would result in the loss of potential similar entity pairs, since these configured matchers fail to 
provide a match despite utilizing all the available information in the matching task. To circumvent this, 
therefore, cm1 is chosen as the default matcher, which would aid in improved effectiveness at the cost 
of efficiency. Second, though the number of matching tasks with the presence of instance information 
is moderate, it is not negligible. Further, the instances of the ontology are also vital information, since 
an entity pair with the same set of instances will have high chances of being similar. Also, the 
importance of the instance matcher is reinforced by the latest OAEI competitions which have released 
a new and separate dataset for instance matching. 

3.3. Construction of the Labelled and Unlabelled Training Vectors 

The proposed approaches require a set of configured matchers, labelled and unlabelled training 
vectors, to learn patterns using the two bootstrapping approaches. Unfortunately, the training vectors 
are unavailable and consequently a tedious construction process is carried out to create it, which is 
described in this section.  

 First, the process of labelled training vector construction is presented. A set of matchable ontology 
pairs is needed, along with the reference matching results obtained from the OAEI. In the OAEI, a set 
of ontology pairs belonging to a domain is called a track, and each ontology pair in a track is called a 
matching task. Our system needs matching tracks with numerous multitasks to create a set of training 
vectors. Hence, the tracks of the OAEI 2011[46] which had the maximum number of tasks is chosen, 
rather than the latest OAEI campaign. The list of tracks used, its corresponding number of matching 
tasks, and the domain of the tracks are listed in Table 1.  

Table 1 Ontology Tracks. 
Track Number of 

matching tasks 
Domain of the matching 

tasks 
Benchmark 110 Bibliographic references 
Conference 021 Conference 
Benchmark2 102 Conference 

  
   The Benchmark [41] track comprises 110 matching tasks which are variants of the bibliographic 

ontology containing 33 named classes, 24 object properties, 40 data properties, 56 named individuals 
and 20 anonymous individuals. The Benchmark2 [42] track consists of 102 matching tasks and the 
Conference track [44] consists of 21 matching tasks which are variants of the conference ontology 
containing 74 classes and 33 object properties. These tasks were created such that any given matching 
system is checked for all possible matching scenarios and thus forms a perfect dataset with all the 
combinations of the characteristics of the ontologies. 
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    The methodology for the construction of the set of labelled vectors LV, depicted in Figure 1, is as 
follows. For each matching task t from the sets of matching tasks T, a labelled vector lv is constructed 
using the following five steps: (i) Two metric vectors, one for each ontology of t, are obtained and 
combined into a single metric vector using the FS-A method. (ii) Next, t is matched using all the four 
configured matchers deployed by the COMA ontology matching tool [43] to obtain the four sets of 
resultant-matched entity pairs. (iii) The reference matching results of t obtained from the OAEI is used 
to compute the quality of the four sets of results using the F-Measure metric. (iv) Thereafter, the 
optimal configuration selector chooses the configured matcher with the maximum F-Measure as the 
best configured matcher for t. (v) Finally, the lv is constructed, consisting of the unique identifier (ID) 
of the matching task and the combined metric vector of t. Further, the lv is labelled with the best 
configured matcher obtained from the step above.  

    Using the methodology above, 233 labelled vectors are created from 233 matching tasks. A small 
sample of labelled vectors constructed from the Benchmark track is shown in Table 2 and the 
illustration is as follows. The first matching task (101, 262-6) consisting of 8 metric values has 
negligible structural and instance characteristics and is labelled cm2 (L). The second matching task 
(101,224) is quantified with fewer instance characteristics and is labelled cm3 (L+S). Similarly, the  
ontology pair (101,254-8) is labelled cm4 (L+I). 

   

 

Figure 1 Unlabelled and Labelled Vectors Construction. 

      Second, the methodology for the construction of the set of unlabelled training vectors UV is 
outlined. It requires only the sets of matching tasks, since the data required for labelling such as a set 
of reference alignments and configured matchers are unnecessary. This results in the creation of new 
matching tasks without the reference alignments, in addition to the 233 matching tasks. For example, 



 

 

630      A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

 

let us consider the Benchmark track which comprises 110 matching tasks. In this track, an ontology 
named 101 is matched with itself and the rest of the 109 ontologies to create 110 matching tasks and 
the OAEI has provided the reference matching results for these 110 tasks. However, all the 110 
ontologies belong to the same domain and so we plan to match each of the ontologies with all the other 
ontologies in this track, leading to 6105 matching tasks. Similarly, 231 and 5253 matching tasks are 
obtained for the Conference and Benchmark2 tracks. For each matching task t, created by the 
procedure above, an unlabelled vector uv is created which consists of the ID and the combined vector 
of t. In total, 11589 unlabelled vectors are created.  

Table 2 Sample Labelled Vector. 

Metrics Matching Tasks 

101, 262-6 101, 224 101, 254-8 

Attribute Richness (AR) 0.0 1.2121 0.0 

Relationship Richness (RR) 0.0 0.4898 0.0 

Inheritance Richness (IR) 0.04 0.7575 0.05 

Average Depth (AD) 0.5353 2.2424 0.5353 

Class Richness (CR) 0.0158 0.0036 0.1013 

Average  Population (AP) 0.0 0.1088 1.8058 

Concept External Structural Richness (CESR) 0.0025 1.0 0.003 

Concept Internal Structural Richness (CISR) 0.0 1.0 0.0 

Configured Matcher cm2 cm3 cm4 

4    Bootstrapping-based Pattern Construction  

In this section, the two new seed pattern construction methodologies and the proposed two 
bootstrapped approaches, Bottom-up Bootstrapping (BUB) and Top-down Bootstrapping (TDB), are 
discussed in detail.  

 The flow of the proposed two semi-supervised bootstrapping approaches, BUB and TDB, can be 
split into training and testing phases. In the training phase, bootstrapping approaches need a small set 
of patterns and a large unlabelled vector. These patterns act as a seed used by the bootstrapping 
approaches to learn better patterns at each iteration and, as a result, these small sets of patterns are 
called seed patterns. The training phase can be divided into two major subprocesses: (i) seed pattern 
construction using the LV, and (ii) iteratively, learning the patterns from the seed patterns and UV. In 
the first subprocess, the sets of seed patterns corresponding to each of the configured matchers are 
constructed using the LV. Specifically, the seed patterns are constructed using two methods, the “2-
seed pattern” and the “8-seed pattern”, where two and eight (all) metrics are considered for each seed 
pattern construction respectively. In the second subprocess, the seed patterns and UV are used by the 
two bootstrapping approaches to iteratively construct new patterns that would enable an unknown 
matching task to be selected with the best configured matcher.  

 In the testing phase, two quality metric vectors representing the characteristics of the two input 
ontologies in the matching task are computed and combined using the FS-A aggregation method. The 
matching task is then selected with the best configured matcher using the learned patterns obtained 
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from either of the two bootstrapping approaches. To discover the matching entity pairs, the selected 
configured matcher is deployed using the configurable COMA [43] ontology matching tool. In the 
following subsections, the proposed two seed pattern construction methodologies and the 
corresponding BUB and TDB approaches-based pattern learning are detailed. 

 The logic behind both the proposed approaches is the “Curse of Dimensionality.” This states that 
increasing the number of features with the static set of training samples to build a model may lead to 
an increase in classification errors. This increase is due to the more biased model construction towards 
the training vectors and hence fails to handle unknown samples, i.e., an overfitted model is 
constructed. Therefore, it is necessary to find the optimal set of features which best constructs the 
model. In our system, the metrics are the features and two premises are created to find the optimal set 
of features: (i) The premise, “A small subset of metrics is sufficient to form the optimal set of 
features”, culminates in the formation of the BUB approach, and (ii) The premise, “A large subset of 
metrics is required to form the optimal set of features”, results in the formation of the TDB approach. 
Based on these premises, the BUB needs to start with fewer metrics and so shorter seed patterns are 
needed, which is the underlying cause for developing the “2-seed pattern” method. Similarly, the TDB 
needs longer seed patterns and hence the “8-seed pattern” method is proposed.  

4.1. Seed Pattern Construction 

This section discusses in detail the two new seed pattern construction methodologies, the “2-seed 
pattern” and the “8-seed pattern”. The structure of the set of seed patterns S2 and S8, constructed using 
the “2-seed pattern” and the “8-seed pattern” methods, is as follows. Each of the seed patterns consists 
of a set of units where each unit (uk) comprises the following three components: (i) a metric unique 
identifier (m), (ii) relational operators ≤ and ≥ (Θ), and (iii) a metric threshold value (vm).  Each 
constructed seed pattern,, s2 and s8,,  is formally defined as follows.  

s2 = (cm, u1, ..., uk) | (s2  S2), (k = 2) & (|S2|=36)          (10) 

s8  = (cm, u1, ..., uk) | (s8   S8), (k = 8) & (|S8|=3)             (11) 

Given  uk = (m Θ vm) | (1 ≤ m ≤  8)                         (12) 

where cm represents the configured matcher for which the seed pattern has been constructed and k 
denotes the length of the pattern counted as the number of units. For each pattern s2 constructed using 
the “2-seed pattern”, the length of the pattern is preset as 2 (k = 2), since the BUB works under the 
premise that a small subset of metrics is sufficient. In the “2-seed pattern”, totally 36 seed patterns are 
constructed, where each configured matcher has a set of 12 seed patterns except cm1, since it is the 
default matcher. Similarly, for each pattern s8, the length of the seed patterns constructed using the “8-
seed pattern” is 8 (k = 8), since the TDB works under the premise that all metrics are required. In the 
“8-seed pattern”, totally 3 seed patterns are constructed, where each configured matcher has 1 seed 
pattern, except cm1.  

 Each seed pattern should be an initial representative of the corresponding cm and the construction 
methods are so designed. The steps of the “2-seed pattern” method, which constructs a set of seed 
patterns for each configured matcher cm, is as follows. (i) The set of metrics for each seed pattern of 
the cm should be chosen such that the presence or absence of structural and instance characteristics is 
quantified. The set of metrics for a seed pattern s2 is selected by randomly choosing one metric from 
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the set of structural and instance characteristics metrics respectively. Similarly, for the rest of the cm’s 
seed pattern construction, all the other possible pairs of metrics, one from each characteristic of metrics 
are chosen. (ii) Thereafter, the relational operator (≤ or ≥) for each chosen m of s2 is determined, based 
on the cm. The basic idea here is to assign a ≥ operator for a metric m, if the characteristic of the 
matching task quantified by m should be checked for its presence. A characteristic is checked for its 
presence if the corresponding cm of the seed pattern has element matchers belonging to that 
characteristic. Else, m is assigned a ≤ operator to check for its absence. (iii) Finally, the threshold value 
of each chosen metric m can be calculated in two ways. The first is the Average method which 
computes the average value of the metric m from all vectors in the LV labelled with the configured 
matcher cm. The second method, MaxMin, selects the maximum value (Max) of the metric m from all 
the vectors in the LV labelled with the cm, if the logical operator of m is ≤. This is because only the 
Max of a metric represents the upper bound for the absence or insufficiency of a particular 
characteristic of the vector. Any value less than Max also represents absence or insufficiency. 
Similarly, choose a minimum value if the logical operator is ≥. 

 The set of metrics in the pattern is represented by unique identifiers such as 1 for RR, 2 for IR, 3 
for AD, 4 for AR, 5 for CSER, 6 for CISR, 7 for AP and 8 for CR. A sample of the seed patterns 
formed is shown in Table 3. For example, let us outline the construction of the second seed pattern in 
the table. The randomly chosen metrics for this seed pattern are AR (4) from the structural 
characteristic metrics and CR (8) from the instance characteristic metrics. Next follows the 
determination of the relational operator. Since cm3 consists of L and S matchers, any given matching 
task t will be selected with cm3, if t has an adequate presence of the structural characteristic. Hence, 
the structural metric 4 is assigned  a ≥ operator. Similarly, the instance metric 8 should be checked for 
its absence and hence a ≤ operator is assigned. Now, the seed pattern formed is “cm3, 4 ≥ threshold1, 8 
≤ threshold2”. The value threshold1 is determined by taking the average or minimum value of the AR 
metric from the vectors belonging to cm3 from the LV. Similarly, threshold2 is determined by taking 
the average or maximum value of the CR metric from the vectors which belong to cm3, from the LV. 
Thus, for the rest of the cm3 seed pattern construction, all the other possible pairs of metrics are chosen 
and the corresponding relational operator and threshold values are learned. 

Table 3 Sample Seed Pattern for the BUB Approach. 
Configured 

Matcher 
Metrics and their threshold 

cm2 3 ≤ 0.54 8 ≤ 0.016 
cm3 4 ≥ 0.64 8 ≤ 0.006 
cm4 3 ≤ 0.54 7 ≥ 1.81 

 The seed pattern formation using the “8-seed pattern” method is as follows. For each configured 
matcher, one seed pattern with all the structural and instance metrics is constructed. Subsequently, the 
relational operator and threshold value for each metric are determined, similar to the “2-seed pattern” 
method. Three seed patterns, one for each of the configured matchers except cm1 is constructed, which 
are shown in Table 4. After the set of necessary seed patterns is constructed, these patterns are 
iteratively processed by the bootstrapping approaches to construct the new sets of patterns discussed in 
the following subsection. 
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Table 4 Set of Seed Patterns for the TDB Approach. 

CM Metrics and its threshold 
cm2, 1 ≤ 0.0, 2 ≤ 0.0, 3 ≤ 0.54, 4 ≤ 0.0, 5 ≤ 0.0, 6 ≤ 0.0, 7 ≤ 0.0, 8 ≤ 0.016 
cm3, 1 ≥ 0.26, 2 ≥ 0.62, 3 ≥ 1.57, 4 ≥ 0.64, 5 ≥ 0.68, 6 ≥ 0.82, 7 ≤ 0.075, 8 ≤ 0.006 
cm4, 1 ≤ 0.0, 2 ≤ 0.0, 3 ≤ 0.54, 4 ≤ 0.0, 5 ≤ 0.0, 6 ≤ 0.0, 7 ≥ 1.81, 8 ≥ 0.101 

 

4.2. Bottom-up and Top-down Bootstrapping Approaches 

This section details the two new proposed BUB and TDB approaches to construct new patterns from 
the seed patterns. In both the approaches, for each configured matcher cm, a set of patterns is learned 
which represents the required characteristics by any matching task to be matched using the cm. The 
structure of the set of learned patterns P is similar to the set of seed patterns S which is given below.  

p = (cm, u1, ..., uk) | (pP), (2 ≤ k ≤  8) & (0 < |P| <∞ )         (13) 

where p represents a pattern in P, cm represents the configured matcher and uk is defined in (12). But, 
dissimilar to seed patterns, the length (k) of the learned patterns can vary from 2 to 8.  

    In both the approaches, new patterns are iteratively learned from the seed patterns used for 
automatic matcher selection. However, the approaches through which the patterns are constructed are 
contrasting and the major differences between them are as follows: (i) The BUB approach starts with 
generic seed patterns (fewer units) and builds more specific patterns for each iteration by appending a 
new metric. Conversely, the TDB approach starts with specific seed patterns (more units) and builds 
more generic patterns by masking the metrics at each iteration. This is analogous to the bottom-up and 
top-down clustering algorithms and, consequently, the proposed approaches are so named. (ii) Both the 
approaches learn new patterns based on the new information obtained from the unlabelled metric 
vectors matching the set of seed patterns at each iteration. For the BUB approach, in the initial 
iterations, the number of matched unlabelled vectors is greater when compared to the later iterations, 
since the seed patterns are generic in the initial iterations. Contrastingly, in the TDB approach, in the 
initial iterations, the number of matched vectors is lesser as a result of more specific seed patterns. 
Hence, the number of matched vectors used for new pattern construction at each iteration differs in 
each of these methodologies, ultimately influencing the quality of the patterns learned.  

    The pseudocode of both the proposed bootstrapping approaches is presented in Figure 2. The input 
to the BUB approach is the set of seed patterns S2 and the set of unlabelled vectors UV. Similarly, for 
the TDB approach, the inputs are S8 and UV. The output for both the approaches is a set of new 
patterns, P, which are used for the selection of configured matchers in the testing phase. Each iteration 
of both the proposed bootstrapped approaches consists of the following steps: (1) initializing, (2) 
matching, (3) updating the seed patterns, (4) constructing the new patterns, and (5) scoring the new 
patterns. All the five steps, except the 4th , is common for both the approaches. In all the common 
steps, sx denotes a seed pattern, Sx represents the set of seed patterns and ‘x’ can be 2 or 8. The sx and 
Sx denote the s2 and S2 respectively, if the common steps in the approaches are executed for the BUB 
approach. Similarly, it denotes s8 and S8 for the TDB approach. A detailed description of each step is 
as follows.  
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Input:  
(i) Set of seed patterns S2 for BUB or S8 for TDB 
(ii) Set UV 

Output: 
Set of new patterns P obtained by growing S2 for BUB or obtained by masking S8 for TDB 

 

I.  INITIALIZE 
a. Assign set CV, new_metric[3][8] and set this_P to NULL 
b. BUB approach: P = S2 

TDB approach: P = S8 
II. MATCHING 

a. For each uvUV   

 For each sx Sx   
If Matches (uv, sx), then  

(i) CV = CV U {uv , cm of sx } 
(ii) Break 

b. If none of the uv matches, then 
Goto step 5 for BUB approach 
Goto step 4 for TDB approach 

III. UPDATE THE SEED PATTERNS 
            For each cmCM 

a. For each m 
new_metric[cm][m] = Update (m, fetch (CV, cm) 

b. For each sx  Sx 
       If (( label(sx)) = cm) 

(i) sx = pattern_updation( sx, new_metric[cm][] ) 
(ii) P = P U sx 

IV.   NEW PATTERN CONSTRUCTION 
BUB approach 

If( s2 S2 (length (s2) = 8)) then Goto SCORING  //Stopping criteria 
Else  
     For each cmCM 

     For each s2  S2 | length (s2 ) < 8 & (( label(s2)) = cm) 
   For each mM  
                    If (not_partof(s2, m)) 

(i) New_pattern  =  pattern_growing (s2, m, new_metric[cm][m]); 
(ii) this_P = this_P U (New_pattern); 

S2 =this_p 
P = P U this_p 
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Figure 2 Pseudocode of the Proposed Bootstrapping Algorithm. 

4.2.1. Initialization 

 In the first step, the new data structures introduced in these approaches such as the set CV 
(configured vectors), the new_ metric [3][8], and the_P set are initialized to NULL at each iteration. 
For each iteration, the set CV is used to store the uvs which are labelled, the new_metric[3][8] is used 
to store the updated 8 metric values for all the 3 cms, and the new patterns learned are stored in this_P. 
In the testing phase, the set of seed patterns Sx is also used for the selection of the best configured 
matcher and is stored in set P.   

4.2.2. Matching 

The basic idea behind step 2 is to create new labelled vectors for each configured matcher cm from the 
set of large unlabelled vectors UV obtained from section 3.3. This is done using the seed patterns 
which represent the simple constraint for each cm. These newly-created labelled vectors are called 
configured vectors (cv). This is accomplished in step (2.a), where each unlabelled vector uv from the 
UV is matched with every seed pattern sx from Sx  until a match is found. The function Matches (uv, sx) 
checks whether the uv has the required characteristic represented by the sx. If a match is found, a new 
cv is created by labelling the uv with the configured matcher cm of the sx, and the cv is stored in the set 
CV. This process is repeated for all the uvs in the set UV to obtain the best configured matcher for 
each uv based on the Sx.  

For example, let us consider the second unlabelled metric vector uv=(1.2121, 0.4898, 0.7575, 
2.2424, 0.0036, 0.1088, 1.0, 1.0) from Table 2 and s2  as <cm3, 1 ≥ 0.64, 7 ≤ 0.006>. The required 
characteristics of cm3 represented by this seed pattern are that Attribute Richness (1) should be greater 
than or equal to 0.64 and Class Richness should be less than  or equal to 0.006. The given uv has the 
required characteristic and hence matches s2. The configured vector (cm3, 1.2121, 0.4898, 0.7575, 
2.2424, 0.0036, 0.1088, 1.0, 1.0) is added to the set CV. For each iteration at the end of step 2.a, a new 
set of configured vectors CV is constructed which becomes the labelled training vector representing 

TDB Approach 

If( s8S8 | length (s8) = 2) then Goto SCORING  //Stopping criteria 
Else 
  For each s8  S8 | length (s8) >2 
   For each m in s8 

(i) New_pattern = pattern_masking (s8,m); 
(ii) this_P = this_P U (New_pattern); 

S8= this_P 
P = P U this_p 
Goto INITIALIZE 

V.  SCORING 
a. For each pP 

      Scoring (p) = F-Measure (p) 
b. For each cm CM 

      Choose Top K patterns based on Scoring(p). 
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the required characteristics for each cm. These new, informative configured vectors are used in the 
following steps to compute the updated thresholds of all the metrics which will aid in new pattern 
construction. 

It is also crucial to note that, at the end of each iteration, the new patterns stored in this_P become 
the seed patterns for the consecutive iteration. Therefore, in the BUB approach, after certain iterations 
in step 2.b, the uv does not match with the sx, as seed patterns become too specific. Consequently, the 
set CV which is needed for both “seed pattern updation” and new pattern construction is empty and so 
the approach stops and switches to the “scoring” step. Contrastingly, in step 2.b of the TDB approach, 
the set CV is empty in the initial iterations. Despite this, the TDB approach can form new patterns by 
masking and thus in this scenario the approach switches to the “new pattern construction” step.  

4.2.3. Updating the Seed Patterns 

As a general rule, in supervised ML approaches, the model and its parameters are constructed from 
labelled training data. Here, the labelled training data are the CV, the model is the pattern, and the 
parameters are the metrics and their threshold values. In this step, the new threshold values are learned 
using the newly-constructed CV from the step above, which is used for the construction of new 
patterns. Also, the seed patterns are made more accurate by replacing old threshold values with newly-
learned threshold values. 

 First of all, in step 3.a, the new threshold values are learned for each cm. Two functions, the 
fetch() and Update(), are introduced. The fetch(CV, cm) function is used to retrieve the cvs from the 
CV labelled cm. The Update(m, fetch(CV, cm)) function is designed to learn the new threshold value 
for the metric m by the Average or MaxMin methods. The vectors (cvs) needed for these methods are 
retrieved using the fetch() function. The process above is repeated for all the m in each cm to learn new 
values. The new values of all the 8 metrics are stored in an array new_metric[][] where the 
new_metric[cm][m] contains the new value of the mth metric corresponding to the cm. 

For the BUB approach, the newly-computed threshold values become more specific in comparison 
with the threshold values of the previous iterations, the reason being as follows. Initially, each cm has a 
larger number of cvs since the seed patterns are generic, with just two units. As the iterations increase, 
the seed patterns grow in length with more metrics and so the number of unlabelled vectors matching 
the seed patterns under each cm reduces. Simultaneously, the number of un-configured vectors 
increases and the threshold values computed with this new and comparatively small set of CVs 
become more specific, compared to the previous iterations. Therefore, in each iteration, the updated 
seed patterns and the newly-constructed patterns which use these more specific threshold values also 
become more specific. This scenario is reversed for the TDB approach, where it begins with the most 
specific threshold values and ends with generic threshold values. 

After the new threshold values are learned for each cm, they are used to update the seed patterns in 
step 3.b. The function label(sx) is introduced, which returns the cm of sx. For each cm, the 
corresponding seed patterns are first retrieved using the label() function. Thereafter, the function 
pattern_updation (sx, new_metric[cm][]) replaces the thresholds of these seed patterns with the newly-
computed values which are stored in the new_metric[cm][]. These updated seed patterns are also new 
patterns which are stored in the set of new patterns, P. 
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4.2.4. New Pattern Construction 

The next step is the “new pattern construction” where new patterns are constructed from the updated 
seed patterns and new threshold values obtained from step 3. Here, the terminology seed pattern 
represents the updated seed pattern obtained from the step above.  

In the BUB approach, new patterns are constructed by appending new metrics to the seed patterns. 
This step first checks for the stopping criteria (IF part). The iterative process will stop when the length 
of all the seed patterns is 8. This is because, after a certain number of iterations, the entire set of seed 
patterns consists of all the metrics and it is impossible to append new metrics to form new ones. 
Henceforth, the approach switches to the scoring step. If the stopping criteria fail, for each cm, a set of 
seed patterns whose length is less than 8 is chosen. A seed pattern s2 with a length less than 8 indicates 
that certain metrics are missing in s2 and these missing metrics can be appended to make it grow. For 
each such growable seed pattern s2 under each cm, the missing metrics are identified using the function 
not_partof(s2,m) which returns 1 if s2 does not contain the metric m. Now the new patterns are 
constructed by appending the missing metrics to the growable seed patterns using the function 
pattern_growing (s2, m, new_metric[cm][m]). This function takes as input a selected seed pattern s2, as 
well as one of the missing metrics, m, and the new updated metric threshold value for m which is 
stored in the new_metric[cm][m].A new pattern is created by appending s2 with m and its threshold 
value. Further, for each added metric m, the corresponding relational operator is determined based on 
the cm of sx,, similar to the seed pattern construction methodology. Likewise, the other missing metrics 
of s2 are also appended to create a set of new patterns from s2.  

    In the Top-down approach, the new patterns are constructed by masking, which is defined as 
follows. The term, ‘masking a metric m’, is defined as removing a metric m along with its relational 
operator and threshold value from the pattern. A new pattern is formed from a seed pattern by masking 
a metric m from the seed pattern. Similar to the BUB, this step also first checks for the stopping 
criteria (IF part). The iterative process will stop when the length of all the seed patterns is 2. This is 
because, after a certain number of iterations, the entire set of seed patterns will consist of only two 
metrics (the length of all the seed patterns being 2) and new patterns cannot be formed. In this 
scenario, the approach stops the iteration and switches to the scoring step. If the stopping criteria fail, 
for each cm, a set of seed patterns whose length is greater than 2 is chosen. A seed pattern s2 with a 
length greater than 2 indicates that certain metrics can be removed to make it shrink. For each such 
shrinkable seed pattern s8 under each cm with length k, the function pattern_masking (s8,m) is used to 
mask each metric m from the k metrics, one at a time, to create k new patterns.  

The newly-constructed patterns using the BUB and TDB approaches are called BU and TD 
patterns respectively. In both the approaches, the set of learned new patterns in this step becomes the 
set of seed patterns for the next iteration. Also, this set is stored in the set P and the control switches to 
the “initialize” step to repeat the iteration. 

4.2.5. Scoring 

Finally, in the “scoring” step, all the newly-constructed patterns in P are validated using the metric F-
Measure. To compute the F-Measure values for each p in P, a set of reference metric vectors labelled 
with the best cm is required. The set LV is used as the reference dataset, since each lvLV is labelled 
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with the best cm using the construction methodology described in section 3.3. The F-Measure of each 
pattern p is the harmonic mean of the precision (correctness) and recall metrics (completeness) of p. 

Before defining the metrics, let us first describe the two sets used in the metrics, CL and PL. Let 
CL(p) be the set of lvLV such that label(lv) = label(p). Basically, each lv in CL(p) is the sample 
metric vector for p and hence an ideal p should match with all the lvs in the CL(p). Also, let PL(p) be 
the set of the lvLV which actually matches (step II) with p according to step II of the bootstrapping 
approaches. In other words, CL(p) is the ideal set of matched vectors and PL(p) is the actual set of 
matched vectors. Further, an lv is stated as correctly classified by p if the label (cm) of lv is the same as 
the cm of p. The formal definition of precision and recall for p are as follows. 

|)p(PL|

|)p(PL)p(CL|
)p(ecisionPr


         (14) 

|)p(CL|

|)p(PL)p(CL|
)p(callRe


         (15) 

where |(p)PL(p)CL|  represents the number of vectors correctly classified by the pattern |PL(p)| and 

|CL(p)| denotes the number of patterns in the set PL(p) and CL(p) respectively.  

Based on the precision and recall metrics defined above, the F-Measure for each pattern p is 
computed. Similarly, the F-Measure is computed for all the patterns under each cm. For each cm, the 
top K patterns are chosen based on the F-Measure which represents the required characteristic for the 
cm. These sets of chosen patterns are used to select the best cm for any given matching task. 

5     Evaluation & Experimental Results 

This section details the various experiments conducted to evaluate the proposed structural metrics, the 
BUB and TDB approaches. For all the experiments, the three ontology tracks used are mentioned in 
Table 1 and a detailed description presented in section 3.3. Also, for all the experiments conducted to 
prove the effectiveness of the patterns learned, a 10-fold cross validation is performed using the LV 
dataset which is used both as a training and testing dataset. In addition to the LV dataset, the UV 
dataset is also used as a training dataset for pattern learning. 

   The set of elements and configured matchers required for the experimental set-up can be deployed 
by any ontology matching tool, provided the tool is customizable. In all the experiments, the 
configured matchers are deployed using the configurable ontology matching tool COMA [8]. This tool 
is selected because: (i) It is a configurable tool where the matchers can be chosen based on the 
requirements of the user/task, (ii) It has been used in many OAEI competitions and reported good 
results, and (iii) The latest version, COMA 3.0 [43], is freely downloadable. 

     The set of element matchers available in COMA 3.0 is as follows. The available linguistic element 
matchers are Affix, Trigram, EditDistance, Soundex, Synonym, Type and Reuse. A structural element 
matcher called Statistics is available to quantify similarity, based on the number of children, parents, 
leaves, etc. Also, an instance matcher called Instance is available. These element matchers, except the 
instance matcher, are aggregated in different combinations to define 8 combined matchers: Name, 
NameType, NameStat, NamePath, Children, Leaves, Parents and Siblings. The first 4 combined 
matchers are designed for linguistic matching and the last 4 for structural matching. Using these 8 
combined matchers and the instance matcher, the required configured matchers for the proposed 
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approaches are deployed. For cm1, all the combined matchers and instance matcher are used. 
Similarly, cm2 employs the first four combined matchers, cm3 uses all the combined matchers, and 
cm4 deploys the first four combined matchers and the instance matcher. The default parameters of the 
COMA tool, such as the Average Combination and Delta selection, are used. For a detailed description 
of the COMA tool and its default parameter settings, readers are referred to [8]. 

5.1. Proposed Semi-Supervised Approaches vs Existing Supervised Approaches 

In this subsection, the two proposed semi-supervised approaches, BUB and TDB, are first compared 
for the effectiveness of the patterns constructed, following which the two approaches are evaluated 
against the existing supervised approaches.  

    Before comparing the two proposed approaches, the Average and MaxMin methods used to 
calculate the threshold of the patterns are evaluated, based on the effectiveness of the patterns 
constructed. As discussed in section 4.2.5, the effectiveness of each pattern is measured by the F-
Measure metric. The average F-Measure of the top 2, 5 and 10 patterns is computed for each 
configured matcher. Based on the effectiveness of the constructed patterns, it is inferred that the 
MaxMin method is able to stringently and precisely compute the threshold values for each metric in 
comparison with the average method. This is shown in Tables 5 and 6, where the MaxMin threshold 
method achieves better effectiveness in comparison with the average threshold method for both the BU 
and TD patterns.  

 
Table 5 Average F-Measure of the TopK Patterns for Each Configured Matcher based on the BUB Approach. 

 
Top 2 Top 5 Top 10 
cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4 

Average 0.879 0.768 0.924 0.69 0.686 0.835 0.567 0.632 0.799 
MaxMin 0.923 0.804 1 0.778 0.799 0.917 0.721 0.797 0.819 

 
Table 6 Average F-Measure of the TopK Patterns for Each Configured Matcher based on the TDB approach. 

 
Top 2 Top 5 Top 10 

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4 

Average 0.947 0.693 0.925 0.867 0.643 0.905 0.747 0.583 0.715 
MaxMin 1 0.779 0.935 0.77 0.763 0.88 0.756 0.732 0.795 

     To have a clear insight into the effectiveness of the patterns, the precision and recall values of the 
TopK patterns listed in Tables 5 and 6 are shown in Tables 7-10 respectively. It is to be noted that, on 
average, the precision values of the patterns are greater than the recall values. This is because the 
patterns are learned stringently to accurately choose the correct configured matcher leading to better 
precision and would occasionally result in missing out on the ontology pairs that are supposed to be 
matched by the configured matcher of the patterns leading to reduced recall. However, the majority of 
such ontology pairs are matched by the default matcher cm1 and hence the effectiveness of the 
matching results of the pair are not compromised. Further, in fewer cases, the precision or recall values 
of Average method are greater than MaxMin method due to the more stringent process of latter 
compared to the former leading to rare overfitted thresholds. Nevertheless, in the majority of the cases, 
the MaxMin method achieves better results due to the precise process and hence the average 
effectiveness is higher. Consequently, in further processing of the proposed approaches, the MaxMin 
method is used to determine the thresholds of the patterns. 
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     Next, a brief analysis of the selected set of BU and TD patterns is presented. Tables 11 and 12 
show the set of selected patterns for each of the configured matchers. The selection procedure of 
patterns from the set of patterns learned is as follows. For each configured matcher, one pattern with 
the maximum F-Measure is selected, i.e., the Top 1. If more than one pattern has the same F-Measure 
with a different pattern length, the shortest pattern is selected since it represents generalized and 
efficient modelling. If more than one pattern has the same F-Measure with the same pattern length, a 
pattern is selected at random.  

Table 7 Average Precision of the TopK Patterns for Each Configured Matcher based on the BUB approach. 

 
Top 2 Top 5 Top 10 

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4 
Average 0.9 0.83 0.96 0.74 0.73 0.82 0.58 0.69 0.85 
MaxMin 0.97 0.86 1 0.79 0.86 0.95 0.79 0.83 0.8 

 
Table 8 Average Recall of the TopK Patterns for Each Configured Matcher based on the BUB approach. 

 
Top 2 Top 5 Top 10 

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4 
Average 0.86 0.71 0.89 0.65 0.65 0.85 0.55 0.58 0.75 
MaxMin 0.88 0.75 1 0.77 0.75 0.89 0.66 0.77 0.84 

 
Table 9 Average Precision of the TopK Patterns for Each Configured Matcher based on the TDB approach. 

 
Top 2 Top 5 Top 10 

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4 

Average 0.97 0.77 0.93 0.92 0.67 0.95 0.77 0.56 0.73 
MaxMin 1 0.83 0.97 0.8 0.74 0.87 0.79 0.79 0.82 

 
Table 10 Average Recall of the TopK patterns for Each Configured Matcher based on the TDB approach. 

 
Top 2 Top 5 Top 10 

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4 

Average 0.93 0.63 0.92 0.82 0.62 0.86 0.73 0.61 0.7 
MaxMin 1 0.73 0.9 0.74 0.79 0.89 0.72 0.68 0.77 

Table 11 Selected BU patterns. 
Configured 
Matcher 

Precisio
n 

Reca
ll 

F-
Measure 

Patterns 

cm2  0.97 0.87 0.92  3 ≤ 0.64,  7 ≤ 0.12 
cm3  0.89 0.78 0.83 6 ≥ 0.82,  8 ≤ 0.006 
cm4  1 1 1  4 ≤ 0.12,  8 ≥ 0.1,  3 ≤ 2.2 

Table 12 Selected TD patterns. 
Configured 

Matcher 
Precision Recall F-Measure Patterns 

cm2  1 1 1 1 ≤ 0.0, 4 ≤ 0.05, 3 ≤ 2.2, 8 ≤ 0.1 
cm3  0.8 0.72 0.76 5 ≥ 0.0, 8 ≤ 0.1 
cm4  1 0.9 0.95 4 ≤ 0.0, 2 ≤ 0.53, 8 ≥ 0.1, 7 ≥ 0.5 

The following observations are made from the set of patterns selected above: 

1.  The BU pattern of cm2, with a superior effectiveness of 0.92, is a seed pattern. Similarly, cm3’s 
BU pattern has the same length and metrics like a seed pattern, with a difference in threshold 
values. Thus, it is evident that the set of constructed seed patterns is sufficiently adequate to be the 
base patterns for the construction of new patterns. 
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2.  The list of metrics such as Average Depth (3), Attribute Richness (4), Concept Internal Structural 
Richness (6), Average Population (7) and Class Richness (8) are present in the selected BU 
patterns. Similarly, the TD patterns comprise a list of metrics such as Relationship Richness (1), 
Inheritance Richness (2), Average Depth (3), Attribute Richness (4), Concept External Structural 
Richness (5), Average Population (7) and Class Richness (8). From these lists, it is inferred that the 
number of metrics needed for a configured matcher selection by the BU patterns is 5 and TD 
patterns is 7. Hence, the BUB approach models the selection process with a smaller number of 
metrics and is therefore more efficient than the TDB approach. Basically, the BU patterns are 
small, generic patterns compared to the TD patterns.  

3.  On average, for all the three configured matchers, the effectiveness (F-Measure) of the selected BU 
patterns is 0.916 and TD patterns is 0.903. Consequently, it is inferred that the BU patterns achieve 
marginally more effective patterns with fewer metrics in comparison with the TD patterns with 
more metrics. 

    From the analysis above, it is concluded that the BU patterns are better than the TD ones. The BU 
patterns are effective and generic with a smaller number of metrics, compared to the TD patterns which 
are specific and with more metrics. Also, the proposed CESR and CISR metrics are present in both the 
set of selected patterns demonstrating the significance of the proposed metrics in the selection process 
of the best configured matcher. From this point onwards, the terms BU and TD patterns denote only 
the selected top patterns shown in Tables 11 and 12. 

 The third experiment evaluates the effectiveness of the BU and TD patterns in selecting the best cm 
for each matching task of all the three ontology tracks in Table 1. Following this, the selected cm is 
deployed using the COMA tool and the matching results obtained for all the matching tasks are 
compared with the reference alignments to compute the precision, recall and F-Measure metrics 
(Figures 3 and 4). As inferred from the figures, the BU patterns have achieved better effectiveness (F-
Measure) than the TD patterns. Although the TD patterns use more metrics to quantify the 
characteristics of the ontology pair, it is unable to construct effective patterns owing to the “Curse of 
Dimensionality” effect discussed earlier. From these results and inferences from the learned patterns, it 
can be concluded that the premise for the BUB approach, “A small subset of metrics is sufficient to 
form the optimal set of features” is true.   

 

 
 

Figure 3 Precision, Recall and F-Measure of the Matching Task using BU Patterns. 
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Figure 4 Precision, Recall and F-Measure of the Matching Task using TD Patterns. 

 
     Further, to prove that the proposed approaches can surpass any supervised machine learning (ML) 

algorithms, well-known supervised ML algorithms belonging to miscellaneous categories such as the  
instance-based learner KNN, probability-based Naive Bayes, decision tree C4.5  and the neural 
network-based multilayer perceptron are used for comparison (Figure 5). As similar to the first 
experiment, all the approaches are evaluated using the average precision, recall and F-Measure of the 
matching tasks belonging to all the three tracks and the selected configured matcher is deployed using 
the COMA 3.0 [43] tool. It is also essential to note that the supervised KNN model evaluated in this 
subsection, and the KNN model of Cruz et al. [7], are the same, the difference being that the latter uses 
an ontology matching tool, AgreementMaker, to deploy the selected configured matchers, whereas the 
former uses the COMA 3.0 tool and, additionally, utilizes two new structural metrics. Furthermore, the 
AgreementMaker tool used by Cruz et al. is not openly available and so the experimental results of 
their work can only be cited from their paper. Since the Cruz et al. work’s F-Measure values for all the 
tracks are unavailable in their paper, the supervised KNN with the COMA 3.0 tool is used for 
simulation. So, when the proposed approaches are compared with the generic supervised KNN 
approach, an indirect comparison with the Cruz et al. [7] work is drawn.  

  The results from Figure 5 show that the proposed BU patterns are superior in choosing the best 
configured matchers, compared to the proposed TD patterns and the existing supervised models. This 
result is due to the three reasons that follow: (i) The two proposed structural metrics, CESR and CISR, 
aided the system in better selection by precisely quantifying the structural characteristic of any given 
ontology. (ii) Though both the BU and TD patterns use the proposed structural metrics, the BU 
patterns achieved better accuracy, largely because the BUB approach is able to choose the necessary 
(and sufficient) set of metrics needed to learn generic and effective patterns. (iii) The BUB approach is 
able to construct more accurate patterns than the KNN model, since the proposed approach used a 
small labelled and a large unlabelled vector, whereas the KNN model used only a little labelled vector 
for pattern construction. It can also be noted that the KNN achieved the top mean F-Measure of 0.683 
among the supervised algorithms, the reason being that, instance-based algorithms can learn better 
models with a smaller set of training data, whereas other supervised algorithms require larger training 
data. 
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Figure 5 Precision, Recall and F-Measure of the Matching Tasks using the Proposed and Various Existing ML Approaches. 
 
The next experiment is carried out to test the individual effectiveness of the proposed BU 

patterns, as well as the structural metrics CESR and CISR, using precision, recall and F-Measure 
metrics. The methodologies compared are the proposed BU patterns which achieved better 
effectiveness than the TD patterns in the three experiments above, and the supervised KNN model 
which achieved the best accuracy among the supervised approaches. As shown in Figures 6-8, four 
models are evaluated.  The first model, M1, is the baseline consisting of the KNN which uses only the 
set of existing metrics listed in section 3.1. For all the three tracks, this model achieves the least 
average precision, recall and F-Measure, since the supervised KNN is unable to build an accurate 
model with a small labelled dataset. The second model, M2, consists of the KNN with the existing and 
proposed metrics. The latter aided in better selection by computing the percentage of the internal 
(CISR) and external structural richness (CESR), and so M2 achieves better effectiveness than M1, 
validating the contribution of the proposed metrics towards a better selection of configured matchers. 
The third model, M3, consists of the BU patterns with the existing metrics. Since M3 is a semi-
supervised model, it can construct an accurate model with a small set of labelled and a large set of 
unlabelled datasets, compared to M1 and M2. Therefore, M3 achieves greater precision, recall and F-
Measure than M1 and M2, even without the proposed metrics. The final model, M4, is the proposed 
BUB approach comprising the BU patterns with the existing and proposed metrics which achieves the 
best average effectiveness for all the three tracks. This is due to the precise characteristic quantification 
by the proposed metrics and the accurate modelling by the BU patterns. From the set of experiments, it 
can be concluded that the proposed BU patterns learned using the BUB approach are generic, as well 
as more effective and accurate, than the TD patterns and existing supervised ML algorithms. 
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Figure 6 Precision of the Matching Tasks for the Versions of the Proposed Approach. 
 

 
 

Figure 7 Recall of the Matching Tasks for the Versions of the Proposed Approach. 
 

5.2. One-way ANOVA: A Statistical Significance Test  

This section briefly discusses the statistical significance test carried out using the one-way ANOVA 
[45] to statistically demonstrate the performance of the BU and TD patterns in terms of the F-Measure 
of the matching tasks. The supervised KNN model which obtained the maximum accuracy among the 
supervised ML approaches is used for comparison. Here, the ANOVA is used to prove that the 
improvements in the performances of the proposed approaches as against the supervised KNN model 
are statistically significant. 
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Figure 8 F-Measure of the Matching Tasks for the Versions of the Proposed Approach. 

Before commencing the statistical evaluation, the data required for the performance evaluation and 
null hypothesis is to be defined. The dataset used for the analysis consists of the F-Measure values of 
the matching tasks belonging to the tracks mentioned in Table 1. For each matching task, the               
F-Measure values corresponding to each of the three methods are computed and the dataset analysed 
by the ANOVA to identify the statistical differences among the methods. Now, the null hypothesis is 
defined thus:  “The F-Measure means of all the three methods are equal”.  

Initially, the ANOVA test is carried out for the data belonging to the Benchmark track and Table 
13 shows its descriptive statistics. For each method, 110 (N) matching tasks are matched using the 
selected configured matcher and the corresponding F-Measure computed. The means and standard 
deviations of the three methods clearly indicate that the BU patterns achieve both maximum and 
consistent performances. Table 14 shows the analysis of the variance, from which it is inferred that the 
null hypothesis is rejected with the risk of just 0.01%, as indicated in the last column of the table 
(pr>F). This indicates that all the three methods are statistically different from each other, and the 
improvement achieved by the proposed approaches is significant. 

 
Table 13 Descriptive Statistics. 

Level N Mean StDev 
BU 110 86.2324 3.732038 

TD 110 79.91667 4.024341 
KNN 110 84.30901 4.082548 

 
Table 14 Analysis of variance. 

Source DF Sum of squares Mean squares F Pr > F 

Model 2 2288.033 1144.017 131.493 < 0.0001 

Error 328 2844.964 8.700 

Corrected Total 330 5132.997       
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However, ANOVA can only indicate the presence or absence of statistically significant 

differences in the means of the F-Measure, hence the Fisher test is used to quantify the difference 
between the means. The statistical difference between the three methods is shown in the “Difference” 
column in Table 15. The difference in performance between the BU patterns and KNN model is high, 
since the former is a better semi-supervised model than the latter supervised model. The difference 
between the BU and TD patterns is low, given that both are semi-supervised approach models. These 
statistically significant different values prove that the three models constructed are significantly 
different, as is also indicated in the last column of Table 15.  

 
Table 15 Method / Fisher (LSD) / An Analysis of the Differences between the Categories with a Confidence Interval of 95%. 

Contrast Difference Standardized difference 
Critical 
value Pr > Diff Significant 

BU vs KNN 6.316 15.842 1.967 < 0.0001 Yes 

BU vs TD 1.923 4.858 1.967 < 0.0001 Yes 

TD vs KNN 4.392 11.017 1.967 < 0.0001 Yes 

LSD-value: 0.782 
 
The same can be inferred from Table 16, which shows the group formation based on the F-

Measure of the matching tasks. Here, groups are formed based on the similarity among the F-Measure 
values, irrespective of the method to which they belong. Further, only three groups are formed, since 
only three methods are compared. After the groups are formed, each method M is assigned a set of 
groups which have the F-Measure values of M. Since the F-Measure values across each method are 
dissimilar and values within the methods are similar, each group comprised the F-Measure values 
belonging only to a single method. Therefore, as shown in Table 16, the three methods belong to three 
different groups, indicative of the statistically significant difference between the three methods. Thus, 
from the set of statistical results above, it can be concluded that the BU patterns are statistically 
different and perform the best. Further, the same statistical testing is carried out using the precision and 
recall values of the matching tasks and similar results are obtained. Also, the test is repeated for the 
Conference and Benchmark2 tracks and similar conclusions are derived. Hence, similar to the previous 
section, statistical testing also proves that the BU patterns are more effective in comparison with the 
TD patterns and the supervised ML approach, KNN. Therefore, for the purpose of further experiments, 
only the BU patterns are evaluated. 

Table 16 Group Formation. 

Category LS means Groups 

BU 86.232 A 

TD 84.309 B 

KNN 79.917 C 

5.3. Existing Static and Automatic vs Proposed Automatic Matching 
In this section, to gauge the effectiveness of the selected BU patterns (Table 11), a series of 
experiments was conducted using the three tracks listed in Table 1.   

    The first experiment evaluates automatic matching against static matching in terms of the 
precision, recall and F-Measure of the matching task. Similar to the existing static matching systems 
such as the Falcon [18], COMA++ [8], and Rimom [21], the configured matcher cm3 (Lexical + 
Structural) is used to statistically match the given tasks, irrespective of their characteristics. In 
automatic matching, for each matching task, the best configured matchers for matching are 
automatically selected by the BU patterns. The chief objective of the proposed approach is to increase 
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the effectiveness of the matching results by a precise and automatic selection of the configured 
matcher based on the characteristics of the matching tasks. The effectiveness is improved by enhanced 
correctness (precision) or completeness (recall) or both, depending on the chosen configured matcher. 
Table 17 shows the improved performance in terms of the average precision, recall and F-Measure for 
each of the considered tracks. This result proves that the objective of the proposed approach is 
successfully accomplished.  

   
Table 17 Comparison of Precision, Recall and F-Measure Values on Automatic vs Static Matching. 

Benchmark Conference Benchmark2 

P* R* FM* P R FM P R FM 

Automatic (A) 0.92 0.81 0.86 0.42 0.66 0.51 0.87 0.79 0.83 

 Static (S) 0.77 0.69 0.73 0.55 0.44 0.49 0.84 0.78 0.81 
 
The next evaluation is based on the matching time required by automatic and static matching. As 

shown in Figure 9, on average for all the three tracks, the matching time required by the proposed 
automatically selected matcher is 95.66 seconds. This is higher, compared to the static matcher’s 
average matching time of 81.66 seconds. Because the Benchmark track had many tasks with lexical, 
structural and instance characteristics, the proposed approach chose the cm1 matcher. This led to extra 
execution time in comparison with the static matcher comprising only the lexical and structural 
matchers. Meanwhile, the Conference and Benchmark2 tracks have no instances and therefore the 
proposed automatic matching chooses between cm2 and cm3. Hence, for these tracks, the execution 
time of automatic matching marginally outperforms that of static matching. From the results above, it 
can be concluded that, depending on the characteristics of the matching tasks, the matching time 
required by the proposed automatic matching may increase or decrease in comparison with that of the 
static. 

 
 

Figure 9 Execution Time of Static and Automatic Matching 
 

It is also vital to note that the automatic matching time also includes the negligible pre-processing 
time required to quantify the characteristics of the ontologies. For example, the pre-processing time 
required for the Anatomy track [40], with a single matching task of the OAEI 2011, is 45 seconds. The 
automatic matching chose the cm3 matcher, which is the same as the static matcher, and the matching 
time required is 35 minutes. From this it can be inferred that the pre-processing time is negligible when 
compared to the matching time. 

Finally, the proposed BU patterns are compared with the existing work in automatic matcher 
selection. However, to the best of our knowledge, as discussed in section 2, the proposed approach and 
that of Cruz et al. [7] are the only two systems which fully automate the process of matcher selection 
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without constraints like with the Rimom system [21]. Moreover, Rimom automates both the matcher 
selection and match results combination, whereas this work aims only at matcher selection. Hence the 
proposed approach can only be compared with the work of Cruz et al. [7]. As mentioned earlier, the 
results of Cruz et al., presented below, are obtained from their paper [7]. 

Now, the percentage of matching tasks in which the proposed automatic matching surpasses the 
static matching is computed (Figure 10). Similarly, the percentage of improved matching tasks of the 
KNN model of Cruz et al. [7], in comparison with the static matching, is also shown in Figure 10. On 
average, for all the three tracks, the improved percentage of the task for the proposed BU pattern-based 
automatic matching is 31.67% and KNN-based matching 27.3%. The proposed automatic matching is 
able to achieve a 16% increase in terms of an improved percentage of tasks in comparison with the 
existing KNN model [7]. Next, to gauge the percentage of the increased F-Measure resulting from 
these improved matching tasks, an evaluation is conducted in terms of the Average Gain/Task [7]. It is 
defined as the average increase in the F-Measure for the improved tasks. Figure 11 shows that, on 
average for all the three tracks, the Average Gain/Task for the proposed automatic matching is 14.6% 
and 6.37% for KNN-based matching. The proposed automatic matching is able to achieve a 129% 
increase in the Average Gain/Task compared to the existing KNN model. The improved effectiveness 
is due to the precise selection of the configured matcher by the BU patterns, based on the 
characteristics of the matching task. 

 

 
 

Figure 10 Percentage of Improved Number of Tasks 
of the Proposed vs Cruz et al.-based Matcher Selection 

 

 
        

    Figure 11 Average Gain/Task of the Proposed vs Cruz et al.-based Matcher Selection 
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6     Conclusions and Future Work 

This paper aims to automatically select configured matchers based on the characteristics of the 
matching task using the proposed Bottom-up and Top-down Bootstrapping-based pattern learning. In 
addition, two new structural quality metrics, the Class External Structural Richness (CESR) and the 
Class Internal Structural Richness (CISR), are proposed to accurately gauge the structural 
characteristics of the matching task, facilitating the learned patterns for better matcher selection. From 
the patterns learned, it is inferred that the BUB approach constructs more effective and generic patterns 
with only 5 metrics, compared to the TDB approach patterns with 7 metrics. Also, the F-Measures of 
the matching tasks obtained using the BU patterns are better than the TD patterns. Hence, it can be 
concluded that the BU patterns are more efficient and effective than the TD patterns. Similarly, the 
effectiveness of the proposed metrics is evaluated by automatically selecting the matchers with and 
without the proposed metrics. Based on the results, it is evident that the proposed metrics do aid in 
automatic matcher selection. Further, the proposed pattern-based automatic matcher selection has been 
compared with the existing supervised ML approaches and the KNN model of Cruz et al. Experimental 
results in terms of the F-Measure of the constructed patterns, ANOVA statistical testing, percentage of 
the improved number of tasks and Average Gain/Task have demonstrated the improved effectiveness 
of the proposed BU pattern-based automatic matcher selection. From these results, it can be concluded 
that semi-supervised approaches are a better choice to model sparsely-labeled data than supervised ML 
approaches. Also, as stated by Occam’s razor principle, the model should be built with the smallest 
possible (and sufficient) features. 

In future, the limited number of configured matchers considered can be increased for handling 
automatic matcher selection in a range of matching scenarios. This is possible by using a larger set of 
element matchers to be classified in a fine-grained manner with such details as names, labels, 
comments, attributes, relations, and contexts, rather than merely lexical, structural and instance. In 
addition, the matching process can take into account a background knowledge of the domain or 
ontology so as to enable better matching.  
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