
Journal of Web Engineering, Vol. 16, No.7&8 (2017) 619-652
© Rinton Press

A METRIC BASED AUTOMATIC SELECTION OF ONTOLOGY MATCHERS USING

BOOTSTRAPPED PATTERNS

B. SATHIYA T.V. GEETHA

College of Engineering, Guindy, Anna University, Chennai, Tamil Nadu, India

sathiyabalu89@gmail.com tv_g@hotmail.com

VIJAYAN SUGUMARAN

Oakland University, Rochester, Michigan, USA

sugumara@oakland.edu

Received December 8, 2016
Revised May 16, 2017

The ontology matching process has become a vital part of the (semantic) web, enabling interoperability

among heterogeneous data. To enable interoperability, similar entity pairs across heterogeneous data are

discovered using a static set of matchers consisting of linguistic, structural and/or instance matchers that

discover similar entities. Numerous sets of matchers exist in the literature; however, none of the matcher

sets are capable of achieving good results across all data. In addition, it is both tedious and painstaking for

domain experts to select the best set of matchers for the given data to be matched. In this paper, we

propose two bootstrapping-based approaches, Bottom-up and Top-down, to automatically select the best

set of matchers for the given ontologies to be matched. The selection is processed, based on the

characteristics of the ontologies which are quantified by a set of quality metrics. Two new structural

quality metrics, the Concept External Structural Richness (CESR) and the Concept Internal Structural

Richness (CISR), have also been proposed to better quantify the structural characteristics of the ontology.

The best set of matchers is chosen using the sets of patterns learned through the proposed Bottom-up and

Top-down bootstrapping approaches. The proposed metrics and the patterns constructed using these

approaches are evaluated using the COMA matching tool with existing benchmark ontologies

(Benchmark, Conference and Benchmark2 tracks of the OAEI 2011). The proposed Bottom-up based

patterns, along with the two proposed quality metrics, achieved better effectiveness (F-measure) in

selecting the best set of matchers in comparison with the static set of matching, supervised ML algorithms

and the existing automatic matching. Specifically, the proposed Bottom-up patterns achieve a

14.6% Average Gain/Task and a significant improvement of 129% in comparison with the existing KNN

model’s Average Gain/Task.

Key words: Automatic Matching, Ontology Matcher Selection, Bootstrapping Patterns,

Ontology Matching, Ontology Metrics
Communicated by: D. Schwabe & Y. Deshpande

620 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

1 Introduction

Ontology matching systems have gained considerably in significance, given that they form the basis
for information systems that use heterogeneous data. These data are represented in different formats
with different levels of specifications such as unstructured raw text, semi-structured XML and
structured data such as tables, schema, and ontologies. Basically, ontology matching systems
comprising of a set of element matchers aim at finding a set of semantically-similar entity pairs, called
an alignment set, across the input data to be matched. The set of element matchers can be categorised,
based on the information used, as follows: (i) Lexical matchers (L) that explore textual information
such as an entity’s name, label, and comments, (ii) Structural matchers (S) that use details of entities
like attributes, domain, range, relations, depth, and path, and (iii) Instance matchers (I) that use
information from the tuples or instances of the data.

The alignments of matching systems are used in various applications of the web (Euzenat &
Shvaiko, 2007), such as heterogeneous web data integration, data translation, peer-to-peer information
sharing, web service composition, multi-agent communication on the web, query answering on the web
and the Deep Web. In all these applications, matching systems are designed to eliminate assorted
heterogeneities and semantic ambiguities prevailing among the data using the discovered alignments.
Diverse existing ontology matching systems, their applications and various challenges are outlined in a
number of survey papers [6, 16, 27, 30, 32, 34] and books [4, 13], which represent state-of-the-art
developments in this field.

Generally, ontology matching systems use a static set of matchers to explore the two input
ontologies to be matched from different perspectives so as to discover similarities between the entities.
The two input ontologies which need to be matched are termed a matching task. However, based on
the application, one of the inputs to the matching system can be a user query, schema, or catalogue.
The static set of matchers comprising linguistic, structural and/or instance-based matchers is deployed
for all matching tasks, irrespective of their characteristics. However, it is not mandatory for all
matching tasks to have all the three types of information incorporated in them. Hence, these static set
of matchers have shown reduced efficiency and/or effectiveness in a significant number of cases. For
example, let us consider two ontologies, O1 and O2, with n and m number of entities respectively and
no instances. An ontology matching system with the static set of matchers comprising linguistic,
structural and instance matchers is deployed to find similarities across the entities of these two
ontologies. Each of these matchers compares each entity of ontology O1 with each entity of ontology
O2, leading to n*m computations. In total, for all the three matchers, 3*n*m computations are
required. Such a huge number of computations would culminate in scalability issues like memory
insufficiency and extremely time-consuming process. Let us consider a reverse scenario where the
static set of matchers does not have an instant matcher and the matching task has instances. In this
case, certain potential alignments will be left undiscovered by the static set of matchers.

Therefore, there is no single set of matchers [34] which can effectively and efficiently discover
alignments for all matching tasks. In addition, as the size and heterogeneity [2] of the ontologies
increase, the need for scalable, robust and automated ontology matching systems becomes inevitable.
Also, manually choosing the best set of matchers with an appropriate combination strategy for the
given matching task is a painstaking requisite for domain experts, owing to the availability of a large
numbers of matchers and their corresponding combination strategies. There is, consequently, a great

B. Sathiya, T.V. Geetha, and V. Sugumaran 621

need for an automated ontology matching system which can choose, combine and tune a set of
matchers automatically, based on the given matching task. Such an automatic selection of a set of
matchers, its combination strategy, as well as the automatic tuning of each matcher, are open
challenges in the field of ontology matching [34]. In this paper, we propose an approach that tackles
the automatic matcher selection issue where a set of matchers is selected, based on the characteristics
of the matching task.

In the scenario above, if an automatic matcher selection strategy is deployed, only linguistic and
structural matchers are selected and the number of computations reduced to 2*n*m. Generally, the
benefits of the automatic selection of matchers are twofold: First, choosing an appropriate set of
matchers leads to a robust system, i.e., more effective matching results are obtained. Second,
eliminating unnecessary matchers leads to a more scalable system, resulting in greater efficiency. An
automated matcher selection-based ontology matching system can be used in applications where data
have varying characteristics. For example, a candidate application would be an integration of sets of
schema pairs with varying characteristics. That is, one schema pair may have linguistic and structural
characteristics, while the other pair may have only linguistic characteristics, and so on.

Hence, the objective of this research is to develop an approach for choosing the best set of
matchers automatically from a pool of matchers, based on the characteristics of the matching task. To
enable automatic choosing, the proposed approaches should learn which combination of characteristics
of the matching task quantified using a set of ontology quality metrics is best matched by which set of
matchers. To accomplish this, two new semi-supervised machine learning approaches, Bottom-Up
bootstrapping (BUB) and Top-Down bootstrapping (TDB), have been proposed that learn the sets of
patterns for each set of matchers. Each pattern consisting of a set of ontology quality metrics represents
the required linguistic, structural and instance characteristics for a particular set of matchers. After the
learning process, sets of patterns are used to automatically select the best set of matchers for the given
matching task, based on its characteristics. Further, for an accurate selection of the best set of
matchers, the characteristics of the matching task should be precisely quantified. Therefore, two new
ontology quality metrics for computing ontology structural characteristics called the Class External
Structural Richness (CESR) and the Class Internal Structural Richness (CISR) are proposed, which are
designed to compute the percentage of concepts which have attributes and relations.

The rest of the paper is organised as follows. Section 2 presents the related work. Section 3
describes the construction procedure of the training dataset. Section 4 details the two new semi-
supervised bootstrapping approaches. The experimental results and inferences are discussed in Section
5. Section 6 concludes the paper with a note on future work.

2 Current Practice and Research

There has been a growing number [13] of different automation strategies deployed in different stages
of the matching system. The first stage of automation occurs in the selection of matchers which
automatically choose a set of matchers from a pool of matchers. In the second stage, the tuning of the
matchers is carried out, where the selected matcher’s parameters are fixed automatically. In the final
stage, the sets of outputs (sets of similar entity pairs) of the various selected matchers are combined
automatically. Of the three stages, the first stage of automation is crucial because the rest of the two
stages are dependent on the first. Also, to yield good results, the correct choice of matchers is

622 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

mandatory and hence this paper aims to automatically select them. This section details the existing
work related to the automatic selection of matchers. Further, it also outlines miscellaneous ontology
matching systems that automatically combine and tune matchers.

For the automatic tuning of the matchers, Yang et al. [39] used the particle swam optimization
technique based on the parameter, space sampling, to automatically tune the matcher’s parameters.
Ehrig, Staab and Sure [12] employed the heuristic combination strategy and determined the threshold
of each matcher using varied machine learning algorithm(s) such as decision trees (e.g., C4.5), neural
networks, and support vector machines.

For an automatic combination of the matchers, different strategies have been used as follows. In
[38], the weight of each matcher is computed for every pair of entities to be matched, depending on the
features of the pair. Based on the features, the accuracies of certain sets of matchers are calculated
using manual rules and others are predicted using a multilayer perceptron. Finally, for the given entity
pair, the matchers are dynamically combined based on the weights.

In [9], machine learning techniques are used to discover alignments. A set of learners is trained to
match, based on user-created training data and combined by means of a meta-learner which weighs
each learner based on the accuracy of the matching results.

HADAPT: The harmony-based adaptive aggregation method [22] combines the matching results
based on a measure called harmony (aka dominants [14]). The measure computes a weight for each
matcher based on the number of correctly-matched entity pairs by the matcher. Matchers are then
dynamically combined, based on the harmony value for the given matching task. HADAPT is
classified as a global method by Ngo and Bellahsene [26], stemming from the use of the semantic
context of the entity for aggregation.

Sagi and Gal [32] designed a set of matching predictors to access the accuracy of the matcher in
discovering similar entity pairs. The predictors are combined to analyse the matcher using the
statistical method, stepwise regression,

In [20], a particular matcher is used to combine the other matchers [20], and in [36], matchers are
combined iteratively where pervious iteration alignments are used for the combination. Domain
experts manually select suitable combination strategies for the chosen set of matchers [3, 8, 16]. Other
methods such as user feedback-based learning methodologies [10, 33], Multi-agent techniques [32],
linear combination of the matchers [21] are also used.

 In the initial versions of matcher selection, semi-automated or manual selection strategies have been
used as follows. Mochol, Jentzsch & Euzenat [25] used domain experts to answer a set of questions
based on which appropriate matchers are chosen. Huza, Harzallah & Trichet [19] and Mochol &
Jentzsch [24] used input ontology characteristics, output specifications [19] and the matcher
descriptions available to manually construct a rule-based system for choosing the matchers. Peukert,
Eberius & Rahm [28] used a graphical user interface through which a set of matchers can be selected.
Mochol, Jentzsch, & Euzenat [25] used approximately 40 characteristic factors specifying details on
the input ontology, available matchers, usage of the results, output and documentation describing the
requirements of the application. These factors are represented in a hierarchical tree fashion and an
Analytical Hierarchy Process (AHP) is used to choose the matcher from a pool of matchers. The major
drawback of this work is that, all the factors mentioned above, as well as the description of each

B. Sathiya, T.V. Geetha, and V. Sugumaran 623

matcher in the pool, is required to be manually described by domain experts, which can lead to serious
bottlenecks. But, the proposed system, however, requires no domain experts, user intervention or
manual selection.

 Ontology matching systems falling under the category of automatic matcher selection are briefly

described below. The ontology matching system, Rimom, [21] is designed to perform matcher
selection and combination automatically. It uses linguistic and structural metrics to quantify the
characteristics of input ontologies. Based on the two metrics, matchers are selected from both the
lexical and structural category of matchers and the matching results are combined automatically. In our
proposed approaches, unlike in this system, there is no constraint in choosing at least one matcher from
each category, given that all matching tasks have little information in all categories. Also, despite being
fully automated, the Rimom system uses only two categories of matchers, and instance matchers are
not considered. This is a smaller number when compared to the eight metrics used in our proposed
system for the precise quantification of the characteristics of the matching task.

A self-configuring matching system was introduced by Peukert et al. [29] that is able to select and
combine the matchers dynamically, based on the matching task. A set of schema features, as well as
features based on the intermediate matching results, are used to analyse the characteristics of the given
matching task and rules are applied to select and combine the matchers based on the features.
However, these rules are limited and designed manually, based only on the features and matchers used
in this system. On the other hand, the proposed bootstrapping approach learns patterns automatically
for any given set of features and matchers.

Hariri et al. [17] selected the best set of matchers and its combination strategy using the neural
networks learning algorithm. It chooses the best set of matchers from a given pool of matchers,
irrespective of the characteristics of the input ontologies. Further, the matchers are categorised into
string, linguistic, structural metric and the like, and at least one matcher from each category is chosen
compulsorily, which is unnecessary for all the matching tasks.

Marie & Gal [15, 23] used boosting, a machine learning algorithm, to select and combine the
matchers. The training dataset consists of a set of entity pairs, one from each of the ontologies, labelled
with a binary value indicating whether or not the entity pair is similar. An element in the hypothesis
space is a similarity matrix for the two input ontologies obtained using the set of matchers and its
combination strategy. Based on the hypotheses, the system selects the best set of matchers and its
combination strategy from a given pool of matchers similar to Hariri et al. [17], irrespective of the
characteristics of the input ontologies. However, our proposed system chooses only the necessary
category matchers based on the characteristics of the matching task, in contrast to the two approaches
above.

Cruz et al. [7] proposed a supervised KNN (K-Nearest Neighbour) learning algorithm for
automatic matcher selection, based on the characteristics of the input ontologies. Their work chooses
matchers from a particular category of matchers, if the characteristics of the matching task possess
sufficient quantitative information needed for the particular category. To quantify the characteristics of
the matching task, a set of nine ontology quality metrics categorised as lexical, structural, syntactic and
instance have been used. Further matchers from the pool of matchers are combined to form sets of
matchers whose matching results are combined in a predefined manner where each such set of
matchers is called a configured matcher. Five such configured matchers are presented, each designed
to match a unique set of characteristics. Any new matching task will be quantified using these nine

624 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

metrics and the constructed KNN model will choose the best configured matcher based on the said
metrics.

However, no open datasets were available to construct the KNN model and hence this system had
to construct the required dataset. Despite this, only 233 labelled datasets are constructed from the
matching tasks of the OAEI 2011 (Ontology Alignment Evaluation Initiative) [46], since the
construction of the labelled data requires matching tasks along with reference alignments.
Nevertheless, its availability is limited as a result of the protracted creation process of reference
alignment sets by domain experts. Consequently, the use of a very limited training dataset for
modelling a supervised KNN model is the prime drawback of their work. Generally, any supervised
learning algorithm needs a sufficient number of labelled training datasets to avoid the underfitting and
overfitting of the model. Owing to the limited availability of the labelled data, our system proposes two
new semi-supervised bootstrapping algorithms which require a little labelled data and large unlabelled
data. 233 labelled training and 11,589 unlabelled training datasets have been constructed, which is a
very large number compared to the system above. The following section will discuss the construction
of the training dataset.

3 Construction of the Training Dataset

In this section, the ontology metrics and the set of configured matchers used in the construction of the
training dataset are described. Following this, the construction methodology for the labelled and
unlabelled training datasets is discussed in detail.

3.1. Ontology Quality Metrics

Various ontology quality metrics exist in the literatures which quantify the characteristics of the
ontology with respect to linguistic, structural, instance, and quality. However, in the context of an
ontology matching system, each entity pair across the given two input ontologies is matched in terms
of the linguistic, structural and instance similarities prevailing between them. So then, a set of metrics
which is used to quantitatively define the presence of the characteristics is to be chosen. But prior to
that, it should be noted that Hu, Qu & Cheng [18] stated that at least 50% of the final matching entity
pairs can be found just by lexical matchers using linguistic information such as the concept’s name,
comment, label, etc. This proves that, by default, almost all ontology pairs have rich linguistic
characteristics. Therefore, no linguistic metrics are assigned to explicitly ensure the presence of
linguistic characteristics. The system only checks for the presence of structural and instance
characteristics by a set of corresponding metrics chosen from the literature [7, 37]. Further, two new
structural quality metrics, the Concept External Structural Richness (CESR) and the Class Attribute
Richness (CAR), are also proposed to further accurately quantify the structural characteristics of any
given ontology. The set of chosen and proposed metrics used in the bootstrapping approaches is briefly
discussed below.

3.1.1. Structural Characteristic Metrics

Structural metrics are chosen and proposed such that both the external and internal structural
characteristics of a given ontology are quantified. External structural characteristics such as the depth
of the concepts, and taxonomical and non-taxonomical relations, are quantified by metrics such as
Average Depth, Inheritance Richness, Relational Richness. and Concept External Structural Richness
(CESR). Attribute, an internal structural characteristic, is quantified by metrics such as Attribute

B. Sathiya, T.V. Geetha, and V. Sugumaran 625

Richness and Class Attribute Richness (CAR). The list of structural characteristic metrics used in this
system, alongside the two new proposed structural characteristic metrics, are defined in the following
subsections. In all the definitions of the metrics, ci represents the ith concept over the set of concepts C
in the given ontology.

Relationship Richness

The Relationship Richness [37] of an ontology is defined as the ratio of non-taxonomical relationships
to the total number of relations in the ontology.

|ISA||ISA_Non|

|ISA_Non|
RR

 (1)

In the definition above, |Non_ISA| represents the number of non-taxonomical relationships and
(|Non_ISA| + |ISA|) represents the total number of relations in the ontology.

Inheritance Richness

Inheritance Richness [37] of an ontology is defined as the average number of subconcepts for each
concept of the ontology.

|C|

∑ |)c(sSubConcept|

IR
C∈c

i
i (2)

where the |SubConcepts(ci)| represents the number of sub-concepts for the class ci.

Average Depth

Average depth [7] of an ontology is used to determine the average specificity of each concept in the
ontology. It is defined as the ratio of the sum of the depth of each concept (D(ci)) in the ontology to
the total number of concepts in the ontology.

|C|

∑)c(D

AD
C∈c

i
i (3)

Attribute Richness

Attribute Richness [37] of an ontology is defined as the average number of attributes defined for each
concept in the given ontology.

|C|

|att|
AR (4)

In the definition above, |att| represents the total number of attributes defined in the ontology.

The various existing structural metrics compute the average number of attributes [37], average
number of taxonomical relations [37], count of children [11], count of ancestors [11], count of
properties [11], and so on. But the average number and count of the entities’ computations can be
biased by a few concepts with a huge number of relations or attributes, leading to defective greater
values. Hence, the percentage of concepts which have relation(s) and the percentage of concepts which
contain attribute(s) should also be quantified. This is incorporated by the proposed two new structural
metrics, the Concept External Structural Richness (CESR) and the Concept Internal Structural

626 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

Richness (CISR). This percentage (P) and average number (A) together can convey the information
that P% of concepts have, on average, A number of attributes or relations. Such a precise measure of
structural characteristics will aid in the process of selecting the best configured matcher.

Concept External Structural Richness (CESR)

The proposed metric, CESR, of an ontology is defined as the percentage of the number of concepts
with taxonomical or non-taxonomical relations which are represented by the subclass of relations and
object properties respectively.

CESR =
|C|

)c(R iCci

 (5)

where R(ci) is a Boolean function which returns a value of 1 if the concept ci has any relation
associated with it, else 0 is returned. The summation of this function value for all the concepts will
give the number of classes associated with the relation(s) from which the CESR percentage can be
computed.

Concept Internal Structural Richness (CISR)

The proposed CISR metric of an ontology is defined as the percentage of the number of concepts
containing attributes, where the attributes are represented by the data property in the ontology.

CISR =
|C|

)c(P iCci

 (6)

where P(ci) is a Boolean function which returns 1 if the concept ci contains an attribute, else 0 is
returned.

3.1.2. Instance Characteristic Metrics

The metrics Average Population and Class Richness are chosen, so that both the average number of
instances and the percentage of the concepts with the instance are computed.

Average Population

Average Population [37] of an ontology is the average number of instances per class. In the definition,
|I| represents the number of instances available in the ontology. The metric is represented in real values
ranging from 0 to infinity.

|C|

|I|
AP (7)

Class Richness

Class Richness [37] of an ontology is the percentage of the concepts for which the instances exist.

CR=
|C|

)c(I iCci

 (8)

where I(ci) is a binary function which returns 1 if the concept ci contains an instance, or else 0 is
returned. The metric is represented in real values ranging from 0 to 1.

B. Sathiya, T.V. Geetha, and V. Sugumaran 627

All the metrics are represented in real numbers. RR, CESR, CISR, AP and CR range from 0 to 1,
while the rest of the 3 metrics range from 0 to infinity. Further, the larger value of each metric
represents the richness of the corresponding characteristics while the smaller value represents the
deficiency of the characteristics in the ontology. The metrics listed above form a numerical vector with
8 values which quantifies the characteristics of the ontology in terms of structural and instance
richness. For any given matching task, two metric vectors are computed, one for each of the input
ontologies which are combined by an aggregating function called the FS-A [7]. The two metric vectors
should be combined to summarize the characteristics of both the input ontologies, since the configured
matchers are chosen based on the characteristics in question. The inputs of the FS-A function are the
two values of the same metric m from two metric vectors belonging to the two input ontologies. The
output of the FS-A is the single aggregated value for that metric m, formally defined as follows.

2/
2

mm

)1)1mm(log(m

m
AFS HL

LHH

L
m

 (9)

where mL and mH represent the lower value and higher value respectively between the two values of the
metric m from two metric vectors. Similarly, the aggregate function FS-A is applied for all the metrics
in the two vectors to obtain a combined metric vector. These combined metric vectors are used as
follows. In the training phase of the approaches, the set of combined metric vectors computed for the
set of matching tasks is used for the creation of the unlabelled and labelled data. In the testing phase of
the approaches, any input ontology pair’s characteristics are represented by this combined metric
vector, which is subsequently processed by the learned patterns to identify the best configured matcher.

3.2. Configured Matchers

This subsection outlines the configured matchers recommended by the learned patterns. The set of
matchers which forms the configured matchers can be categorised into lexical (L), structural (S) and
instance (I) matchers. These sets of matchers are combined in all possible combinations to obtain the
possible set of configured matchers, CM, as follows: a configured matcher consisting of lexical,
structural and instance matchers denoted by L+S+I, (ii) L, (iii) L+S, (iv) L+I, (v) S+I, (vi) S,
and (vii) I.

 However, configured matchers which have no lexical matcher are ignored for two reasons: (i) The
presence of a lexical characteristic is by default [19] and hence the matchers cannot be ignored, and (ii)
Based on the experiment conducted to construct labeled training data, configured matchers without
lexical matchers are never chosen as the best configured matchers for matching tasks. Hence the set of
configured matchers used in our system is as follows: (i) L+S+I,, called the configured matcher cm1,
(ii) L, called cm2, (iii) L+S, called cm3, and (iv) L+I, called cm4. These sets of configured matchers
and the set of combined metric vectors are used to create the set of labelled data described in the next
section.

 Among the configured matchers, cm1 is chosen the default matcher. That is, any matching task
that would not be recommended with the best configured matcher by the learned patterns will be
matched using cm1. Therefore, any given matching task will be selected with cm1 for the following
reasons: (i) The given matching task contains all the three characteristics and hence the learned
patterns recommend cm1, and (ii) The learned patterns are unable to recommend the best matcher.

628 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

This is either due to a lack of information in the matching task or the set of metrics considered is
insufficient.

 Even though existing ontology matching systems such as the Falcon [18], COMA++[8], and
Rimom [21] used the L+S (cm3) as a default matcher, the proposed approaches use the L+S+I (cm1)
as a default matcher for the following reasons. First, when the learned patterns are unable,
occasionally, to recommend the best configured matcher, the presence of the characteristics for the
given matching task becomes ambiguous. In this case, deploying configured matchers like cm2, cm3
or cm4 would result in the loss of potential similar entity pairs, since these configured matchers fail to
provide a match despite utilizing all the available information in the matching task. To circumvent this,
therefore, cm1 is chosen as the default matcher, which would aid in improved effectiveness at the cost
of efficiency. Second, though the number of matching tasks with the presence of instance information
is moderate, it is not negligible. Further, the instances of the ontology are also vital information, since
an entity pair with the same set of instances will have high chances of being similar. Also, the
importance of the instance matcher is reinforced by the latest OAEI competitions which have released
a new and separate dataset for instance matching.

3.3. Construction of the Labelled and Unlabelled Training Vectors

The proposed approaches require a set of configured matchers, labelled and unlabelled training
vectors, to learn patterns using the two bootstrapping approaches. Unfortunately, the training vectors
are unavailable and consequently a tedious construction process is carried out to create it, which is
described in this section.

 First, the process of labelled training vector construction is presented. A set of matchable ontology
pairs is needed, along with the reference matching results obtained from the OAEI. In the OAEI, a set
of ontology pairs belonging to a domain is called a track, and each ontology pair in a track is called a
matching task. Our system needs matching tracks with numerous multitasks to create a set of training
vectors. Hence, the tracks of the OAEI 2011[46] which had the maximum number of tasks is chosen,
rather than the latest OAEI campaign. The list of tracks used, its corresponding number of matching
tasks, and the domain of the tracks are listed in Table 1.

Table 1 Ontology Tracks.
Track Number of

matching tasks
Domain of the matching

tasks
Benchmark 110 Bibliographic references
Conference 021 Conference
Benchmark2 102 Conference

 The Benchmark [41] track comprises 110 matching tasks which are variants of the bibliographic

ontology containing 33 named classes, 24 object properties, 40 data properties, 56 named individuals
and 20 anonymous individuals. The Benchmark2 [42] track consists of 102 matching tasks and the
Conference track [44] consists of 21 matching tasks which are variants of the conference ontology
containing 74 classes and 33 object properties. These tasks were created such that any given matching
system is checked for all possible matching scenarios and thus forms a perfect dataset with all the
combinations of the characteristics of the ontologies.

B. Sathiya, T.V. Geetha, and V. Sugumaran 629

 The methodology for the construction of the set of labelled vectors LV, depicted in Figure 1, is as
follows. For each matching task t from the sets of matching tasks T, a labelled vector lv is constructed
using the following five steps: (i) Two metric vectors, one for each ontology of t, are obtained and
combined into a single metric vector using the FS-A method. (ii) Next, t is matched using all the four
configured matchers deployed by the COMA ontology matching tool [43] to obtain the four sets of
resultant-matched entity pairs. (iii) The reference matching results of t obtained from the OAEI is used
to compute the quality of the four sets of results using the F-Measure metric. (iv) Thereafter, the
optimal configuration selector chooses the configured matcher with the maximum F-Measure as the
best configured matcher for t. (v) Finally, the lv is constructed, consisting of the unique identifier (ID)
of the matching task and the combined metric vector of t. Further, the lv is labelled with the best
configured matcher obtained from the step above.

 Using the methodology above, 233 labelled vectors are created from 233 matching tasks. A small
sample of labelled vectors constructed from the Benchmark track is shown in Table 2 and the
illustration is as follows. The first matching task (101, 262-6) consisting of 8 metric values has
negligible structural and instance characteristics and is labelled cm2 (L). The second matching task
(101,224) is quantified with fewer instance characteristics and is labelled cm3 (L+S). Similarly, the
ontology pair (101,254-8) is labelled cm4 (L+I).

Figure 1 Unlabelled and Labelled Vectors Construction.

 Second, the methodology for the construction of the set of unlabelled training vectors UV is
outlined. It requires only the sets of matching tasks, since the data required for labelling such as a set
of reference alignments and configured matchers are unnecessary. This results in the creation of new
matching tasks without the reference alignments, in addition to the 233 matching tasks. For example,

630 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

let us consider the Benchmark track which comprises 110 matching tasks. In this track, an ontology
named 101 is matched with itself and the rest of the 109 ontologies to create 110 matching tasks and
the OAEI has provided the reference matching results for these 110 tasks. However, all the 110
ontologies belong to the same domain and so we plan to match each of the ontologies with all the other
ontologies in this track, leading to 6105 matching tasks. Similarly, 231 and 5253 matching tasks are
obtained for the Conference and Benchmark2 tracks. For each matching task t, created by the
procedure above, an unlabelled vector uv is created which consists of the ID and the combined vector
of t. In total, 11589 unlabelled vectors are created.

Table 2 Sample Labelled Vector.

Metrics Matching Tasks

101, 262-6 101, 224 101, 254-8

Attribute Richness (AR) 0.0 1.2121 0.0

Relationship Richness (RR) 0.0 0.4898 0.0

Inheritance Richness (IR) 0.04 0.7575 0.05

Average Depth (AD) 0.5353 2.2424 0.5353

Class Richness (CR) 0.0158 0.0036 0.1013

Average Population (AP) 0.0 0.1088 1.8058

Concept External Structural Richness (CESR) 0.0025 1.0 0.003

Concept Internal Structural Richness (CISR) 0.0 1.0 0.0

Configured Matcher cm2 cm3 cm4

4 Bootstrapping-based Pattern Construction

In this section, the two new seed pattern construction methodologies and the proposed two
bootstrapped approaches, Bottom-up Bootstrapping (BUB) and Top-down Bootstrapping (TDB), are
discussed in detail.

 The flow of the proposed two semi-supervised bootstrapping approaches, BUB and TDB, can be
split into training and testing phases. In the training phase, bootstrapping approaches need a small set
of patterns and a large unlabelled vector. These patterns act as a seed used by the bootstrapping
approaches to learn better patterns at each iteration and, as a result, these small sets of patterns are
called seed patterns. The training phase can be divided into two major subprocesses: (i) seed pattern
construction using the LV, and (ii) iteratively, learning the patterns from the seed patterns and UV. In
the first subprocess, the sets of seed patterns corresponding to each of the configured matchers are
constructed using the LV. Specifically, the seed patterns are constructed using two methods, the “2-
seed pattern” and the “8-seed pattern”, where two and eight (all) metrics are considered for each seed
pattern construction respectively. In the second subprocess, the seed patterns and UV are used by the
two bootstrapping approaches to iteratively construct new patterns that would enable an unknown
matching task to be selected with the best configured matcher.

 In the testing phase, two quality metric vectors representing the characteristics of the two input
ontologies in the matching task are computed and combined using the FS-A aggregation method. The
matching task is then selected with the best configured matcher using the learned patterns obtained

B. Sathiya, T.V. Geetha, and V. Sugumaran 631

from either of the two bootstrapping approaches. To discover the matching entity pairs, the selected
configured matcher is deployed using the configurable COMA [43] ontology matching tool. In the
following subsections, the proposed two seed pattern construction methodologies and the
corresponding BUB and TDB approaches-based pattern learning are detailed.

 The logic behind both the proposed approaches is the “Curse of Dimensionality.” This states that
increasing the number of features with the static set of training samples to build a model may lead to
an increase in classification errors. This increase is due to the more biased model construction towards
the training vectors and hence fails to handle unknown samples, i.e., an overfitted model is
constructed. Therefore, it is necessary to find the optimal set of features which best constructs the
model. In our system, the metrics are the features and two premises are created to find the optimal set
of features: (i) The premise, “A small subset of metrics is sufficient to form the optimal set of
features”, culminates in the formation of the BUB approach, and (ii) The premise, “A large subset of
metrics is required to form the optimal set of features”, results in the formation of the TDB approach.
Based on these premises, the BUB needs to start with fewer metrics and so shorter seed patterns are
needed, which is the underlying cause for developing the “2-seed pattern” method. Similarly, the TDB
needs longer seed patterns and hence the “8-seed pattern” method is proposed.

4.1. Seed Pattern Construction

This section discusses in detail the two new seed pattern construction methodologies, the “2-seed
pattern” and the “8-seed pattern”. The structure of the set of seed patterns S2 and S8, constructed using
the “2-seed pattern” and the “8-seed pattern” methods, is as follows. Each of the seed patterns consists
of a set of units where each unit (uk) comprises the following three components: (i) a metric unique
identifier (m), (ii) relational operators ≤ and ≥ (Θ), and (iii) a metric threshold value (vm). Each
constructed seed pattern,, s2 and s8,, is formally defined as follows.

s2 = (cm, u1, ..., uk) | (s2 S2), (k = 2) & (|S2|=36) (10)

s8 = (cm, u1, ..., uk) | (s8 S8), (k = 8) & (|S8|=3) (11)

Given uk = (m Θ vm) | (1 ≤ m ≤ 8) (12)

where cm represents the configured matcher for which the seed pattern has been constructed and k
denotes the length of the pattern counted as the number of units. For each pattern s2 constructed using
the “2-seed pattern”, the length of the pattern is preset as 2 (k = 2), since the BUB works under the
premise that a small subset of metrics is sufficient. In the “2-seed pattern”, totally 36 seed patterns are
constructed, where each configured matcher has a set of 12 seed patterns except cm1, since it is the
default matcher. Similarly, for each pattern s8, the length of the seed patterns constructed using the “8-
seed pattern” is 8 (k = 8), since the TDB works under the premise that all metrics are required. In the
“8-seed pattern”, totally 3 seed patterns are constructed, where each configured matcher has 1 seed
pattern, except cm1.

 Each seed pattern should be an initial representative of the corresponding cm and the construction
methods are so designed. The steps of the “2-seed pattern” method, which constructs a set of seed
patterns for each configured matcher cm, is as follows. (i) The set of metrics for each seed pattern of
the cm should be chosen such that the presence or absence of structural and instance characteristics is
quantified. The set of metrics for a seed pattern s2 is selected by randomly choosing one metric from

632 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

the set of structural and instance characteristics metrics respectively. Similarly, for the rest of the cm’s
seed pattern construction, all the other possible pairs of metrics, one from each characteristic of metrics
are chosen. (ii) Thereafter, the relational operator (≤ or ≥) for each chosen m of s2 is determined, based
on the cm. The basic idea here is to assign a ≥ operator for a metric m, if the characteristic of the
matching task quantified by m should be checked for its presence. A characteristic is checked for its
presence if the corresponding cm of the seed pattern has element matchers belonging to that
characteristic. Else, m is assigned a ≤ operator to check for its absence. (iii) Finally, the threshold value
of each chosen metric m can be calculated in two ways. The first is the Average method which
computes the average value of the metric m from all vectors in the LV labelled with the configured
matcher cm. The second method, MaxMin, selects the maximum value (Max) of the metric m from all
the vectors in the LV labelled with the cm, if the logical operator of m is ≤. This is because only the
Max of a metric represents the upper bound for the absence or insufficiency of a particular
characteristic of the vector. Any value less than Max also represents absence or insufficiency.
Similarly, choose a minimum value if the logical operator is ≥.

 The set of metrics in the pattern is represented by unique identifiers such as 1 for RR, 2 for IR, 3
for AD, 4 for AR, 5 for CSER, 6 for CISR, 7 for AP and 8 for CR. A sample of the seed patterns
formed is shown in Table 3. For example, let us outline the construction of the second seed pattern in
the table. The randomly chosen metrics for this seed pattern are AR (4) from the structural
characteristic metrics and CR (8) from the instance characteristic metrics. Next follows the
determination of the relational operator. Since cm3 consists of L and S matchers, any given matching
task t will be selected with cm3, if t has an adequate presence of the structural characteristic. Hence,
the structural metric 4 is assigned a ≥ operator. Similarly, the instance metric 8 should be checked for
its absence and hence a ≤ operator is assigned. Now, the seed pattern formed is “cm3, 4 ≥ threshold1, 8
≤ threshold2”. The value threshold1 is determined by taking the average or minimum value of the AR
metric from the vectors belonging to cm3 from the LV. Similarly, threshold2 is determined by taking
the average or maximum value of the CR metric from the vectors which belong to cm3, from the LV.
Thus, for the rest of the cm3 seed pattern construction, all the other possible pairs of metrics are chosen
and the corresponding relational operator and threshold values are learned.

Table 3 Sample Seed Pattern for the BUB Approach.
Configured

Matcher
Metrics and their threshold

cm2 3 ≤ 0.54 8 ≤ 0.016
cm3 4 ≥ 0.64 8 ≤ 0.006
cm4 3 ≤ 0.54 7 ≥ 1.81

 The seed pattern formation using the “8-seed pattern” method is as follows. For each configured
matcher, one seed pattern with all the structural and instance metrics is constructed. Subsequently, the
relational operator and threshold value for each metric are determined, similar to the “2-seed pattern”
method. Three seed patterns, one for each of the configured matchers except cm1 is constructed, which
are shown in Table 4. After the set of necessary seed patterns is constructed, these patterns are
iteratively processed by the bootstrapping approaches to construct the new sets of patterns discussed in
the following subsection.

B. Sathiya, T.V. Geetha, and V. Sugumaran 633

Table 4 Set of Seed Patterns for the TDB Approach.

CM Metrics and its threshold
cm2, 1 ≤ 0.0, 2 ≤ 0.0, 3 ≤ 0.54, 4 ≤ 0.0, 5 ≤ 0.0, 6 ≤ 0.0, 7 ≤ 0.0, 8 ≤ 0.016
cm3, 1 ≥ 0.26, 2 ≥ 0.62, 3 ≥ 1.57, 4 ≥ 0.64, 5 ≥ 0.68, 6 ≥ 0.82, 7 ≤ 0.075, 8 ≤ 0.006
cm4, 1 ≤ 0.0, 2 ≤ 0.0, 3 ≤ 0.54, 4 ≤ 0.0, 5 ≤ 0.0, 6 ≤ 0.0, 7 ≥ 1.81, 8 ≥ 0.101

4.2. Bottom-up and Top-down Bootstrapping Approaches

This section details the two new proposed BUB and TDB approaches to construct new patterns from
the seed patterns. In both the approaches, for each configured matcher cm, a set of patterns is learned
which represents the required characteristics by any matching task to be matched using the cm. The
structure of the set of learned patterns P is similar to the set of seed patterns S which is given below.

p = (cm, u1, ..., uk) | (pP), (2 ≤ k ≤ 8) & (0 < |P| <∞) (13)

where p represents a pattern in P, cm represents the configured matcher and uk is defined in (12). But,
dissimilar to seed patterns, the length (k) of the learned patterns can vary from 2 to 8.

 In both the approaches, new patterns are iteratively learned from the seed patterns used for
automatic matcher selection. However, the approaches through which the patterns are constructed are
contrasting and the major differences between them are as follows: (i) The BUB approach starts with
generic seed patterns (fewer units) and builds more specific patterns for each iteration by appending a
new metric. Conversely, the TDB approach starts with specific seed patterns (more units) and builds
more generic patterns by masking the metrics at each iteration. This is analogous to the bottom-up and
top-down clustering algorithms and, consequently, the proposed approaches are so named. (ii) Both the
approaches learn new patterns based on the new information obtained from the unlabelled metric
vectors matching the set of seed patterns at each iteration. For the BUB approach, in the initial
iterations, the number of matched unlabelled vectors is greater when compared to the later iterations,
since the seed patterns are generic in the initial iterations. Contrastingly, in the TDB approach, in the
initial iterations, the number of matched vectors is lesser as a result of more specific seed patterns.
Hence, the number of matched vectors used for new pattern construction at each iteration differs in
each of these methodologies, ultimately influencing the quality of the patterns learned.

 The pseudocode of both the proposed bootstrapping approaches is presented in Figure 2. The input
to the BUB approach is the set of seed patterns S2 and the set of unlabelled vectors UV. Similarly, for
the TDB approach, the inputs are S8 and UV. The output for both the approaches is a set of new
patterns, P, which are used for the selection of configured matchers in the testing phase. Each iteration
of both the proposed bootstrapped approaches consists of the following steps: (1) initializing, (2)
matching, (3) updating the seed patterns, (4) constructing the new patterns, and (5) scoring the new
patterns. All the five steps, except the 4th , is common for both the approaches. In all the common
steps, sx denotes a seed pattern, Sx represents the set of seed patterns and ‘x’ can be 2 or 8. The sx and
Sx denote the s2 and S2 respectively, if the common steps in the approaches are executed for the BUB
approach. Similarly, it denotes s8 and S8 for the TDB approach. A detailed description of each step is
as follows.

634 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

Input:
(i) Set of seed patterns S2 for BUB or S8 for TDB
(ii) Set UV

Output:
Set of new patterns P obtained by growing S2 for BUB or obtained by masking S8 for TDB

I. INITIALIZE
a. Assign set CV, new_metric[3][8] and set this_P to NULL
b. BUB approach: P = S2

TDB approach: P = S8
II. MATCHING

a. For each uvUV

 For each sx Sx
If Matches (uv, sx), then

(i) CV = CV U {uv , cm of sx }
(ii) Break

b. If none of the uv matches, then
Goto step 5 for BUB approach
Goto step 4 for TDB approach

III. UPDATE THE SEED PATTERNS
 For each cmCM

a. For each m
new_metric[cm][m] = Update (m, fetch (CV, cm)

b. For each sx Sx
 If ((label(sx)) = cm)

(i) sx = pattern_updation(sx, new_metric[cm][])
(ii) P = P U sx

IV. NEW PATTERN CONSTRUCTION
BUB approach

If(s2 S2 (length (s2) = 8)) then Goto SCORING //Stopping criteria
Else
 For each cmCM

 For each s2 S2 | length (s2) < 8 & ((label(s2)) = cm)
 For each mM
 If (not_partof(s2, m))

(i) New_pattern = pattern_growing (s2, m, new_metric[cm][m]);
(ii) this_P = this_P U (New_pattern);

S2 =this_p
P = P U this_p

B. Sathiya, T.V. Geetha, and V. Sugumaran 635

Figure 2 Pseudocode of the Proposed Bootstrapping Algorithm.

4.2.1. Initialization

 In the first step, the new data structures introduced in these approaches such as the set CV
(configured vectors), the new_ metric [3][8], and the_P set are initialized to NULL at each iteration.
For each iteration, the set CV is used to store the uvs which are labelled, the new_metric[3][8] is used
to store the updated 8 metric values for all the 3 cms, and the new patterns learned are stored in this_P.
In the testing phase, the set of seed patterns Sx is also used for the selection of the best configured
matcher and is stored in set P.

4.2.2. Matching

The basic idea behind step 2 is to create new labelled vectors for each configured matcher cm from the
set of large unlabelled vectors UV obtained from section 3.3. This is done using the seed patterns
which represent the simple constraint for each cm. These newly-created labelled vectors are called
configured vectors (cv). This is accomplished in step (2.a), where each unlabelled vector uv from the
UV is matched with every seed pattern sx from Sx until a match is found. The function Matches (uv, sx)
checks whether the uv has the required characteristic represented by the sx. If a match is found, a new
cv is created by labelling the uv with the configured matcher cm of the sx, and the cv is stored in the set
CV. This process is repeated for all the uvs in the set UV to obtain the best configured matcher for
each uv based on the Sx.

For example, let us consider the second unlabelled metric vector uv=(1.2121, 0.4898, 0.7575,
2.2424, 0.0036, 0.1088, 1.0, 1.0) from Table 2 and s2 as <cm3, 1 ≥ 0.64, 7 ≤ 0.006>. The required
characteristics of cm3 represented by this seed pattern are that Attribute Richness (1) should be greater
than or equal to 0.64 and Class Richness should be less than or equal to 0.006. The given uv has the
required characteristic and hence matches s2. The configured vector (cm3, 1.2121, 0.4898, 0.7575,
2.2424, 0.0036, 0.1088, 1.0, 1.0) is added to the set CV. For each iteration at the end of step 2.a, a new
set of configured vectors CV is constructed which becomes the labelled training vector representing

TDB Approach

If(s8S8 | length (s8) = 2) then Goto SCORING //Stopping criteria
Else
 For each s8 S8 | length (s8) >2
 For each m in s8

(i) New_pattern = pattern_masking (s8,m);
(ii) this_P = this_P U (New_pattern);

S8= this_P
P = P U this_p
Goto INITIALIZE

V. SCORING
a. For each pP

 Scoring (p) = F-Measure (p)
b. For each cm CM

 Choose Top K patterns based on Scoring(p).

636 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

the required characteristics for each cm. These new, informative configured vectors are used in the
following steps to compute the updated thresholds of all the metrics which will aid in new pattern
construction.

It is also crucial to note that, at the end of each iteration, the new patterns stored in this_P become
the seed patterns for the consecutive iteration. Therefore, in the BUB approach, after certain iterations
in step 2.b, the uv does not match with the sx, as seed patterns become too specific. Consequently, the
set CV which is needed for both “seed pattern updation” and new pattern construction is empty and so
the approach stops and switches to the “scoring” step. Contrastingly, in step 2.b of the TDB approach,
the set CV is empty in the initial iterations. Despite this, the TDB approach can form new patterns by
masking and thus in this scenario the approach switches to the “new pattern construction” step.

4.2.3. Updating the Seed Patterns

As a general rule, in supervised ML approaches, the model and its parameters are constructed from
labelled training data. Here, the labelled training data are the CV, the model is the pattern, and the
parameters are the metrics and their threshold values. In this step, the new threshold values are learned
using the newly-constructed CV from the step above, which is used for the construction of new
patterns. Also, the seed patterns are made more accurate by replacing old threshold values with newly-
learned threshold values.

 First of all, in step 3.a, the new threshold values are learned for each cm. Two functions, the
fetch() and Update(), are introduced. The fetch(CV, cm) function is used to retrieve the cvs from the
CV labelled cm. The Update(m, fetch(CV, cm)) function is designed to learn the new threshold value
for the metric m by the Average or MaxMin methods. The vectors (cvs) needed for these methods are
retrieved using the fetch() function. The process above is repeated for all the m in each cm to learn new
values. The new values of all the 8 metrics are stored in an array new_metric[][] where the
new_metric[cm][m] contains the new value of the mth metric corresponding to the cm.

For the BUB approach, the newly-computed threshold values become more specific in comparison
with the threshold values of the previous iterations, the reason being as follows. Initially, each cm has a
larger number of cvs since the seed patterns are generic, with just two units. As the iterations increase,
the seed patterns grow in length with more metrics and so the number of unlabelled vectors matching
the seed patterns under each cm reduces. Simultaneously, the number of un-configured vectors
increases and the threshold values computed with this new and comparatively small set of CVs
become more specific, compared to the previous iterations. Therefore, in each iteration, the updated
seed patterns and the newly-constructed patterns which use these more specific threshold values also
become more specific. This scenario is reversed for the TDB approach, where it begins with the most
specific threshold values and ends with generic threshold values.

After the new threshold values are learned for each cm, they are used to update the seed patterns in
step 3.b. The function label(sx) is introduced, which returns the cm of sx. For each cm, the
corresponding seed patterns are first retrieved using the label() function. Thereafter, the function
pattern_updation (sx, new_metric[cm][]) replaces the thresholds of these seed patterns with the newly-
computed values which are stored in the new_metric[cm][]. These updated seed patterns are also new
patterns which are stored in the set of new patterns, P.

B. Sathiya, T.V. Geetha, and V. Sugumaran 637

4.2.4. New Pattern Construction

The next step is the “new pattern construction” where new patterns are constructed from the updated
seed patterns and new threshold values obtained from step 3. Here, the terminology seed pattern
represents the updated seed pattern obtained from the step above.

In the BUB approach, new patterns are constructed by appending new metrics to the seed patterns.
This step first checks for the stopping criteria (IF part). The iterative process will stop when the length
of all the seed patterns is 8. This is because, after a certain number of iterations, the entire set of seed
patterns consists of all the metrics and it is impossible to append new metrics to form new ones.
Henceforth, the approach switches to the scoring step. If the stopping criteria fail, for each cm, a set of
seed patterns whose length is less than 8 is chosen. A seed pattern s2 with a length less than 8 indicates
that certain metrics are missing in s2 and these missing metrics can be appended to make it grow. For
each such growable seed pattern s2 under each cm, the missing metrics are identified using the function
not_partof(s2,m) which returns 1 if s2 does not contain the metric m. Now the new patterns are
constructed by appending the missing metrics to the growable seed patterns using the function
pattern_growing (s2, m, new_metric[cm][m]). This function takes as input a selected seed pattern s2, as
well as one of the missing metrics, m, and the new updated metric threshold value for m which is
stored in the new_metric[cm][m].A new pattern is created by appending s2 with m and its threshold
value. Further, for each added metric m, the corresponding relational operator is determined based on
the cm of sx,, similar to the seed pattern construction methodology. Likewise, the other missing metrics
of s2 are also appended to create a set of new patterns from s2.

 In the Top-down approach, the new patterns are constructed by masking, which is defined as
follows. The term, ‘masking a metric m’, is defined as removing a metric m along with its relational
operator and threshold value from the pattern. A new pattern is formed from a seed pattern by masking
a metric m from the seed pattern. Similar to the BUB, this step also first checks for the stopping
criteria (IF part). The iterative process will stop when the length of all the seed patterns is 2. This is
because, after a certain number of iterations, the entire set of seed patterns will consist of only two
metrics (the length of all the seed patterns being 2) and new patterns cannot be formed. In this
scenario, the approach stops the iteration and switches to the scoring step. If the stopping criteria fail,
for each cm, a set of seed patterns whose length is greater than 2 is chosen. A seed pattern s2 with a
length greater than 2 indicates that certain metrics can be removed to make it shrink. For each such
shrinkable seed pattern s8 under each cm with length k, the function pattern_masking (s8,m) is used to
mask each metric m from the k metrics, one at a time, to create k new patterns.

The newly-constructed patterns using the BUB and TDB approaches are called BU and TD
patterns respectively. In both the approaches, the set of learned new patterns in this step becomes the
set of seed patterns for the next iteration. Also, this set is stored in the set P and the control switches to
the “initialize” step to repeat the iteration.

4.2.5. Scoring

Finally, in the “scoring” step, all the newly-constructed patterns in P are validated using the metric F-
Measure. To compute the F-Measure values for each p in P, a set of reference metric vectors labelled
with the best cm is required. The set LV is used as the reference dataset, since each lvLV is labelled

638 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

with the best cm using the construction methodology described in section 3.3. The F-Measure of each
pattern p is the harmonic mean of the precision (correctness) and recall metrics (completeness) of p.

Before defining the metrics, let us first describe the two sets used in the metrics, CL and PL. Let
CL(p) be the set of lvLV such that label(lv) = label(p). Basically, each lv in CL(p) is the sample
metric vector for p and hence an ideal p should match with all the lvs in the CL(p). Also, let PL(p) be
the set of the lvLV which actually matches (step II) with p according to step II of the bootstrapping
approaches. In other words, CL(p) is the ideal set of matched vectors and PL(p) is the actual set of
matched vectors. Further, an lv is stated as correctly classified by p if the label (cm) of lv is the same as
the cm of p. The formal definition of precision and recall for p are as follows.

|)p(PL|

|)p(PL)p(CL|
)p(ecisionPr

 (14)

|)p(CL|

|)p(PL)p(CL|
)p(callRe

 (15)

where |(p)PL(p)CL| represents the number of vectors correctly classified by the pattern |PL(p)| and

|CL(p)| denotes the number of patterns in the set PL(p) and CL(p) respectively.

Based on the precision and recall metrics defined above, the F-Measure for each pattern p is
computed. Similarly, the F-Measure is computed for all the patterns under each cm. For each cm, the
top K patterns are chosen based on the F-Measure which represents the required characteristic for the
cm. These sets of chosen patterns are used to select the best cm for any given matching task.

5 Evaluation & Experimental Results

This section details the various experiments conducted to evaluate the proposed structural metrics, the
BUB and TDB approaches. For all the experiments, the three ontology tracks used are mentioned in
Table 1 and a detailed description presented in section 3.3. Also, for all the experiments conducted to
prove the effectiveness of the patterns learned, a 10-fold cross validation is performed using the LV
dataset which is used both as a training and testing dataset. In addition to the LV dataset, the UV
dataset is also used as a training dataset for pattern learning.

 The set of elements and configured matchers required for the experimental set-up can be deployed
by any ontology matching tool, provided the tool is customizable. In all the experiments, the
configured matchers are deployed using the configurable ontology matching tool COMA [8]. This tool
is selected because: (i) It is a configurable tool where the matchers can be chosen based on the
requirements of the user/task, (ii) It has been used in many OAEI competitions and reported good
results, and (iii) The latest version, COMA 3.0 [43], is freely downloadable.

 The set of element matchers available in COMA 3.0 is as follows. The available linguistic element
matchers are Affix, Trigram, EditDistance, Soundex, Synonym, Type and Reuse. A structural element
matcher called Statistics is available to quantify similarity, based on the number of children, parents,
leaves, etc. Also, an instance matcher called Instance is available. These element matchers, except the
instance matcher, are aggregated in different combinations to define 8 combined matchers: Name,
NameType, NameStat, NamePath, Children, Leaves, Parents and Siblings. The first 4 combined
matchers are designed for linguistic matching and the last 4 for structural matching. Using these 8
combined matchers and the instance matcher, the required configured matchers for the proposed

B. Sathiya, T.V. Geetha, and V. Sugumaran 639

approaches are deployed. For cm1, all the combined matchers and instance matcher are used.
Similarly, cm2 employs the first four combined matchers, cm3 uses all the combined matchers, and
cm4 deploys the first four combined matchers and the instance matcher. The default parameters of the
COMA tool, such as the Average Combination and Delta selection, are used. For a detailed description
of the COMA tool and its default parameter settings, readers are referred to [8].

5.1. Proposed Semi-Supervised Approaches vs Existing Supervised Approaches

In this subsection, the two proposed semi-supervised approaches, BUB and TDB, are first compared
for the effectiveness of the patterns constructed, following which the two approaches are evaluated
against the existing supervised approaches.

 Before comparing the two proposed approaches, the Average and MaxMin methods used to
calculate the threshold of the patterns are evaluated, based on the effectiveness of the patterns
constructed. As discussed in section 4.2.5, the effectiveness of each pattern is measured by the F-
Measure metric. The average F-Measure of the top 2, 5 and 10 patterns is computed for each
configured matcher. Based on the effectiveness of the constructed patterns, it is inferred that the
MaxMin method is able to stringently and precisely compute the threshold values for each metric in
comparison with the average method. This is shown in Tables 5 and 6, where the MaxMin threshold
method achieves better effectiveness in comparison with the average threshold method for both the BU
and TD patterns.

Table 5 Average F-Measure of the TopK Patterns for Each Configured Matcher based on the BUB Approach.

Top 2 Top 5 Top 10
cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4

Average 0.879 0.768 0.924 0.69 0.686 0.835 0.567 0.632 0.799
MaxMin 0.923 0.804 1 0.778 0.799 0.917 0.721 0.797 0.819

Table 6 Average F-Measure of the TopK Patterns for Each Configured Matcher based on the TDB approach.

Top 2 Top 5 Top 10

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4

Average 0.947 0.693 0.925 0.867 0.643 0.905 0.747 0.583 0.715
MaxMin 1 0.779 0.935 0.77 0.763 0.88 0.756 0.732 0.795

 To have a clear insight into the effectiveness of the patterns, the precision and recall values of the
TopK patterns listed in Tables 5 and 6 are shown in Tables 7-10 respectively. It is to be noted that, on
average, the precision values of the patterns are greater than the recall values. This is because the
patterns are learned stringently to accurately choose the correct configured matcher leading to better
precision and would occasionally result in missing out on the ontology pairs that are supposed to be
matched by the configured matcher of the patterns leading to reduced recall. However, the majority of
such ontology pairs are matched by the default matcher cm1 and hence the effectiveness of the
matching results of the pair are not compromised. Further, in fewer cases, the precision or recall values
of Average method are greater than MaxMin method due to the more stringent process of latter
compared to the former leading to rare overfitted thresholds. Nevertheless, in the majority of the cases,
the MaxMin method achieves better results due to the precise process and hence the average
effectiveness is higher. Consequently, in further processing of the proposed approaches, the MaxMin
method is used to determine the thresholds of the patterns.

640 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

 Next, a brief analysis of the selected set of BU and TD patterns is presented. Tables 11 and 12
show the set of selected patterns for each of the configured matchers. The selection procedure of
patterns from the set of patterns learned is as follows. For each configured matcher, one pattern with
the maximum F-Measure is selected, i.e., the Top 1. If more than one pattern has the same F-Measure
with a different pattern length, the shortest pattern is selected since it represents generalized and
efficient modelling. If more than one pattern has the same F-Measure with the same pattern length, a
pattern is selected at random.

Table 7 Average Precision of the TopK Patterns for Each Configured Matcher based on the BUB approach.

Top 2 Top 5 Top 10

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4
Average 0.9 0.83 0.96 0.74 0.73 0.82 0.58 0.69 0.85
MaxMin 0.97 0.86 1 0.79 0.86 0.95 0.79 0.83 0.8

Table 8 Average Recall of the TopK Patterns for Each Configured Matcher based on the BUB approach.

Top 2 Top 5 Top 10

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4
Average 0.86 0.71 0.89 0.65 0.65 0.85 0.55 0.58 0.75
MaxMin 0.88 0.75 1 0.77 0.75 0.89 0.66 0.77 0.84

Table 9 Average Precision of the TopK Patterns for Each Configured Matcher based on the TDB approach.

Top 2 Top 5 Top 10

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4

Average 0.97 0.77 0.93 0.92 0.67 0.95 0.77 0.56 0.73
MaxMin 1 0.83 0.97 0.8 0.74 0.87 0.79 0.79 0.82

Table 10 Average Recall of the TopK patterns for Each Configured Matcher based on the TDB approach.

Top 2 Top 5 Top 10

cm2 cm3 cm4 cm2 cm3 cm4 cm2 cm3 cm4

Average 0.93 0.63 0.92 0.82 0.62 0.86 0.73 0.61 0.7
MaxMin 1 0.73 0.9 0.74 0.79 0.89 0.72 0.68 0.77

Table 11 Selected BU patterns.
Configured
Matcher

Precisio
n

Reca
ll

F-
Measure

Patterns

cm2 0.97 0.87 0.92 3 ≤ 0.64, 7 ≤ 0.12
cm3 0.89 0.78 0.83 6 ≥ 0.82, 8 ≤ 0.006
cm4 1 1 1 4 ≤ 0.12, 8 ≥ 0.1, 3 ≤ 2.2

Table 12 Selected TD patterns.
Configured

Matcher
Precision Recall F-Measure Patterns

cm2 1 1 1 1 ≤ 0.0, 4 ≤ 0.05, 3 ≤ 2.2, 8 ≤ 0.1
cm3 0.8 0.72 0.76 5 ≥ 0.0, 8 ≤ 0.1
cm4 1 0.9 0.95 4 ≤ 0.0, 2 ≤ 0.53, 8 ≥ 0.1, 7 ≥ 0.5

The following observations are made from the set of patterns selected above:

1. The BU pattern of cm2, with a superior effectiveness of 0.92, is a seed pattern. Similarly, cm3’s
BU pattern has the same length and metrics like a seed pattern, with a difference in threshold
values. Thus, it is evident that the set of constructed seed patterns is sufficiently adequate to be the
base patterns for the construction of new patterns.

B. Sathiya, T.V. Geetha, and V. Sugumaran 641

2. The list of metrics such as Average Depth (3), Attribute Richness (4), Concept Internal Structural
Richness (6), Average Population (7) and Class Richness (8) are present in the selected BU
patterns. Similarly, the TD patterns comprise a list of metrics such as Relationship Richness (1),
Inheritance Richness (2), Average Depth (3), Attribute Richness (4), Concept External Structural
Richness (5), Average Population (7) and Class Richness (8). From these lists, it is inferred that the
number of metrics needed for a configured matcher selection by the BU patterns is 5 and TD
patterns is 7. Hence, the BUB approach models the selection process with a smaller number of
metrics and is therefore more efficient than the TDB approach. Basically, the BU patterns are
small, generic patterns compared to the TD patterns.

3. On average, for all the three configured matchers, the effectiveness (F-Measure) of the selected BU
patterns is 0.916 and TD patterns is 0.903. Consequently, it is inferred that the BU patterns achieve
marginally more effective patterns with fewer metrics in comparison with the TD patterns with
more metrics.

 From the analysis above, it is concluded that the BU patterns are better than the TD ones. The BU
patterns are effective and generic with a smaller number of metrics, compared to the TD patterns which
are specific and with more metrics. Also, the proposed CESR and CISR metrics are present in both the
set of selected patterns demonstrating the significance of the proposed metrics in the selection process
of the best configured matcher. From this point onwards, the terms BU and TD patterns denote only
the selected top patterns shown in Tables 11 and 12.

 The third experiment evaluates the effectiveness of the BU and TD patterns in selecting the best cm
for each matching task of all the three ontology tracks in Table 1. Following this, the selected cm is
deployed using the COMA tool and the matching results obtained for all the matching tasks are
compared with the reference alignments to compute the precision, recall and F-Measure metrics
(Figures 3 and 4). As inferred from the figures, the BU patterns have achieved better effectiveness (F-
Measure) than the TD patterns. Although the TD patterns use more metrics to quantify the
characteristics of the ontology pair, it is unable to construct effective patterns owing to the “Curse of
Dimensionality” effect discussed earlier. From these results and inferences from the learned patterns, it
can be concluded that the premise for the BUB approach, “A small subset of metrics is sufficient to
form the optimal set of features” is true.

Figure 3 Precision, Recall and F-Measure of the Matching Task using BU Patterns.

642 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

Figure 4 Precision, Recall and F-Measure of the Matching Task using TD Patterns.

 Further, to prove that the proposed approaches can surpass any supervised machine learning (ML)

algorithms, well-known supervised ML algorithms belonging to miscellaneous categories such as the
instance-based learner KNN, probability-based Naive Bayes, decision tree C4.5 and the neural
network-based multilayer perceptron are used for comparison (Figure 5). As similar to the first
experiment, all the approaches are evaluated using the average precision, recall and F-Measure of the
matching tasks belonging to all the three tracks and the selected configured matcher is deployed using
the COMA 3.0 [43] tool. It is also essential to note that the supervised KNN model evaluated in this
subsection, and the KNN model of Cruz et al. [7], are the same, the difference being that the latter uses
an ontology matching tool, AgreementMaker, to deploy the selected configured matchers, whereas the
former uses the COMA 3.0 tool and, additionally, utilizes two new structural metrics. Furthermore, the
AgreementMaker tool used by Cruz et al. is not openly available and so the experimental results of
their work can only be cited from their paper. Since the Cruz et al. work’s F-Measure values for all the
tracks are unavailable in their paper, the supervised KNN with the COMA 3.0 tool is used for
simulation. So, when the proposed approaches are compared with the generic supervised KNN
approach, an indirect comparison with the Cruz et al. [7] work is drawn.

 The results from Figure 5 show that the proposed BU patterns are superior in choosing the best
configured matchers, compared to the proposed TD patterns and the existing supervised models. This
result is due to the three reasons that follow: (i) The two proposed structural metrics, CESR and CISR,
aided the system in better selection by precisely quantifying the structural characteristic of any given
ontology. (ii) Though both the BU and TD patterns use the proposed structural metrics, the BU
patterns achieved better accuracy, largely because the BUB approach is able to choose the necessary
(and sufficient) set of metrics needed to learn generic and effective patterns. (iii) The BUB approach is
able to construct more accurate patterns than the KNN model, since the proposed approach used a
small labelled and a large unlabelled vector, whereas the KNN model used only a little labelled vector
for pattern construction. It can also be noted that the KNN achieved the top mean F-Measure of 0.683
among the supervised algorithms, the reason being that, instance-based algorithms can learn better
models with a smaller set of training data, whereas other supervised algorithms require larger training
data.

B. Sathiya, T.V. Geetha, and V. Sugumaran 643

Figure 5 Precision, Recall and F-Measure of the Matching Tasks using the Proposed and Various Existing ML Approaches.

The next experiment is carried out to test the individual effectiveness of the proposed BU

patterns, as well as the structural metrics CESR and CISR, using precision, recall and F-Measure
metrics. The methodologies compared are the proposed BU patterns which achieved better
effectiveness than the TD patterns in the three experiments above, and the supervised KNN model
which achieved the best accuracy among the supervised approaches. As shown in Figures 6-8, four
models are evaluated. The first model, M1, is the baseline consisting of the KNN which uses only the
set of existing metrics listed in section 3.1. For all the three tracks, this model achieves the least
average precision, recall and F-Measure, since the supervised KNN is unable to build an accurate
model with a small labelled dataset. The second model, M2, consists of the KNN with the existing and
proposed metrics. The latter aided in better selection by computing the percentage of the internal
(CISR) and external structural richness (CESR), and so M2 achieves better effectiveness than M1,
validating the contribution of the proposed metrics towards a better selection of configured matchers.
The third model, M3, consists of the BU patterns with the existing metrics. Since M3 is a semi-
supervised model, it can construct an accurate model with a small set of labelled and a large set of
unlabelled datasets, compared to M1 and M2. Therefore, M3 achieves greater precision, recall and F-
Measure than M1 and M2, even without the proposed metrics. The final model, M4, is the proposed
BUB approach comprising the BU patterns with the existing and proposed metrics which achieves the
best average effectiveness for all the three tracks. This is due to the precise characteristic quantification
by the proposed metrics and the accurate modelling by the BU patterns. From the set of experiments, it
can be concluded that the proposed BU patterns learned using the BUB approach are generic, as well
as more effective and accurate, than the TD patterns and existing supervised ML algorithms.

644 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

Figure 6 Precision of the Matching Tasks for the Versions of the Proposed Approach.

Figure 7 Recall of the Matching Tasks for the Versions of the Proposed Approach.

5.2. One-way ANOVA: A Statistical Significance Test

This section briefly discusses the statistical significance test carried out using the one-way ANOVA
[45] to statistically demonstrate the performance of the BU and TD patterns in terms of the F-Measure
of the matching tasks. The supervised KNN model which obtained the maximum accuracy among the
supervised ML approaches is used for comparison. Here, the ANOVA is used to prove that the
improvements in the performances of the proposed approaches as against the supervised KNN model
are statistically significant.

B. Sathiya, T.V. Geetha, and V. Sugumaran 645

Figure 8 F-Measure of the Matching Tasks for the Versions of the Proposed Approach.

Before commencing the statistical evaluation, the data required for the performance evaluation and
null hypothesis is to be defined. The dataset used for the analysis consists of the F-Measure values of
the matching tasks belonging to the tracks mentioned in Table 1. For each matching task, the
F-Measure values corresponding to each of the three methods are computed and the dataset analysed
by the ANOVA to identify the statistical differences among the methods. Now, the null hypothesis is
defined thus: “The F-Measure means of all the three methods are equal”.

Initially, the ANOVA test is carried out for the data belonging to the Benchmark track and Table
13 shows its descriptive statistics. For each method, 110 (N) matching tasks are matched using the
selected configured matcher and the corresponding F-Measure computed. The means and standard
deviations of the three methods clearly indicate that the BU patterns achieve both maximum and
consistent performances. Table 14 shows the analysis of the variance, from which it is inferred that the
null hypothesis is rejected with the risk of just 0.01%, as indicated in the last column of the table
(pr>F). This indicates that all the three methods are statistically different from each other, and the
improvement achieved by the proposed approaches is significant.

Table 13 Descriptive Statistics.

Level N Mean StDev
BU 110 86.2324 3.732038

TD 110 79.91667 4.024341
KNN 110 84.30901 4.082548

Table 14 Analysis of variance.

Source DF Sum of squares Mean squares F Pr > F

Model 2 2288.033 1144.017 131.493 < 0.0001

Error 328 2844.964 8.700

Corrected Total 330 5132.997

646 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

However, ANOVA can only indicate the presence or absence of statistically significant

differences in the means of the F-Measure, hence the Fisher test is used to quantify the difference
between the means. The statistical difference between the three methods is shown in the “Difference”
column in Table 15. The difference in performance between the BU patterns and KNN model is high,
since the former is a better semi-supervised model than the latter supervised model. The difference
between the BU and TD patterns is low, given that both are semi-supervised approach models. These
statistically significant different values prove that the three models constructed are significantly
different, as is also indicated in the last column of Table 15.

Table 15 Method / Fisher (LSD) / An Analysis of the Differences between the Categories with a Confidence Interval of 95%.

Contrast Difference Standardized difference
Critical
value Pr > Diff Significant

BU vs KNN 6.316 15.842 1.967 < 0.0001 Yes

BU vs TD 1.923 4.858 1.967 < 0.0001 Yes

TD vs KNN 4.392 11.017 1.967 < 0.0001 Yes

LSD-value: 0.782

The same can be inferred from Table 16, which shows the group formation based on the F-

Measure of the matching tasks. Here, groups are formed based on the similarity among the F-Measure
values, irrespective of the method to which they belong. Further, only three groups are formed, since
only three methods are compared. After the groups are formed, each method M is assigned a set of
groups which have the F-Measure values of M. Since the F-Measure values across each method are
dissimilar and values within the methods are similar, each group comprised the F-Measure values
belonging only to a single method. Therefore, as shown in Table 16, the three methods belong to three
different groups, indicative of the statistically significant difference between the three methods. Thus,
from the set of statistical results above, it can be concluded that the BU patterns are statistically
different and perform the best. Further, the same statistical testing is carried out using the precision and
recall values of the matching tasks and similar results are obtained. Also, the test is repeated for the
Conference and Benchmark2 tracks and similar conclusions are derived. Hence, similar to the previous
section, statistical testing also proves that the BU patterns are more effective in comparison with the
TD patterns and the supervised ML approach, KNN. Therefore, for the purpose of further experiments,
only the BU patterns are evaluated.

Table 16 Group Formation.

Category LS means Groups

BU 86.232 A

TD 84.309 B

KNN 79.917 C

5.3. Existing Static and Automatic vs Proposed Automatic Matching
In this section, to gauge the effectiveness of the selected BU patterns (Table 11), a series of
experiments was conducted using the three tracks listed in Table 1.

 The first experiment evaluates automatic matching against static matching in terms of the
precision, recall and F-Measure of the matching task. Similar to the existing static matching systems
such as the Falcon [18], COMA++ [8], and Rimom [21], the configured matcher cm3 (Lexical +
Structural) is used to statistically match the given tasks, irrespective of their characteristics. In
automatic matching, for each matching task, the best configured matchers for matching are
automatically selected by the BU patterns. The chief objective of the proposed approach is to increase

B. Sathiya, T.V. Geetha, and V. Sugumaran 647

the effectiveness of the matching results by a precise and automatic selection of the configured
matcher based on the characteristics of the matching tasks. The effectiveness is improved by enhanced
correctness (precision) or completeness (recall) or both, depending on the chosen configured matcher.
Table 17 shows the improved performance in terms of the average precision, recall and F-Measure for
each of the considered tracks. This result proves that the objective of the proposed approach is
successfully accomplished.

Table 17 Comparison of Precision, Recall and F-Measure Values on Automatic vs Static Matching.

Benchmark Conference Benchmark2

P* R* FM* P R FM P R FM

Automatic (A) 0.92 0.81 0.86 0.42 0.66 0.51 0.87 0.79 0.83

 Static (S) 0.77 0.69 0.73 0.55 0.44 0.49 0.84 0.78 0.81

The next evaluation is based on the matching time required by automatic and static matching. As

shown in Figure 9, on average for all the three tracks, the matching time required by the proposed
automatically selected matcher is 95.66 seconds. This is higher, compared to the static matcher’s
average matching time of 81.66 seconds. Because the Benchmark track had many tasks with lexical,
structural and instance characteristics, the proposed approach chose the cm1 matcher. This led to extra
execution time in comparison with the static matcher comprising only the lexical and structural
matchers. Meanwhile, the Conference and Benchmark2 tracks have no instances and therefore the
proposed automatic matching chooses between cm2 and cm3. Hence, for these tracks, the execution
time of automatic matching marginally outperforms that of static matching. From the results above, it
can be concluded that, depending on the characteristics of the matching tasks, the matching time
required by the proposed automatic matching may increase or decrease in comparison with that of the
static.

Figure 9 Execution Time of Static and Automatic Matching

It is also vital to note that the automatic matching time also includes the negligible pre-processing
time required to quantify the characteristics of the ontologies. For example, the pre-processing time
required for the Anatomy track [40], with a single matching task of the OAEI 2011, is 45 seconds. The
automatic matching chose the cm3 matcher, which is the same as the static matcher, and the matching
time required is 35 minutes. From this it can be inferred that the pre-processing time is negligible when
compared to the matching time.

Finally, the proposed BU patterns are compared with the existing work in automatic matcher
selection. However, to the best of our knowledge, as discussed in section 2, the proposed approach and
that of Cruz et al. [7] are the only two systems which fully automate the process of matcher selection

648 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

without constraints like with the Rimom system [21]. Moreover, Rimom automates both the matcher
selection and match results combination, whereas this work aims only at matcher selection. Hence the
proposed approach can only be compared with the work of Cruz et al. [7]. As mentioned earlier, the
results of Cruz et al., presented below, are obtained from their paper [7].

Now, the percentage of matching tasks in which the proposed automatic matching surpasses the
static matching is computed (Figure 10). Similarly, the percentage of improved matching tasks of the
KNN model of Cruz et al. [7], in comparison with the static matching, is also shown in Figure 10. On
average, for all the three tracks, the improved percentage of the task for the proposed BU pattern-based
automatic matching is 31.67% and KNN-based matching 27.3%. The proposed automatic matching is
able to achieve a 16% increase in terms of an improved percentage of tasks in comparison with the
existing KNN model [7]. Next, to gauge the percentage of the increased F-Measure resulting from
these improved matching tasks, an evaluation is conducted in terms of the Average Gain/Task [7]. It is
defined as the average increase in the F-Measure for the improved tasks. Figure 11 shows that, on
average for all the three tracks, the Average Gain/Task for the proposed automatic matching is 14.6%
and 6.37% for KNN-based matching. The proposed automatic matching is able to achieve a 129%
increase in the Average Gain/Task compared to the existing KNN model. The improved effectiveness
is due to the precise selection of the configured matcher by the BU patterns, based on the
characteristics of the matching task.

Figure 10 Percentage of Improved Number of Tasks
of the Proposed vs Cruz et al.-based Matcher Selection

 Figure 11 Average Gain/Task of the Proposed vs Cruz et al.-based Matcher Selection

B. Sathiya, T.V. Geetha, and V. Sugumaran 649

6 Conclusions and Future Work

This paper aims to automatically select configured matchers based on the characteristics of the
matching task using the proposed Bottom-up and Top-down Bootstrapping-based pattern learning. In
addition, two new structural quality metrics, the Class External Structural Richness (CESR) and the
Class Internal Structural Richness (CISR), are proposed to accurately gauge the structural
characteristics of the matching task, facilitating the learned patterns for better matcher selection. From
the patterns learned, it is inferred that the BUB approach constructs more effective and generic patterns
with only 5 metrics, compared to the TDB approach patterns with 7 metrics. Also, the F-Measures of
the matching tasks obtained using the BU patterns are better than the TD patterns. Hence, it can be
concluded that the BU patterns are more efficient and effective than the TD patterns. Similarly, the
effectiveness of the proposed metrics is evaluated by automatically selecting the matchers with and
without the proposed metrics. Based on the results, it is evident that the proposed metrics do aid in
automatic matcher selection. Further, the proposed pattern-based automatic matcher selection has been
compared with the existing supervised ML approaches and the KNN model of Cruz et al. Experimental
results in terms of the F-Measure of the constructed patterns, ANOVA statistical testing, percentage of
the improved number of tasks and Average Gain/Task have demonstrated the improved effectiveness
of the proposed BU pattern-based automatic matcher selection. From these results, it can be concluded
that semi-supervised approaches are a better choice to model sparsely-labeled data than supervised ML
approaches. Also, as stated by Occam’s razor principle, the model should be built with the smallest
possible (and sufficient) features.

In future, the limited number of configured matchers considered can be increased for handling
automatic matcher selection in a range of matching scenarios. This is possible by using a larger set of
element matchers to be classified in a fine-grained manner with such details as names, labels,
comments, attributes, relations, and contexts, rather than merely lexical, structural and instance. In
addition, the matching process can take into account a background knowledge of the domain or
ontology so as to enable better matching.

Acknowledgements

This work of the first author was financially supported by Anna University, Chennai, India under the
Anna Centenary Research Fellowship. The work of the third author was partially supported by a 2014
School of Business Administration Spring/Summer Fellowship at Oakland University, Rochester,
Michigan, USA.

References

1. Abney, S. (2004). Understanding the yarowsky algorithm. Computational Linguistics, 30(3), 365-
395.

2. Agrawal, R., Ailamaki, A., Bernstein, P. A., Brewer, E. A., Carey, M. J., Chaudhuri, S., et al.
(2008). The Claremont report on database research. ACM Sigmod Record, 37(3), 9-19.

3. Algergawy, A., Nayak, R., Siegmund, N., Köppen, V., & Saake, G. (2010).Combining schema and
level-based matching for web service discovery. In B. Benatallah, F. Casati, G. Kappel, &
G.Rossi(Eds.), Web Engineering(pp. 114-128).Springer Berlin Heidelberg.

4. Bellahsene, Z., Bonifati, A., & Rahm, E. (2011). Schema matching and mapping (Vol. 20).
Heidelberg (DE): Springer.

650 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

5. Burton-Jones, A., Storey, V. C., Sugumaran, V., & Ahluwalia, P. (2005). A semiotic metrics suite
for assessing the quality of ontologies. Data & Knowledge Engineering, 55(1), 84-102.

6. Choi, N., Song, I. Y., & Han, H. (2006). A survey on ontology mapping. ACM Sigmod
Record, 35(3), 34-41.

7. Cruz, I. F., Fabiani, A., Caimi, F., Stroe, C., & Palmonari, M. (2012). Automatic configuration
selection using ontology matching task profiling. In E. Simperl, P. Cimiano, A. Polleres, O.
Corcho,& V. Presutti(Eds.), The Semantic Web: Research and Applications (pp. 179-194).
Springer Berlin Heidelberg.

8. Do, H. H., & Rahm, E. (2007). Matching large schemas: Approaches and evaluation. Information
Systems, 32(6), 857-885.

9. Doan, A., Domingos, P., & Halevy, A. Y. (2001, May). Reconciling schemas of disparate data
sources: A machine-learning approach. In ACM Sigmod Record (Vol. 30, No. 2, pp. 509-520).
ACM.

10. Duan, S., Fokoue, A., & Srinivas, K. (2010). One size does not fit all: Customizing ontology
alignment using user feedback. In P.F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang,
J.Z. Pan, I, Horrocks,& B. Glimm(Eds.), The Semantic Web–ISWC 2010 (pp. 177-192).
Springer Berlin Heidelberg.

11. Duque-Ramos, A., Fernández-Breis, J. T., Stevens, R., & Aussenac-Gilles, N. (2011). OQuaRE:
A SQuaRE-based approach for evaluating the quality of ontologies. Journal of Research and
Practice in Information Technology, 43(2), 159.

12. Ehrig, M., Staab, S., & Sure, Y. (2005). Bootstrapping ontology alignment methods with
APFEL. In Y. Gil, E. Motta, V.R. Benjamins, & M. Musen(Eds.), The Semantic Web–ISWC
2005 (pp. 186-200). Springer Berlin Heidelberg.

13. Euzenat, J., & Shvaiko, P. (2007). Ontology matching (Vol. 333). Heidelberg: Springer.
14. Gal, A. (2011). Uncertain schema matching. Synthesis Lectures on Data Management, 3(1), 1-

97.
15. Gal, A., & Sagi, T. (2010). Tuning the ensemble selection process of schema

matchers. Information Systems, 35(8), 845-859.
16. Gal, A., & Shvaiko, P. (2009). Advances in ontology matching. In E.J. Chang, &

K. Sycara(Eds.) Advances in web semantics (pp. 176-198). Springer Berlin Heidelberg.
17. Hariri, B. B., Sayyadi, H., Abolhassani, H., & Esmaili, K. S. (2006, August). Combining

Ontology Alignment Metrics Using the Data Mining Techniques. In ECAI International
Workshop on Context and Ontologies (pp. 65-67).

18. Hu, W., Qu, Y., & Cheng, G. (2008). Matching large ontologies: A divide-and-conquer
approach. Data & Knowledge Engineering, 67(1), 140-160.

19. Huza, M., Harzallah, M., & Trichet, F. (2007). OntoMas: a tutoring system dedicated to
ontology matching. In R. Jardim-Gonçalves, J. Müller, K. Mertins,& M. Zelm (Eds.),
Enterprise Interoperability II (pp. 377-388). Springer London.

20. Lee, Y., Sayyadian, M., Doan, A., & Rosenthal, A. S. (2007). eTuner: tuning schema matching
software using synthetic scenarios. The VLDB Journal—The International Journal on Very
Large Data Bases, 16(1), 97-122.

21. Li, J., Tang, J., Li, Y., & Luo, Q. (2009). Rimom: A dynamic multi strategy ontology alignment
framework. In IEEE Transactions on Knowledge and Data Engineering, 21(8), 1218-1232.

B. Sathiya, T.V. Geetha, and V. Sugumaran 651

22. Mao, M., Peng, Y., & Spring, M. (2008). A Harmony based Adaptive Ontology Mapping
Approach. In SWWS (pp. 336-342).

23. Marie, A., & Gal, A. (2008). Boosting schema matchers. In Tari, Z. (Ed.), On the Move to
Meaningful Internet Systems: OTM 2008 (pp. 283-300). Springer Berlin Heidelberg.

24. Mochol, M., & Jentzsch, A. (2008). Towards a rule-based matcher selection. In Knowledge
Engineering: Practice and Patterns (pp. 109-119). Springer Berlin Heidelberg.

25. Mochol, M., Jentzsch, A., & Euzenat, J. (2006). Applying an analytic method for matching
approach selection. In Proc. 1st ISWC 2006 international workshop on ontology matching
(OM) (pp. 37-48).

26. Ngo, D. H., & Bellahsene, Z. (2012). Evaluating the Interaction between the different Matchers
(or Strategies) in Ontology Matching Task. In International Semantic Web Conference-ISWC
2012 (p. 12).

27. Otero-Cerdeira, L., Rodríguez-Martínez, F. J., & Gómez-Rodríguez, A. (2015). Ontology
matching: A literature review. Expert Systems with Applications, 42(2), 949-971.

28. Peukert, E., Eberius, J., & Rahm, E. (2011, April). AMC-A framework for modelling and
comparing matching systems as matching processes. In IEEE 27th International Conference
on Data Engineering (ICDE)(pp. 1304-1307). IEEE.

29. Peukert, E., Eberius, J., & Rahm, E. (2012, April). A self-configuring schema matching system.
In 2012 IEEE 28th International Conference on Data Engineering (pp. 306-317). IEEE.

30. Rahm, E. (2011). Towards large-scale schema and ontology matching. In Z. Bellahsene,
A. Bonifati, & E.Rahm (Eds.), Schema matching and mapping (pp. 3-27). Springer Berlin
Heidelberg.

31. Sagi, T., & Gal, A. (2013). Schema matching prediction with applications to data source
discovery and dynamic ensembling. The VLDB Journal, 22(5), 689-710.

32. Saruladha, K., Aghila, G., & Sathiya, B. (2011). A comparative analysis of ontology and schema
matching systems. International Journal of Computer Applications, 34(8), 14-21.

33. Shi, F., Li, J., Tang, J., Xie, G., & Li, H. (2009). Actively learning ontology matching via user
interaction. In A. Bernstein, D.R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, &
K. Thirunarayan(Eds.), The Semantic Web- ISWC 2009 (pp. 585-600). Springer Berlin
Heidelberg.

34. Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future
challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1), 158-176.

35. Spiliopoulos, V., & Vouros, G. (2012). Synthesizing ontology alignment methods using the max-
sum algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(5), 940-951.

36. Steyskal, S., & Polleres, A. (2013). Mix'n'Match: iteratively combining ontology matchers in an
anytime fashion. In OM (pp. 223-224).

37. Tartir, S., Arpinar, I. B., Moore, M., Sheth, A. P., & Aleman-Meza, B. (2005). OntoQA: Metric-
based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from
Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, vol. 9,
(pp. 45–53). IEEE.

38. Tu, K., & Yu, Y. (2005, April). CMC: Combining multiple schema-matching strategies based on
credibility prediction. In International Conference on Database Systems for Advanced
Applications (pp. 888-893). Springer Berlin Heidelberg.

652 A Metric Based Automatic Selection of Ontology Matchers Using Bootstrapped Patterns

39. Yang, P., Wang, P., Ji, L., Chen, X., Huang, K., & Yu, B. (2014). Ontology Matching Tuning
Based on Particle Swarm Optimization: Preliminary Results. In D. Zhao, J. Du, H. Wang,
P. Wang, D. Ji, & J.Z. Pan (Eds.) The Semantic Web and Web Science (pp. 146-155). Springer
Berlin Heidelberg.

40. Anatomy Track (2011). Available: http://oaei.ontologymatching.org/2011/anatomy/index.html
41. Benchmark track (2011). Available: http://oaei.ontologymatching.org/2011/benchmarks/
42. Benchmark track2 (2011). Available: http://oaei.ontologymatching.org/2011/benchmarks2/
43. COMA 3.0 ontology matching tool (Nov 2012). Available: http://sourceforge.net/projects/coma-

ce/
44. Conference track (2011). Available:

http://oaei.ontologymatching.org/2011/conference/index.html
45. One Way ANOVA - University of Wisconsin - Stevens Point. [Online]. Available:

http://www.uwsp.edu/psych/stat/12/anova-1w.ht
46. Ontology Alignment Evaluation Initiative (OAEI). (2011). Available:

http://oaei.ontologymatching.org/2011/

