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With the booming of web service ecosystems, finding suitable services and making service
compositions have become an principal challenge for inexperienced developers. There-

fore, recommending services based on service composition queries turns out to be a

promising solution. Many recent studies apply Latent Dirichlet Allocation (LDA) to
model the queries and services’ description. However, limited by the restrictive assump-

tion of the Dirichlet-Multinomial distribution assumption, LDA cannot generate high-
quality latent presentation, thus the accuracy of recommendation isn’t quite satisfactory.

Based on our previous work, we propose a Separated Time-aware Collaborative Poisson
Factorization (STCPF) to tackle the problem in this paper. STCPF takes Poisson Fac-
torization as the foundation to model mashup queries and service descriptions separately,

and incorporates them with the historical usage data together by using collective matrix

factorization. Experiments on the real-world show that our model outperforms than the
state-of-the-art methods (e.g., Time-aware collaborative domain regression) in terms of

mean average precision, and costs much less time on the sparse but massive data from
web service ecosystem.

Keywords: service recommendation, service composition, Time-aware, Poisson Factor-

ization

Communicated by: D. Schwabe & R. Mizoguchi

1. Introduction

With the extensive use of Service-Oriented Architecture (SOA), reusing web services has be-
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come a popular way to develop new software services [1]. Composing services to form mashups

helps creating value-added software efficiently and effectively [2]. However, as the number of

services published on the web gets larger, it becomes a challenge for inexperienced developers

to find suitable web services to create service compositions. Under such circumstances, service

recommendation becomes a promising solution for assisting service composition’s creation.

Existing approaches for service recommendation can be divided into two types: (1) Rec-

ommending services based on the non-functional features, i.e., QoS [3–5]. (2) Recommending

services based on the functionalities [6–9]. These approaches are generally based on some

specific performance indices. But for many inexperienced developers, a natural way to receive

services recommendation is to submit a textual query for the desired service composition.

For example, a service composition developer’s query can be described as “Search local auc-

tions and classified listings and show them on a map view”. Since this service composition

inherently requires services with different functions, the developer will finally choose services

from two functions domains: Google maps from mapping domain and ebay services from

e-commerce domains. In this process, there are two problems that need to be settled. The

first one is that the domain information shall be extracted and purified from the require-

ment description; the second one is that the most appropriate service shall be selected from

different domains and applied to the development. Undoubtedly, these two problems are

challenging especially for inexperienced developers. Thus an intelligent algorithm is in desire

to recommend relevant services according to developer query.

In recent years Machine learning turns into an effective and efficient way for web ser-

vice recommendation [10]. Many existing works use LDA (Latent Dirichlet Allocation, [11])

to model user queries and service descriptions, which are in the form of nature language.

However, LDA is not good enough to generate accurate latent presentation because of the

restrictive assumption of the Dirichlet-Multinomial distribution [12]. As it puts a limitation

on the quality of the extracted features from description content and queries, the accuracy of

recommendation isn’t quiet satisfying.

In previous work [13], we proposed a Time-aware Collaborative Poisson Factorization

(TCPF) to solve the problems. Nevertheless we ignore the subtle difference between similar

parameters for a more compact model. Moreover, the depth of research on certain issue is not

thorough enough subject to the space limitation of the paper [13]. In this paper we (1)improve

the model by separating the similar parameters for a higher accuracy; (2)fully explore the

principle and mechanism of the mode; (3)introduce the complete formula derivation process

and (4)analyze the performance of the parameters. We call the modified model as Separated

Time-aware Collaborative Poisson Factorization (STCPF). Same as [13], STCPF also adopts

Poisson Factorization as the foundation. Poisson Factorization, which gives Gamma-Poisson

distribution assumptions to the components of the dateset, has been proved to be extremely

effective and efficient in modeling document latent vectors in text analysis [14–17]. We con-

sider applying Poisson Factorization to the following aspects: firstly, the probability topic

model has extremely obvious advantages in treatment process. As one of probability topic

models, Poisson Factorization can naturally and easily extract domain information from the

texts described by the natural language. Secondly, the Poisson Factorization is different from

other probability topic models (such as LDA), that is, when the observed quantity matrix to

be treated as the sparse one, the Poisson Factorization has incomparable superiority in the
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aspect of calculated performance, which can largely reduce the recommendation time. In this

paper, we exploit the idea and propose STCPF model as a better service recommendation to

queries. Compared with the previous service recommended algorithms, the precision of the

recommended algorithm generated by taking advantage of Poisson Factorization is largely

increased.

In addition, similar to [18], information evaporation is also taken into consideration in

STCPF. The key idea of information evaporation is that the service heat changes over time.

For the concrete manifestation, the services preferred by the developers of service combination

will also be changed with the time. Information evaporation is also verified through the

experiment in reference [19]. In this paper we introduce the information evaporation by

applying the release time of mashups into the model, and giving a larger trust to newer usage

records.

The contributions of this paper are as follows:

• By using Poisson Factorization as basic units, we propose the Separated Time-aware

Collaborative Poisson Factorization for service recommendation.

• The STCPF model uses multi-factor including text descriptions of both services’ and

service compositions’ historical usage data. By incorporating them together STCPF

can get more accurate and eventually better recommendation results.

• Comprehensive experiments on the real-world dataset from ProgrammableWeb.com

show that STCPF has faster calculation speed and higher accuracy than the state-

of-the-art method in service recommendation.

The rest of this paper is organized as follows. Section II formulates the problem we studied

and then gives a brief introduction to related methods. Section III introduces the proposed

model including the generative process and set-method of Auxiliary variables. In section IV,

the training and recommendation algorithms are described in detail. Section V reports the

experimental results. Section VI discusses the related work and section VII draws a conclusion

for the whole paper.

2. Background

In this section, we first provide some necessary definitions and formulate the service recom-

mendation for service composition creation problem. Then a brief introduction of two related

methods are presented.

2.1. Problem formulation

Our views on service recommendation are that a whole recommendation algorithm is consist

of two processes, namely establishing a model and using the model for recommending. In the

following section we formally define the problem from the centric view.

Definition 1: Model Topology. The set G = (M,MD,MT, S,SD,R) is used to de-

scribe the topology of the problem. Each symbol of the set is defined as follows: M =

{m1,m2, . . . ,mi} represents the set of service compositions. S = {s1, s2, . . . , sj} denotes the

set of services. MDm = {wm1, wm2, . . . , wmnm
} represents the service composition m ∈ M
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described by the set of nm words. Similarly, SDs = {ws1, ws2, . . . , wsns
, }represents the ser-

vice s ∈ S described by the set of ns words. MT = {t1, t2, . . . , tM} records the time stamp

of service composition release time and has the same amount of service compositions in each

time interval. R = (rms)
M×S
m=1,s=1 records the historical usage between service compositions

and services. If service composition m invokes service s then rms = 1, else rms = 0.

Definition 2: Service Recommendation for service composition Creation. For service

composition Creation, a new requirement l ∈ QD described as a collection of words QDl =

{wl1, wl2, ...wlnl
}. For each query l, the goal is to return a ranked list of services rls based on

G and services with higher probability to be involved will be recommended to the developer.

With these two definitions, we can conclude our problem as how to offer a useful service

list rls for service composition developer while a new requirement l is proposed. Naturally,

how to compute the list rls is the core of the recommendation problem. In order to construct

an more effective predictive model than previous one, some essential new mathematic models

must be adopted and we particularly introduce them in the following passage.

2.2. Poisson factorization

Poisson Factorization(PF) model is proposed recently mainly for content based recommender

system [15,20]. The graphical model of PF is shown in figure 1. Matrix Y can be decomposed

into the form of Y = ΛX with Matrix Factorization (MF).The key difference between PF

and MF is that PF assumes that Λ follows the Gamma distribution and X follows Poisson

distribution. For example, given the observed rating yui of user u to item i, the generative

process of Poisson matrix factorization unit is formulated as follows:

θi ∼ Gamma (λia, λib)

ηu ∼ Gamma (λua, λub)

yui ∼ Poisson
(
ηTu , θi

) (1)

Where λ.a is the shape parameter of the Gamma distribution, λ.b is the rate parameter of the

Gamma distribution and ηTu ,θi is the shape parameter of Poisson factorization. Specifically,

the two distribution are defined as

Gamma (θ·,k;λ·a, λ·b) =
λ·b

λ·a

Γ (λ·a)
θ·,k

λ·a−1e−λ·bθ·,k

Poisson
(
yui; η

T
u θi
)

=
(
ηTu θi

)yui
e(−η

T
u θi)/yui!

(2)

The goal of Poisson Matrix factorization is to get optimal θi and ηu to reconstruct original

data [17].

In essence, PF is a modified version of matrix factorization [21]. For the user-item rec-

ommendation problem, matrix factorization characterizes both items and users by vectors of

factors inferred from item rating patterns. It has been widely used in many recommender

systems, but the biggest shortcoming is that there are unexplained negative values in the

results.

Furthermore, all parameters of PF are Non-negative. This feature is similar to the NMF

(Non-negative Matrix Factorization) proposed in [22]. NMF addresses the shortcoming of

MF and has outstanding performance in clustering. However NMF needs much more time to

convergence when dealing with large dataset.
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Fig. 1. Graphical model of the PF model. PF is a variant of probabilistic matrix factorization.
The observed yui are modeled with a Poisson, parameterized by the inner product of ηTu and θi.

From the perspective of generating process, PF is a little bit similar to Latent Dirichlet

Allocation (LDA). The key difference between them is the choice of prior distribution assump-

tions of parameters. And with regard to computation amount, PF has more advantages than

LDA. The assumption of gamma distribution has many preferential. If θi1 and θi2 are gamma

variables with parameters (λi1 , λib) and (λi2 , λib) respectively, then their sum (θi1 + θi2) is

a gamma variable with parameters(λi1 + λi2 , λib), this will contribute to great computation

efficiency.

In this paper, we use collective matrix factorization to combine several basic PF units

together and solve the mashup-side cold-start service recommendation problem as in [19].

2.3. Collective matrix factorization

Collective matrix factorization (CMF) is proposed to solve the optimal problems about several

relational matrices with some shared elements [23]. For example, suppose there are two

rational matrices M1 ∼ f(a, b) and M2 ∼ g(a, b) with the shared element b , collective

matrix factorization combines the lose function together to test error. The modified hybrid

objective function is defined as

L = α1L1 (M1; a, b) + α2L1 (M2; b, c) (3)

where α1 and α2 are relative weights and the value of them depends on the validation

dataset.

There are several basic Poisson matrix factorization units in our model, and we use col-

lective matrix factorization to synthesize them together.

3. Model Framwork

In this section, we will describe the construction of the two components in our approach.

At first the overview of our proposed methodology is given to illustrate the whole business

process, and then we will explain two processes of the methodology in details.

3.1. Overview of methodology

In our problem setting, the developer only offers a query for the new mashup(service com-

position). We cannot get the service usage of the mashup because it does not exist. So we

cannot get the mashup-service to invoke historical usage because the new mashup does not



600 Service Recommendation Based on Separated Time-aware Collaborative Poisson Factorization

Developer

New Mashup
Requirement

Ranked List of
 Services

Requirement
Latent Factor

Textual
Description

Service
Topic Offsets

Service
Latent Factor

Time
Factor

Generative Process

1 t

Recommendation Process

Legend:

Service

Mashup

Integrate
&

Recommend

Textual
Description

Fig. 2. Methodology of STCPF model. STCPF model utilizes service descriptions and the service

composition(mashup) historical usage data separately, then combined with time factor for the

more accurate recommendation results.

exist, and cannot directly associate the latent factor with each of them either. That is why

we called the problem mashup-side cold-start recommendation [19]. Similar to [19], we use

the content of queries to help overcome this cold-start problem.

As shown in figure 2, like TCPF, the whole methodology of STCPF also can be divided

into two parts. In generative process, it is intuitive to utilize the service and mashup (service

composition) introduction textual content for recommending. Existing mashup historical

usage information is also taken into consideration in our model. After the above identified

preprocessing we get the service-word, mashup-word and mashup-service matrices. From

service-word matrix we get service latent factor and from mashup-service matrix we get service

topic offsets. More specially, word latent factor can be obtained during this stage and then

be prepared for the recommendation process. The phenomenon of information evaporation

is taken into account and use to produce time factor. In the recommendation process, we

tackle the query with the word latent factor and get the requirement latent factor. Then the

recommendation process integrates the service comprehensive feature information from the

generative process and use a poisson factorization-like method to provide service ranking list

according to the new mashup requirement of the developer.

Here is an example for the whole process, suppose a service composition developer has

a new idea like ”regional pet sales market”, but he has no idea which service can be used

for this service composition. For this question, we first need to prepare the parameters such

as service latent factor, mashup latent factor, etc with our generative process in the target

service ecosystem, while the query is to input the model as textual content information,

the recommendation process will offer the distribution of each services with the parameters

calculated in the generative process. In the end, the developer can get a list as ”Google Maps,

Oodle, AddThis Analytics, CityGrid,...” for reference with our proposed model. Obviously it
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Fig. 3. Graphical model of the generative process. This process takes PF as the foundation, and
incorporate them with collective matrix factorization. Comparing with TCPF model, parameter

ζ is separated form parameter β.

is more helpful for the inexperienced service composition developer.

The detail of these processes will be explained in below.

3.2. Generative process

In this process, we will train the model for recommending. From a high-level perspective,

STCPF model can be perceived as the combination of poisson factorization and collective

matrix factorization, in which poisson factorization model acts as the basic unit and col-

lective matrix factorization solves several poisson factorization models simultaneously. The

generative process of our proposed model is illustrated in figure 3.

As the graphical model shown above, with the preprocessed service-word, mashup-word

and mashup-service matrices, we specify the values of vsw, wmw and rms to be generated from

Poisson distributions. Specifically, they are defined to be

vsw ∼ Poisson
(
µTs ζw

)
wmw ∼ Poisson

(
ηTmβw

)
rms ∼ Poisson

(
ηTmθs

) (4)

In formula 4, each parameter of Poisson distributions is the inner product of two variables.

Here β and ζ represent the factor of word, η is the mashup factor. Variables θ is set with

the summation of two parts µ and ε. µs is the factor of service and ε, which is gained from

mashup-service usage, represents the service topic offsets. We incorporate relative weights

between µ and ε to adjust their final contributions. Formally, the formula of computing θ is

expressed as

θs = (α1µs + α2εs) (5)

where α1 and α2 are relative weights and the values of them depend on validation datasets.

Because mashup is composed by services, so the word factor ζ drawn from service-word

matrix is associated with β which is drawn from mashup-word matrix. If we combine these

two parameters together, we can get a compact model as TCPF. But actually, there are

some differences between these two parameters. the introduction textual content of mashup

is not the set of introduction textual contents of services which are invoked by mashup. For

example, in ProgrammableWeb, API ”readmill” has a strong emphasis on its social function,
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but mashups which invoke it rarely mention about that in the introduction textual contents.

Many cases like this lead to the difference between two word latent factors. In STCPF we

separate them for a higher accuracy.

From the perspective of the algorithm, we give the assumption that all these variables are

subject to Gamma distribution. the hypothesis is reasonable because Gamma distributions

are the conjugate priors for the shape parameters of Poisson distributions [17]. Particularly,

these variables are defined as

ζw ∼ Gamma (λ1wa, λ1wb), βw ∼ Gamma (λ2wa, λ2wb)

µs ∼ Gamma (λsa, λsb), ηm ∼ Gamma (λma, λmb)

εs ∼ Gamma (λse, λsf )

(6)

Where λ.a(λ.e) and λ.b(λ.f ) represent the rate parameter and the shape parameter of

Gamma distribution respectively.

The information evaporation theory is also used in recommendation. The core idea is that

the recent records are worth more than the past ones. Time factor tm is adopted to scale as

in [19].

In general, the generative process of STCPF model is described as follows,

1. For each word w,

(a) Draw latent factor ζw ∼ Gamma (λ1wa, λ1wb) from service-word matrix.

(b) Draw latent factor βw ∼ Gamma (λ2wa, λ2wb) from mashup-word matrix.

2. For each service s,

(a) Draw latent factor µs ∼ Gamma (λsa, λsb).

(b) For each word w in the introduction content, draw word occurrence count, vsw ∼
Poisson

(
µTs βw

)
.

3. For each mashup m,

(a) Draw latent factor ηm ∼ Gamma (λma, λmb).

(b) For each word w in the introduction content, draw word occurrence count, wmw ∼
Poisson

(
ηTmβw

)
.

4. For mashup-service pair (m, s),

(a) For historical usage information, draw service topic offsets εs ∼ Gamma (λse, λsf ).

(b) Draw the preference response, rms ∼ Poisson
(
ηTmθs

)
.

(c) The adjusted rating r̃ms ∼ tmrms according to information evaporation theory,

where the time factor tm is defined as

tm = λη
e−λt(tcurrent−tm)

1
M

∑
m e
−λt(tcurrent−tm)

(7)
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3.3. Recommendation process

When a mashup query l is submitted by the developer, we treat it as a bag of words and get

a single-dimensional array query-word wls as the alternative of the query. Because we have

gotten the word latent factor βw during the generative process, so we only need to calculate

the query latent factor ηl with the Poisson Factorization-like model

wlw ∼ Poisson
(
ηTl βw

)
(8)

where the parameter βw is fixed and ηl ∼ Gamma (λla, λlb).

When we have worked out ηl from the query, we compute the expectation of the dot

product with ηl and θs (learned from STCPF). Finally, for the specified mashup requirement

l, a ranked list rls which represents the score of services will be provided for the developer.

rls = E
[
ηTl θs

]
(9)

4. Recommendation Approach

In this section, we illuminate how to use the methodology described above to carry out the

factual model to solve the real-world problem. At first we describe the auxiliary variables

which are indispensable for Variational inference. Then how the optimal parameters of the

model are obtained is illustrated. At last we explain how to use this well-trained model for a

real-world recommendation at length.

4.1. Auxiliary variables

With the preprocessed matrices v,w and r, our goal is to infer the word latent factor ζ and β,

the mashup latent factor η, the service latent factor µ and service topic offsets ε. The exact

posterior distribution can be described as

q (ζ, β, η, µ, ε|v, w, s) (10)

As many Bayesian models, this probability is intractable to compute directly because

there are some coupling relationships between variables. In the above formula, each Gamma

variable is independent but every Poisson variable is formed from two Gamma variables. Here

the Variational Bayesian Inference is used to address this issue.

Variational Bayesian Inference is an optimization-based strategy for approximating pos-

terior distributions in complex probabilistic models [15,24]. This algorithm assumes a family

of distributions over the target latent variable. The supposed family of distributions indexed

by free “Variational” parameters and by adjusting the parameters we find a member of this

family closet to the true posterior in Kullback-Liebler (KL) divergence. With this algorithm

the inference problem turns to an optimization problem which is easier to accomplish.

To implement Variational Bayesian Inference, we augment STCPF with auxiliary variables

as in [15]. For each mashup-word pair (m,w), we add K latent variables

wmw,k ∼ Poisson
(
ηTm,kβw,k

)
(11)
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Table 1. STCPF:latent variable, complete conditionals and variational parameters.

Latent
Variable

Type Complete Conditional
Variational
Parameters

Model Training

ζw,k Gamma λ1wa +
∑
s
νsw,k, λ1wb +

∑
s
µs,k ζ̃shp, ζ̃rte

βw,k Gamma λ2wa +
∑
m
wmw,k, λ2wb +

∑
m
ηm,k β̃shp, β̃rte

ηm,k Gamma
λma +

∑
w
wmw,k +

∑
s

(
rams,k + rbms,k

)
,

λmb +
∑
w
βw,k +

∑
s

(
α1µs,k + α2εs,k

) η̃shp, η̃rte

µs,k Gamma λsa +
∑
w
vsw,k, λsb +

∑
w
ζw,k µ̃shp, µ̃rte

εs,k Gamma λse +
∑
m
rbms,k, λsf +

∑
m
ηm,k ε̃shp, ε̃rte

wmw,k Mult log
(
ηm,k

)
+ log

(
βw,k

)
φmw

vsw,k Mult log
(
µs,k

)
+ log

(
βw,k

)
ψsw

rms,k Mult

{
log (α1) + log

(
ηm,k

)
+ log

(
µs,k

)
, ifk ≤ K

log (α2) + log
(
ηm,k

)
+ log

(
εs,k

)
, ifK < k ≤ 2K

ξms

Recommending

ηl,k Gamma λla +
∑
w
wlw,k, λlb +

∑
w
βw,k η̃shp, η̃rte

wlw,k Mult log
(
ηl,k

)
+ log

(
βl,k

)
φlw

which are integers and satisfy wmw =
∑
k

wmw,k. This formula-transform process utilizes the

probability addible attribute of Poisson distribution. Each variable wmw,k (∀k ∈ K) can be

regarded as the contribution from component k to the observed data wmw. Similar operation

is applied for vsw,k. A tiny difference appearing while the formula-transform process to

mashup-service pair (m,w) for θs,k. The parameter rms,k can be broken into two parts as

rams,k ∼ Poisson
(
α1η

T
m,kµs,k

)
rbms,k ∼ Poisson

(
α2η

T
m,kεs,k

) (12)

The summation of them should satisfy the equation rms =
∑
k

(
rams,k + rbms,k

)
. In response,

each Gamma variables are changed into K latent factors. the expanded varaibles are shown

in the first column of table 1.

Based on changed variables, now we define the mean-field variational family as below

q (ζ, β, η, ν, δ, ε, w, v, c, r) =∏
w,k

q
(
ζw,k

)
q
(
βw,k

) ∏
m,k

q
(
ηm,k

) ∏
s,k

q
(
µs,k

)
q
(
εs,k

)
∏
mw,k

q
(
wmw,k

) ∏
sw,k

q
(
vsw,k

) ∏
ms,k

q
(
rms,k

) (13)

In formula 13, the latent variables εs,k, µs,k, ηm,k, βw,k, ζw,k follow Gamma distribution.

As shown in the forth column of table 1, we denote the shape parameter with the super-

script “shp” and the rate parameter with the superscript “rte”. The variables wmw, vsw
are multinomials. rms is also a multinomial but its variational parameter ξms is a point in

2K-simplex.
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There are two categories of latent variables we need to optimize. The first category is

Gamma variable and the other is Poisson variable. Here we select one variable from each

category respectively to illuminate the iterative algorithm. For Gamma variable, we take εs
as an example. For each εs,k (∀k ∈ K), we extract the relevant terms from formula 13. Then

we get the equation as follow,

q
(
εs,k|r, η, λse, λsf

)
∝ ελse−1

s,k e−λsfεs,k
∏
m

(
ηm,kεs,k

)rms,ke−ηm,kεs,k

∝ ε
λse+

∑
m
rms,k−1

s,k e
−
(
λsf+

∑
m
ηm,k

)
εs,k

= Gamma

(
λse +

∑
m
rms,k, λsf +

∑
m
ηm,k

) (14)

This formula can be considered as the probability of Gamma distribution with “Varia-

tional” parameters. The update for the “variational” parameters is

(
ε̃shps,k , ε̃

rte
s,k

)
=

(
λse +

∑
m

rbms,k, λsf +
∑
m

η̃shpm,k

η̃rtem,k

)
(15)

where ε̃shp means the shape of Gamma distribution and ε̃rte means the rate of Gamma

distribution.
η̃shp
m,k

η̃rtem,k
in the formula is the mean of the gamma variable ηm,k and can be labeled

as E [ηm,k] =
η̃shp
m,k

η̃rtem,k
.

The Gamma distribution has two parameters (λse, λsf ). We can initialize these two pa-

rameters separately for higher accuracy. And we also can initialize the parameter

λsf = c · λse (16)

For convenience as in [16]. The scale c is update as c−1 = 1
SK

∑
s,k

E [εs,k].

For Poisson variable, we choose wmw as an example. Each wmw,k (∀k ∈ K) is a Poisson

distribution and wmw =
∑
k

wmw,k. If we choose the appropriate parameters φmw,k and hold

the following formula

wmw,k = wmwφmw,k (17)

where wmw can also be considered as a multinomial and
∑
k φmw,k = 1. Here we assume that

there is a probability Poisson distribution p and approach it to the true probability distribution

with Variational Bayesian inference method. And we get the complete conditional distribution

φmw,k as below,

φmw,k =
ηm,kβw,k

wmw

∝ exp
(

log
(
Ep[ηm,kβw,k]

))
= exp

(
Ep

[
log(ηm,kβw,k)

])
∝ log(ηm,k) + log(βw,k)

(18)
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Then the update for the multinomial φmw is

φmw,k ∝ exp
{

Ψ(η̃shpm,k)− log(η̃rtem,k)

+Ψ(β̃shpw,k)− log(β̃rtew,k)
} (19)

where Ψ(·) is the digamma function and Ep (log ηm,k) = Ψ(η̃shpm,k)− log(η̃rtem,k).

Similar to formula 15 and 19, we integrate list of conditional distributions for all latent

variables as the third column in Table 1.

4.2. Model training

The remaining problem is to find the complete conditional distribution [15] of each latent

variable. In coordinate ascent we can optimize one variational parameter with the others

fixed, and We iterate this process repeatedly until we get the satisfactory results near to the

optimal values.

Note that Poisson matrix factorization is non-negative. With formula 17 we can easily

deduce that all φmw,k (∀k ∈ K) can set equal to zero if wmw is zero. Similar process is

applied to initialize ψsw and ζms. It is very useful for decreasing the complexity of variational

parameter space and the computation of parameter learning.

In summary, the model training stage is described as algorithm 1.

The model training stage can be seen as an offline stage. It only need to be conducted

once at the start of each time interval. There are also some techniques for improving the

performance of algorithm. while doing the experiment, the resulting topics and proportions

of LDA can be used to initialize the means of Gamma distribution. This method can help to

reduce the convergence time of the algorithm.

4.3. Recommending

As described in section , we need to calculate the expectation of the dot product with ηl and

θs. But because of Variational Bayesian Inference we replaced it with the expectation under

the probability distribution of p. Formally, rls can be expressed as

rls = E
[
ηTl θs

]
≈ Ep

[
ηTl θs

]
(20)

The recommending stage is described as algorithm 2. This stage can be seen as a online

stage and it need to be calculate every time when receiving a query.

5. Experiments

In this section, we explain how we applied our STCPF service recommendation approach

to service composition creation on a real-world dataset. First we introduce the real-world

dataset used in the experiments. Next we illuminate the evaluation metrics, adoption baseline

methods and the parameter setting of the proposed model. Then, the recommendation result

of the methods is given for comparisons. Last, we summarize some interesting features of

STCPF.

5.1. Dataset preparation
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Algorithm 1: Model training for STCPF

Input:
1) v: Service-word matrix
2) w: Mashup-word matrix
3) r: Mashup-service matrix
4) K: latent factor number
5) (λ1wa,k, λ1wb,k) , k = 1 : K: Parameters of Gamma distribution

about word latent factor ζ
6) (λ2wa,k, λ2wb,k) , k = 1 : K: Parameters of Gamma distribution

about word latent factor β
7) (λsa,k, λsb,k) , k = 1 : K: Parameters of Gamma distribution

about service latent factor µ
8) (λma,k, λmb,k) , k = 1 : K: Parameters of gamma distribution

about mashup latent factor η
9) (λse,k, λsf,k) , k = 1 : K: Parameters of gamma distribution

about service topic offsets ε
10) (α1, α2): relative weights about service latent factor
Output:
1) β: word latent factor drawn from mashup-word matrix
2) θ: service latent factor
Procedure:
01. For latent factor k = 1 : K
02. With (λ1wa,k, λ1wb,k), calculate ζw,k
03. With (λ2wa,k, λ2wb,k), calculate βw,k
04. With (λma,k, λmb,k), calculate ηm,k
05. With (λsa,k, λsb,k), calculate µs,k
06. With (λse,k, λsf,k), calculate εs,k
07. End
08. Repeat
09. For each service description vsw > 0
10. According to the fomula in table 1, for each k ∈ K

update ψsw,k
11. End
12. For each mashup description wmw > 0
13. According to the fomula in table 1, for each k ∈ K

update φmw,k
14. End
15. For each mashup-service pair rms > 0
16. According to the fomula in table 1, for each k ∈ K

update ξms,k
17. End
18. For latent factor k = 1 : K
19. wmw,k = wmwφmw,k
20. vsw,k = vswψsw,k
21. rms,k = rmsξms,k
22. End
23. According to the formulas in table 1,update ζw,k, βw,k, ηm,k,

µs,k and εs,k with parameters wmw,k, vsw,k and rms,k
24. Until convergence
25. θ = α1µ+ α2ε
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Algorithm 2: Recommending for STCPF

Input:
1) β: word latent factor
2) θ: service latent factor
3) wlw: query-word matrix form developer
4) (λla,k, λlb,k) , k = 1 : K: Parameters of gamma distribution

about query latent factor η
Output:
1) rls: Ranked list of services for developer
Procedure:
01. For latent factor k = 1 : K
02. With (λla,k, λlb,k), calculate ηm,k
03. End
04. Repeat
05. For query wlw > 0
06. According to the fomula in table 1, for each k ∈ K

update φlw,k
07. End
08. return rls by equation 20

To the best of our knowledge, PromgrammableWeb.com is a successful business web with a

large number of web services(APIs) and their service compositions(mashups). We crawled the

data of APIs and mashups from September 2005 to February 2015 from PrgrammableWeb.com.

Each service contains metadata such as service name and textual description. Each mashup

has the information of mashup name, creation date, textual description and the invoke re-

lationship of services. At last we record the words that have ever used in the service and

mashup textual description. After removing some meaningless mashups which never invoke

service, the basic properties of the dataset summarized as table 2.

Table 2. Dataset on ProgrammableWeb.com

Number of services 12711
Number of services used in at least one mashup 1120
Number of mashups 6120
Size of vocabulary 21328

5.2. Evaluation metric

Mean Average Precision at top N (MAP@N) is a widely accepted measure in information

retrieval and recommendation system. It is defined as follows,

MAP@N =
1

|Mq|
∑
m∈Mq

1

Nq

∑
s∈Sm

[
n (m, s)

r (m, s)
· I (m, s)

]
(21)

Where |Mq| denotes the number of mashups queries. Nq = min (N, |sm|) and sm represent

the set of actually used services in queries m ∈ Mq. For each service s ∈ s, n (m, s) means
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the ranking position of s for s both in the Sm and recommendation list while r (m, s) refers

to the ranking position of s which is only in the recommendation list.

To avoid the randomness of the test sample, we test several groups of testing data and

get a mean value for the last MAP@N results. A higher number of MAP@N means a better

accuracy of the recommendation method.

5.3. Baseline methods

To evaluate the performance of STCPF, we compare it with TCPF and other five types of

common recommendation methods as baseline methods: Matrix factorization and Service-

description-based Matching are popularity-based method. these two methods are universally

applicable with the advantage of handy calculation and convenient implement. Both of them

work coordinating with LDA. Collaborative Poisson factorization is based on our proposed

model but ignore the informatin evaporation. Mashup-description-based collaborative filtering

is introduced by Y. Zhong [18] in 2014 and time-aware collaborative domain regress was

introduced by B. Bai [19] in 2015 as the state-of-the-art models at the time.

5.3.1. Baseline method 1: LDA + Matrix Factorization (MF)

In this method we first use LDA to extract the latent factors of mashup description and the

developer’s query. Then use MF to factorize the matrix Rms for the optimized latent factors

of services. The recommendation rating defined as follows,

MF (q, s) = µqvs (22)

Where µq denotes the topic proportions of query and vs denotes the topic proportions of

service s ∈ S.

5.3.2. Baseline method 2: Collaborative Poisson Factorizaiton (CPF)

CPF is based on our proposed model and sets time factor tm to the constant value 1. It

means that CPF ignores the information evaporation.

5.3.3. Baseline method 3: Service-description-based Matching (SDM)

The core idea of SDM is that the query of a new mashup is semantically similar to the

description of services. The steps of this algorithm are described as below. First, we use the

LDA model for extracting the latent factors of services’ description and developer’s query

respectively. Then for s ∈ S we calculate the cosine similarities sim (q, s) between them as

the result for recommendation rating.

SDM (q, s) = sim (q, s) (23)

5.3.4. Baseline method 4: Mashup-description-based Collaborative Filtering (MDCF)

MDCF is based on the idea of traditional neighborhood-based collaborative filtering, assuming

that similar mashups have a higher possibility to use similar service. MDCF uses LDA model

to calculate the topic proportions of each mashup description m ∈ M and the developer’s
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query q respectively. Then the model calculates the cosine similarity sim (q,m) with time

factor tm applied. The equation defined as bellows,

MDCF (q, s) =

∑
m∈U(N,q)

[sim (q,m) tm]∑
m∈U(N,q)

sim (q,m)
(24)

where U (N, q) denotes the Top N similar mashups with the developer’s query.

5.3.5. Baseline method 5: Time-aware Collaborative Domain Regression (TCDR)

TCDR is similar to our proposed model except that the PF model is replaced by LDA model.

The detailed process is described in [19]. By applying LDA model TCDR learns the topic

proportions of services vs (s ∈ S) and the topic proportions of developer’s query ζq. Then the

recommendation rating defined as follows, TCDR (q, s) = ζqvs

5.3.6. Baseline method 6: Time-aware Collaborative Poisson Factorization (TCPF)

TCPF combines the parameters ζ and β into one parameter for a more compact model. The

rest of the model is similar to STCPF.

5.4. Experiment settings

We segment the data with thirty mashups as a group in chronological order instead of shred-

ding the dataset monthly. we do this because in the real dataset There is very few mashups

while adopting a monthly time granularity. And we can get a much higher recommending

accuracy by adjusting the parameters in these months but it is useless for the whole dataset.

By this way we avoid the tremendous differences of the amount within different months and

get 204 groups.

In our experiment we select the last 30 groups and treat them as the test data while its

previous data serves as the training data. As shown in figure 4, the dataset is divided by the

moving cutoff timestamp. The last group is treated as training set and all of the previous

data is regarded as a whole for testing. In addition, services which have never been used are

removed while testing the model. And then we run the algorithms for the value of MAP@N.

We repeat this process for all of the last 30 groups and get a mean value as the last result.

Actually these 30 groups contain the mashups from May 2012 to February 2015. This means

STCDF has been tested adequately since the test date has covered a wide range of time span.

The parameters of the model are set as follows. For all method we set topic number

K = 40. For CPF, TCPF and STCPF, we set α =
[

1 1
]
. For CPF and TCPF, the shape

parameter λwa is set to 0.07 and other shape parameters are set to 0.03. For STCPF the

shape parameter λ1wa is set to 0.27, λ2wa is set to 0.07 and other shape parameters are set to

0.03. The rate parameters are set following the formula 16 for convenience. For LDA model

we set the hyper-parameters α = 1.25 and β = 0.01. For MDCF, N is set to 250. For tm in

TCPF, STCPF and TCDR, λη is set to 1 and λt is 0.08.

5.5. Performance comparison

The comparison results are shown in figure 5. From the result of SDM, we can get a conclusion
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Testing set

Training set

Group 1

Group 2

Group 30

9/2005 5/2012 10/2015

Fig. 4. Generation of training and testing data sets. Each testing set has thirty mashups. The

training sets are treated as a whole and the color of the gradient means the different influence
with the information evaporation.

that it is unreliable to judge whether a service should be invoked by a mashup or not merely

based on semantic similarity. MDCF is a neighborhood-based method in essence. For taking

the historical information into consideration, MDCF get a small performance promotion. MF

is a better method than MDCF, for this model captures the signals encompassed in the

mashup historical usage. TCDR continues to improve the performance by taking information

evaporation into consideration. CPF adopts the prior hypothesis of the data and gets a

better performance. TCPF synthesizes the merits of TCDR and CPF, promotes the accuracy

of recommendation significantly, At last STCPF separates the parameters and outperforms

all the baseline methods.
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Fig. 5. MAP@N of the different methods. STCPF model outperforms all the baseline methods in
accuracy.

The detailed performance is summarized in Table 3. Comparing with TCPF, after sepa-



612 Service Recommendation Based on Separated Time-aware Collaborative Poisson Factorization

Table 3. PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON MAP@20

AND OVERALL MAP

Recommendation Algorithm MAP@5 MAP@20 Overall MAP
SDM 4.7% 6.25% 7.53%

MDCF 17.84% 19.34% 20.58%
MF 24.99% 26.9% 27.85%

TCDR 31.05% 32.71% 34.06%
CPF 31.82% 34.37% 35.96%

TCPF 38.17% 40.48% 42.05%
STCPF 38.23% 40.96% 42.55%

rating the parameters, STCPF promotes the performance of about 0.5% while topic number

K is 40.

5.6. Parametric analysis

Actually, The service recommendation problem which is based on Poisson factorization is not

a convex optimization problem. So it is of small significance to analyze how to set and adjust

parameters for a better results. But it is so instructive to summarize the rules of how to

optimize and adjust various parameters.

5.6.1. Initialization of Gamma parameters

As shown in algorithm 1, we need to initialize the parameters of Gamma distributions. Of

course we can get the best possible result if we can initialize the parameters closer to the real

values. But in practice we can not know the actual values in advance. Here we need some

tracks to reduce the number of attempts.

Owing to the non-negative feature of Poisson factorization, the iterative technique of the

model is adding some positive values to the parameters. So the better approach is setting the

parameters to be smaller than their actual values deliberately. In our experiment we set the

shape parameters as low as 0.03.

5.6.2. Factors contribution

In our proposed model the service latent factor consists of two parts: one is drawn from

service description content information and the other is drawn from the service historical

usage information. Each of them can candidate their effectiveness for the problem alone.

Here we discuss them separately for the more accurate quantitative analysis.

We calculate the recommender accuracy in the three conditions: using the service descrip-

tion content, using the service historical information and using both of them. The results are

shown in figure 6. we can see that the result with using the service description information is

better than that using the historical usage information. The reason is that people may prefer

to select service due to functional requirements rather than imitate other developers. We get

a higher accuracy while we use two kinds of data. It can be very intuitive to know that we

can get higher accuracy if we utilize more data.

5.6.3. Impact of Number of Latent Factors
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Fig. 6. MAP@N with service latent factor contain the information of different data. The bottom
polyline represents the MAP while service latent factor only uses the service historical usage data.

The middle one is the MAP while service latent factor only uses service description content, and

the top polyline represents the MAP while service latent factor uses both two kinds of data.

As explained in section 2.2, we can easily get the formulas as

θi1 ∼ Gamma (λi1 , λib)

θi2 ∼ Gamma (λi2 , λib)

θi1 + θi2 ∼ Gamma (λi1 + λi2 , λib)

(25)

Let us suppose that the most appropriate number of latent factors is k. According to this

character of Gamma distribution, we can consider that some latent factors split into small

latent factors while k increase to k1, and some similar latent factors merge into a bigger one

while k reduce to k2.

It is the very characteristic that we can get a good result with a small value of k for

the convenience of computation. We demonstrate the MAP of the proposed methods with

different values of k in figure 7. By contrasting two lines which are darwed by STCPF and

TCPF model, we can easily see that there are little differences in results while latent factors

k is small(e.g.40). But with the increase of the parameters k, the differences of latent factors

of mashup-sets and service-sets enlarge gradually. This change leads to the difference of the

accuracy of STCPF and TCPF. From the figure we can also see another interesting feature,

that is although the most appropriate number of k is 150, there is little difference in results

even through the number of latent factors varies dramatically, unless the number of latent

factors is too small (e.g. 20). Furthermore, a small k means we can save a great lot of time

while doing calculation. In our experiment k is set to 40 for both of computational complexity

and accuracy.

5.7. Time complexity analysis

TCPF has some wonderful features inherited from PF model. The most outstanding feature

is this method has a very low computational cost. As described in the Algorithm, the com-

putational cost of the model mainly depends on the number of non-zero elements in matrices



614 Service Recommendation Based on Separated Time-aware Collaborative Poisson Factorization

0

0.1

0.2

0.3

0.4

0.5

0.6

20 30 40 50 60 100 150

M
A
P
@
2
0

K

STCPF

TCPF

Fig. 7. MAP@20 of the proposed approach with the number of latent factors varied (all other

parameters are fixed).

such as mashup descriptions matrix, service descriptions matrix and mashup-service histori-

cal usage matrix. TCPF makes calculation only when the elements of these matrices are not

zero during iteration. Because of this character, TCPF is specifically more suitable for the

massive, sparse and long-tail data comparing with other model. Coincidentally, the data we

crawled from ProgammableWeb just conforms to this type. And, this character is conformed

to the vast majority of the situation when users call for services. We analyze all observed

matrices after data cleaning and get the results as table 4.

Table 4. EXPERIMENT DATA ANALYSIS

Statistic Info Value Sparsity
Size of vocabulary 21328
Average # words in one service description 38.59 99.82%
Average # words in one mashup description 14.75 99.93%
Number of services for computation 1120
Average # services in one mashup description 1.95 99.83%

We choose rms to illustrate the advantage of this character. The dimension of [rms]

is 5709 × 1120. Compared with other methods which need to store and calculate all the

elements (zero ones and non-zero ones), TCPF and STCPF only consider the non-negative

elements. So these two models only need to store and calculate the sparse matrix which the

number of elements is about 5709 × 1.95. Same conclusion can be drawn for wmw and vsw.

To quantifiably verify the efficiency of these two models, we compare the learning time cost of

with TCDR. All of these algorithms set 50 iterations to get the training model. The results

is provided in Table 5.

Table 5. THE COMPARISON OF TRAINING TIME

Model Cost of one iteration Total time of model training
TCPF 1.4s 70s

STCPF 1.4s 71s
TCDR 27.3s 1365s

As we can see, TCPF and STCPF cost much less time than TCDR, which confirms the
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analysis above. The calculation time of STCPF model is approximately equaling to TCPF

model. The reason is that the computational elements are not increasing while STCPF model

separates parameter parameter β of TCPF model into two parameters ζ and β . the iterate

formulas are listed as follows. formula 26 belongs to TCPF model and formula 27 belongs to

STCPF model.

(
β̃shp, β̃rte

)
=

(
λwa +

∑
m

wmw,k +
∑
s

νsw,k, λwb +
∑
m

ηm,k +
∑
s

µs,k

)
(26)


(
ζ̃shp, ζ̃rte

)
=

(
λ1wa +

∑
s

νsw,k, λ1wb +
∑
m

µs,k

)
(
β̃shp, β̃rte

)
=

(
λ2wa +

∑
m

wmw,k, λ2wb +
∑
m

ηm,k

) (27)

6. Related work

6.1. Service Recommendation

As described in [1], existing service recommendation approaches mainly based on their func-

tionality [6–9], non-functional features [4, 14], and related with social networks [3, 25, 26].

The functional approaches emphasize the services functionalities during the recommendation,

while the non-functional approaches pay more attention to the Quality of the Service (QoS)

and the social network-based approaches consider the recommendation from the relationships

of the users.

With respect to the functional approaches, the top priority is recommending the service

with most suitable functions to users rather than think about index like QoS or Ease of

Use. Under this condition some functional approaches use content matching like key-words

search [7, 8]. Other approaches use semantic-based search [6, 9, 27] to increase the accuracy

of the recommendation. With the development of machine learning, researchers find more

approaches for Web recommendation based on probabilistic models (such as Latent Dirichlet

Allocation (LDA) [18,19,28] or others [29]).

In this paper, we import TCPF model based on PF for recommendation. To the best of

our knowledge, we are the first to introduce PF model for service recommendation.

6.2. Poisson factorization

Poisson matrix Factorization (PF) originates from non-negative matrix factorization [30],

where the objective function is equivalent to a factorized Poisson likelihood [20]. PF is similar

to Gamma-Poisson (GaP) model [12]. For a document-term matrix “user-item”, GaP places

a Gamma prior to the user weights while PF goes further and places Gamma priors to both

user and item weights. The most distinctive advantage of PF is that the Variational Bayesian

Inference is employed for optimization [24]. By this way PF omits the zero elements in the

observed matrices and reduces calculation time greatly.

In Reference [15] it is proved that PF is quite applicable to document-term matrix fac-

torization. But because of good scalability and higher predictive accuracy, PF becomes very



616 Service Recommendation Based on Separated Time-aware Collaborative Poisson Factorization

popular in recent years and widespread in multiple areas. Reference [16] uses PF for auto-

matic music tagging. Reference [17] develops CBPF method based on PF for cold-start local

event recommendation. All the results of these papers indicate that it is a superior model

especially for the content-based data sets. A promising tendency in the development of this

model is using it as a basic unit to solve more difficult problems. In this paper we also treat

PF as foundation and solve the mashup-side cold-start recommendation problem.

PF model has some changes in application during the evolutionary process. reference [20]

develops hierarchical Poisson matrix factorization (HPF) based on PF model. By using

PF model at different levels HPF addresses the hierarchical classification problem. Refer-

ence [31,32] put forward the model of using PF model in multidimensional matrix and proved

Poisson Tensor Factorization. It is certain that PF model will have broader applications as

development over time.

7. Conclusion

As the service system is constantly evolving with the rapidly increasing number of published

services on the Internet, service recommendation becomes desired when developers are making

service compositions.

Many recently proposed studies are based on LDA, however, the restrictive distribution as-

sumptions of LDA put a strict limitation to the performance of modeling mashup queries and

service descriptions. In this paper, we improve the TCPF model and propose Separated Time-

aware Collaborative Poisson Factorization (TCPF) model to overcome the problem. Poisson

Factorization serves as the foundation to model mashup queries and service descriptions sepa-

rately, and then we incorporate them with the historical usage data by using collective matrix

factorization. Experiments on the real-world ProgrammableWeb dataset show that our model

outperforms the state-of-the-art methods even in calculation speed and accuracy.

In the future, we plan to take the comments information into consideration for a better

performance of recommendation. For we believe the comments of mashups and services will

play an increasingly important role in web service recommendation.
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