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Current developments in the medical domain, not unlike many other sectors, are marked
by the growing digitalization of data, including patient records, study results, clinical
guidelines or imagery. This trend creates the opportunity for the development of inno-
vative decision support systems to assist physicians in making a diagnosis or preparing a
treatment plan. Similar conditions hold for the Web, where massive amounts of raw text
are to be processed and interpreted automatically, e.g. to eventually add new informa-
tion to a knowledge base. To this end, complex tasks need to be solved, requiring one or
more interpretation algorithms (e.g. image- or natural language processors) to be chosen
and executed based on heterogeneous data. We, therefore, propose the first approach to
a semantic framework for sequential decision making and develop the foundations of a
Linked agent who executes interpretation algorithms available as Linked APIs [43] on a
data-driven, declarative basis [45] by integrating structured knowledge formalized with
the Resource Description Framework (RDF), and having access to meta components
for planning and learning from experience. We evaluate our framework based on auto-
matically processing brain images, the ad-hoc combination of surgical phase recognition
algorithms and experiential learning to optimally pipeline entity linking approaches.

Keywords: Sequential Decision Making, Linked APIs, Meta Learning, Medical Assis-
tance, Entity Linking

1. Introduction

Growing degrees of digitalization in the medical domain drive the need for learning systems
to integrate and interpret vasts amount of generated data. Physicians, for example, would
benefit greatly from automatic procedures to interpret patient data, as their time is limited
and the information space they have to deal with is diverse. In a similar vein, one evolving
goal for the Web is to structure massive amounts of raw data, such as text, to be eventually
able to construct complex queries against knowledge bases. As a consequence, automatic
procedures are being developed to structure data without human intervention.

This trend opens up new challenges. Consider an image processing scenario which consists
of several subtasks, having the goal of segmenting images to support end users (such as
physicians) in their work. An image, first, has to be filtered for distorting elements and
normalized in terms of color. The image, then, has to be aligned with other images in the
knowledge base to ease interpretation. Depending on the request of an end user, one can
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Fig. 1. An agent able to find optimal solutions for tasks.

eventually segment the image by using machine learning approaches.
These subtasks are very different in nature and require different steps to solve them. We

refer to algorithmic approaches which solve such steps as interpretation algorithms, as the
latter need to be able to interpret possibly complex state spaces to propose a solution and will
assume access to a pool of such. There is no trivial way to automate processes for such complex
tasks, as both end user requests and potential scenarios are diverse. With no domain expert
available to support using an interpretation algorithm, it might be difficult to completely
understand both parameters and functionality. Even more so, without substantial experience
with the target domain, one might not be able assess the quality of such an execution. If,
additionally, more than one interpretation algorithm might be eligible for solving a single
subtask and produced outputs significantly vary in terms of quality, optimizing tasks quickly
becomes intractable.

Such settings comprise highly heterogeneous tasks, interpretation algorithms and data:

• A slight change in a task might prerequisite completely different algorithms for a data
point,

• Algorithms are based on different conceptual approaches and minimal parameter changes
might have detrimental effect on their performances,

• Data points often come from different data distributions which makes processing and
interpreting hard.

We argue that these challenges can be best dealt with by advances in sequential decision-
making [39], where a centralized agent has to learn which actions to take in which world
states. In our case, actions are interpretation algorithms, which have to be selected and
executed for data points. This enables to re-use advances for prominent decision-theoretic
frameworks such as Markov Decision Processes [35], which enable to model fine-grained world
states, possible actions and uncertain outcomes. Our longterm goal is to develop a system (or
agent) which knows how to optimally choose sequences of available interpretation algorithms
for any given complex task, as illustrated in fig. 1.

We build on prior work in the Semantic Web which centers around semantically enriched
Web services (so-called Linked APIs) [43, 44, 17] and their data-driven, declarative execution
(with Linked Data-Fu [45]). Equipped with these powerful technologies, we now concentrate
on building a framework to enable decision-making under uncertainty. Based on access to
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interpretation algorithms for a complex task, one can develop meta components and easily
plug them into the current workflow. These meta components can comprise any strategy to
choose interpretation algorithms for a task.

Although these strategies do not have to be sophisticated, we especially focus on enabling
adequately complex methodologies to be flexibly and easily used. We therefore base our work
on problem settings in the medical- and Web domain where data sources, such as patient-
related information or text available through news articles or social media, are heterogeneous
as they often consist of different data distributions. We introduce different meta components
for these domains which make use of available structured knowledge and training data (i.e.
labelled past executions of interpretation algorithms) to select, weight and execute interpre-
tation algorithms. Our proposed meta components are evaluated in terms of correctness and
overall performance of selected interpretation algorithms, where – for the latter – we rely on
labelled data sets.

Our contributions are threefold; we

(i) we propose and formalize a first approach to a semantic framework for sequential decision
making, and enable flexible integration and testing of interpretation algorithms and meta
strategies,

(ii) present two meta components for (sequential-) decision making in medical scenarios,
namely a meta learner and an abstract planner, and

(iii) disclose novel challenges for sequential decision making for Natural Language Processing
(NLP) in Web domains by integrating named entity recognizers and -disambiguators into
our framework, therefore adapting prior meta components, developing a novel planner
and composing all meta components for planning-related learning.

The remainder of this paper is structured as follows. We formalize the problem in section
and show where our work has commonalities and differences to other approaches. The single
components of our framework are, subsequently, being introduced in section . Section , then,
integrates the components and shows how we solve complex tasks. In section , we show how
our framework works in practise based on two medical scenarios and thereby dwell on a meta
learning and an abstract planning component. Section deals with a Web scenario and presents
novel meta components for automatically solving it. We discuss current developments and
possible improvements in section and conclude the paper with a summarizing remarks (Sec. )
and future work (Sec. ).

2. Problem Formulation & Related Work

We, first, formalize the essentials of the problem of solving complex tasks in heterogeneous
environments and disclose our core challenges. We then summarize the work related to ours
and point out our contributions.

2.1. Problem: Solving Complex Tasks with Access to Heterogeneous Interpreta-

tion Algorithms

Let X be the set of all tasks, Y the set of all abstract tasks and A the set of all available
interpretation algorithms. Let xk be the kth subtask of task x ∈ X. Let further S be the set
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of abstract states defined by a subset of objects O, literals L and relations R. We denote, for
simplicity, Fsk as the set of features of a state sk (i.e. a subset of O×R×O and O×R×L).
A grounded state g(sk) depicts an instance of sk in nature. The set Ask defines the subset of
applicable interpretation algorithms in sk which is known to some degree. We, thus, assume
that an interpretation algorithm ai ∈ A can be defined by a subset of features of F in a similar
way as states sk ∈ S. Knowing Ask depends on how we define features f ∈ F for sk and
ai. Let T (s, a, s′) be the transition function for some state s and interpretation algorithm a

ending in s′. Our knowledge of T (s, a, s′), again, depends on the available features for s, a
and s′. T (g(s), a, g(s′)) is not known and requires further knowledge to be approximated. A
task x(g(s0), sK) is a function defined on a grounded start state g(s0) and an abstract goal
state sK . Reaching an unknown grounded goal state g(sK) takes 1 to n state transitions
(g(s), a, g(s′)). To solve x(g(s0), sK), we need to find a sequence of interpretation algorithms
ai ending in the unknown grounded goal state g(sK) with high probability. An abstract task
y(g(s0), sK) is defined similarly but we need to find any sequence a1, . . . , an to get from g(s0)

to sK . Our setting is much related to a Markov Decision Process (MDP) [35] (S,A, T,R, γ)
with R(s, a), in addition, being the reward function for state, interpretation algorithm pairs
(s, a) and γ the discount factor. The latter regulates the influence of future interpretation
algorithms ai taken in future steps sk on the value estimations of current states and actions.
R quantifies the correctness of executing a in s and the value of the resulting state s′ (based
on T (s, a, s′)) is defined by V (s), the value function for states. Note that estimating R(g(s), a)
for x(g(s0), sK) is not straightforward as g(sK) is unknown. To specify the goal sK of a task,
an absorbing state with R(sk, ai) = 0 has to be artificially modelled.

We define abstract planning as trying to solve an abstract task y(g(s0), sK). Here, we
ignore that multiple interpretation algorithms ai might be available for sk and only use concep-
tual information about ai and sk. Meta learning deals with the case of |Ag(sk)| > 1 (i.e. more
than one eligible interpretation algorithm) and tries to solve a subtask xkAg(sk)

(g(sk), sk + 1))

to find the optimal output (i.e. the combination of multiple ai) for g(sk). Planning deals
with solving x(g(s0), sK) with known T and R, and planning-related learning consid-
ers T,R unknown and tries to approximate them (as, for instance, is done in model-based
reinforcement learning [46]).

We develop and apply abstract planning and meta learning techniques for our medical
applications (see section ), and will present a planning-related learning approach for a Web
scenario in section . Based on the problem setting, we derived the following needs for our
semantic sequential decision making framework:

Need for a Controlled & Semantic Vocabulary. If we want to have tasks automatically
executed based on state-goal pairs; tasks, data and algorithms need to be using a com-
mon vocabulary. In addition to a shared language, semantic annotations enable to ad-
equately document results of executions (i.e. generate provenance information) which
might eventually enable reusing and integrating results from other tasks and institutions.

Need for Accessibility & Scalability. The pool of algorithms needs to be accessible in
real-time and available for many concurrent tasks. New interpretation algorithms should
be readily available to be used and evaluated.

Need for Data-driven & Declarative Execution. With a large number of available in-
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terpretation algorithms for a state sk, it will quickly become intractable to manually
define and evaluate all possible permutations. By executing interpretation algorithms
when they match sk, we gain flexibility and can delegate the optimization problem.
With growing experience, one could generalize the learned optimal decisions to similar
sk.

Need for Meta Learning Components. As the optimization problem is neither trivial
nor homogeneous, it might not be solvable by a single piece of software. One rather
needs several meta components which are experts for different sk.

2.2. Related Work

We divide related works into (i) description languages for web services, (ii) frameworks for
(sequential-) decision-making, (iii) workflow systems and (iv) machine-learning methods for
workflow pipelines.

2.2.1. Semantic Web Service Description Languages

While there is a considerable body of works covering non-semantic Web service descriptions
(eg. WSDL [7]), we restrict the comparison to semantic descriptions, as the latter depict an
important step towards machine-readability and are the closest to our work (find an overview
in [51]).

SAWSDL [26] is a semantic extension to WSDL (based on WSDL-S a, an early semantic
extension for WSDL), which however neglects to describe functional relationships between
inputs and outputs. To this end, WSMO [37] and OWL-S [27] are based on OWL, enabling
to model richer descriptions. However, both prerequsite complex modelling even for simpler
services and – similar to WSMO-Lite [53] which extends SAWSDL with conditions and effects
– suffer from inexact input/output mappings as pointed out by [44]. We, thus, rely on
Linked APIs [43, 44] – an approach to Semantic Web services – where pre- and postconditions
are modelled as graph patterns, and rely on the Minimal Service Model (MSM) description
language [25] b, an ontology with base elements to align with Linked APIs.

Closely connected to service languages is the OPMW (Open Provenance Model for Work-
flows) [16] ontology, which is based on the Open Provenance Model (OPM) cand provides
essential elements to describe workflow-related provenance metadata. As it might be used to
document the outcomes of Linked API executions, it does not compete with our approach
but rather potentially extends our provenance metadata.

2.2.2. Decision-Making Frameworks & Applications

The Stanford Research Institute Problem Solver (STRIPS) [13] comprises all functionalities
for problem solving, i.e. a formal language to describe actions (i.e. algorithms) and a planner
to choose actions given states. STRIPS defines actions which consist of an add-list, a delete-
list and a precondition. By adding or deleting state conditions, one can express impacts of

ahttps://www.w3.org/Submission/WSDL-S/
bhttp://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html
chttp://open-biomed.sourceforge.net/opmv/ns.html
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actions. STRIPS is the baseline for multiple decision-making methods, such as Problem-
solving Methods or Markov Decision Processes, which we now integrate into our work.

Problem-Solving Methods (PSMs) [34, 4] are closely connected to STRIPS as well as to
our work. PSMs describe highly parameterized algorithms which, in conjunction with expert
knowledge, are able to solve real world tasks. As in our work, PSMs are described in terms
of functional specifications (i.e. the interpretation algorithm class), requirements (i.e. the se-
mantic descriptions modelled with the Resource Description Framework (RDF) to understand
the interpretation algorithm) and operational specifications (i.e. the pre- and postconditions).
To this end, the Unified Problem-solving Method Language (UPML) [11] enables to graphically
model and semantically describe PSMs, which supports both reusing and adapting available
PSMs. While several PSMs might easily be pipelined to solve tasks consisting of several sub-
tasks, possible future impacts are not taken into account and decision-theoretic frameworks,
such as Markov Decision Processes, are applicable. Moreover, combining exchangeable PSMs
might enable the development of more robust approaches, which we study in the meta learning
problem.

Usually, planning (see [19] for an overview) involves learning a policy which, for each
possible world state, suggests the optimal action. For tasks involving uncertainties with
respect to action outcomes, stochastic STRIPS enables to assign probabilities to actions.
To this end, Markov Decision Processes (MDPs) [35] deal with learning the parameters of
stochastic STRIPS tasks, which we use as decision-theoretic baseline for our framework.

Planning techniques have been applied to Semantic Web services before (see [24] for an
extensive overview). Approaches to enable dynamic orchestration of Semantic Web services
comprise – among numerous others – Hierarchical Task Networks (HTN) [41, 23] or OWL
reasoning [40]. MDPs have been applied to compose non-semantic Web services [9], but the
reward function was solely dependent on static service level agreements and not processing or
interpretation outcomes as available in our case. There are, to the best of our knowledge, no
works for Semantic Web services and MDPs for such reward structures, where labelled past
interpretation algorithm executions are used as feedback for the system to learn.

2.2.3. Workflow Systems

There is an ongoing research in so-called ’workflow systems’ that enable describing and exe-
cuting algorithms of different kinds.

Pegasus [8] is a workflow management system able to map abstract pipelines for simula-
tion data analysis to distributed computing environments. In a similar vein, FireWorks [21]
focuses on enabling workflows to be executed on supercomputers. AKSALON [10] enables to
define grid workflow applications via a graphical user interface or directly via XML, thereby
easing the use of grids. dispel4py [14] is a Python-based framework to enable workflows for
data streams, especially for distributed computing. Makeflow [1] enables to define workflows
based on Unix Make, which are suitable for data-intensive distributed computing applications.
Finally, web service workflows are approached by the LanguageGrid project d, where diverse
NLP interpretation algorithms as integrated from various institutions. All above workflow
systems are sophisticated approaches to pipeline services, but neither focus on automatic
decision-making for single data points nor exploit semantic annotations.
dhttp://langrid.org/
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Taverna [30], on the other hand, is a scientific workflow system supporting process proto-
typing by creating generic service interfaces and thus easing the integration of new compo-
nents. Lightweight semantic descriptions modelled in RDF are being used to better capture
the view of the scientists. Taverna is also able to integrate data from distributed sources
and automate the workflow creation process for users. Taverna was successfully used in the
PANACEA project efor NLP tasks. Our work is strongly related to Taverna in terms of using
RDF to describe (NLP-) services. Service selection then equals constructing SPARQL queries,
where our framework diverges from Taverna with regards to using Machine Learning to opti-
mize the selection for single data points. Similarly, Galaxy [6] enables to conduct sustainable
and reproducible workflow experiments based on well-defined services and been successfully
used for the LAPPS Grid project f, where numerous NLP services have been implemented,
semantically described using JSON-LD gand published on the Web. Our work shares many
overlaps with both Taverna and Galaxy, but differs in the use of meta components to combine
and plan under uncertainty. Our framework would greatly benefit from reusing semantically
annotated NLP services of prior projects.

The work centered around semantic workflows [18] aims to enable the automatic compo-
sition of components in large-scale distributed environments. Generic semantic descriptions
support combining algorithms and enable formalizing ensembles of learners. Therefore, con-
ditions and constraints need to be specified. The framework also automatically matches
components and data sources based on user requests and introduced prior mentioned OPMW
ontology for provenance generation. We, also, employ artificial intelligence planning tech-
niques but build our work on the decision-theoretic framework of Markov Decision Processes
(MDPs), which are based on environmental feedback and enable approaching prior defined
planning-related learning problem. We thus rely on labelled past executions, which might be
annotated by OPMW.

Wood et al. [54] create abstract workflows as domain models which are formalized using
the Web Ontology Language (OWL) and enable dynamic instantiation of real processes.
These models can then be automatically converted into more specific workflows resulting
in OWL individuals. The components can be reused in another context or process, and
one can share abstract representations across the Web through OWL classes. The authors
also rely on triple patterns to select appropriate annotated components for subtasks. As
only subclass relationships are exploited, conceptual generalization might be achieved only
through the ontology and dealing with uncertainties is not directly approached. We, on the
other hand, target the joint problem of both enabling conceptual generalization as well as
grounded generalization, where pipelines are optimized based on individual characteristic of
data points.

Finally, automatic orchestration of analytical workflows is studied in [5]. The system
essentially uses a planner, a leaner and a large (structured-) knowledge base to solve complex
tasks. A large amount of potential workflows are taken into account to answer a user specified
query with the optimal choice. The decision process comprises complex learning and planning
approaches, and entails exploring large possible feature spaces. Lastly, atomic actions are

ehttp://www.panacea-lr.eu/
fhttp://www.lappsgrid.org/
ghttp://json-ld.org/
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lifted with semantic annotations to better adapt to user queries. The proposed system, similar
to our work, assesses interpretation algorithms in terms of labelled data and uses a planning
engine to compose interpretation algorithms given a user query. The system, however, does
not enable flexibility in meta components and thus presumes manually fixed meta learners
and meta planners. In addition, weights for interpretation algorithms are not re-weighted for
single data points, as the system relies on global ensemble functions.

We, finally, revisit work on pure machine learning approaches to optimize workflows using
labelled past executions.

2.2.4. Machine Learning-based Optimizers for Workflows

Nguyen et al. [29] define the Machine Learning task of Meta-Mining, where optimal data
mining workflows are constructed based on labelled data. The authors extend the problem of
meta learning, where models learned for one-step tasks, such as classification or regression,
are transferred to new, unseen data sets. The central difference to our work is to optimize
with regards to complete data sets, not fine-grained single data points. Even more so, the
learned workflows remain static for data sets, while there might be better solutions.

The problem of Automating Machine Learning (AutoML) [48] also deals with optimizing
data mining workflows and was originally stated by [36]. The problem is, for example, ap-
proached auto-sklearn [12] and entails automating feature selection, interpretation algorithm
selection and hyperparameter optimization. The authors leverage Bayesian optimization tech-
niques but also make use of ensemble- and meta learning. Our work, however, focuses on se-
lecting interpretation algorithms for single data points, where multiple instances of the same
interpretation algorithm with different parameterizations might be used.

2.2.5. Overall Summary of Related Works

To sum up our comparison to all related works, we use a data-driven approach to execute
workflows and work towards completely automatic, declarative and optimal compositions
of such. Our novel contribution essentially enables to develop powerful agents capable of
solving complex tasks in heterogeneous environments. Besides, only a small fraction of the
above approaches employ a structured knowledge base. We are able to store structured
performance-related information and try to reuse this evidence in order to optimize results.
In addition, we flexibly integrate new kinds of structured knowledge as well and use so-called
meta components to optimize decision making under uncertainty based on Linked Data-Fu
[45].

3. Components of the Semantic Framework for Sequential Decision Making

Our system infrastructure comprises four core component types, where Linked denotes that
the respective component exploits semantic annotations according to our framework.

1. A Structured Knowledge Base

2. Linked Interpretation Algorithms

3. Linked Meta Components
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Fig. 2. Schematic Overview of the Framework.

Table 1. Minimal description for Linked interpretation algorithms.

Non-functional requirements Functional requirements
Domain Experts Inputs
Service Endpoint Preconditions
Example request & response Outputs
Algorithm class Postconditions

4. A Data-Driven Execution Engine (Linked Agent)

Fig. 2 illustrates the framework components. We will now explain their respective func-
tionality and integrate them in section .

3.1. Structured Knowledge Base

A structured knowledge base stores both metadata and data, and provides a common and
controlled vocabulary modelled with RDF. As the Linked Data principles suggest, persistent
URIs to resources have to be available and provide sufficient information for lookups. Appro-
priate concepts for interpretation algorithms and data were modelled to enable the integration
of new components. Fig. depicts the components of the structured knowledge base used in
our medical scenarios.

3.2. Linked Interpretation Algorithms

We deploy interpretation algorithms as Web services to make them easily accessible in our
infrastructure and follow the idea of Linked APIs [43, 17]. A Linked interpretation algorithm
(an interpretation algorithm lifted to a Linked API) provides a standardized description of
its functionality by reusing elements of the structured knowledge base. The description also
defines how to communicate with the Linked interpretation algorithm and how to execute its
methods. A minimal set of information of the description is summarized in table 1.

An intuitive example of an arbitrary image processor is given in fig. 3. An image, defined
in a data type ontology, is part of a pre- and postcondition of a Linked interpretation algo-
rithm. Pre- and postconditions define strict rules about the states before- and after executing
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Fig. 3. An exemplary Linked image processor (namespaces omitted).

the Linked interpretation algorithm. The degree of detail of both pre- and postcondition is
strongly dependent on the wrapping process of the respective interpretation algorithm. If
semantics and interpretation algorithm are strongly intertwined, fine-grained semantics with
rich information are available.

We use kb and kbont namespaces to describe instances and ontologies available in the
knowledge base but will point out which exact ontologies we used in the respective scenarios.
The msm namespace hcorresponds to the minimal service model [25] which advocates and
enables lightweight semantics for Web services.

3.3. Linked Meta Components

There might be numerous approaches to choose, on a meta level, among outputs of Linked
interpretation algorithms given g(sk). Such strategies generate hypotheses which can be
naive, sophisticated, biased on subjective criteria or otherwise. We enable flexible using,
testing and exchanging of potentially powerful meta approaches in terms of so-called Linked
meta components. Linked meta components are essentially Linked APIs and implement any
decision making strategy of arbitrary complexity. To have access to all available interpretation
algorithms, we assume a structured knowledge base linking to them.

A Linked meta component specifies the amount of information it needs by its precondition
and is only called if the agent can provide for all information. Besides a list of all available
interpretation algorithms, a learner might, for instance, want to access a performance table
which stores a history of validated results. We will discuss four cases of meta components,
namely abstract planning, meta learning, planning and planning-related learning in section
and show their practical application in sections and .

hhttp://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html
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Fig. 4. A Linked Data-Fu rule for the Linked image converter.

3.4. Data-driven Execution (Linked Agent)

We integrate the prior components by using Linked Data-Fu [45]. The Linked Data-Fu rule-
based execution engine describes and implements a formalism to virtually integrate data from
different sources in real-time and have Linked APIs executed based on rules. In our frame-
work, Linked Data-Fu searches eligible Linked meta components and Linked interpretation
algorithms for (newly arrived) annotated data, and uses the structured knowledge base to
execute them. Each Linked interpretation algorithm is represented as single rule which we
automatically generate based on its description. After a Linked Interpretation Algorithms
or Linked Meta Component has been executed, the grounded semantic annotations for its
preconditions and postconditions are stored in the Structured Knowledge Base and serve as
provenance information, which comprise additional timestamps. Fig. 4 summarizes this pro-
cess. When a state g(sk) fulfills the preconditions of a Linked interpretation algorithm, a
HTTP POST request with grounded preconditions is issued to its service URI. While this
enables automatically executing Linked interpretation algorithms for numerous use cases,
there are complex preconditions which prerequisite partial groundings, as will be discussed in
section .

The automatic matching between Linked interpretation algorithms and structured data is
highly advantageous. If interpretation algorithms have to be trained by samples, the agent
can directly feed all annotated training data to the Linked interpretation algorithm. This is
generally possible by merely defining rules for Linked Data-Fu. Even more important, with a
growing number of diverse Linked interpretation algorithms, we can automatically solve new
complex tasks without additional manual effort.

We refer to the Linked Data-Fu engine instantiated in our framework as Linked agent.
As common in sequential decision-making in centralized systems, a single agent controls the
decision process and chooses action (i.e. interpretation algorithms) given states. In our case,
the agent exploits Linked meta components for interpretation as well as N3 rules for execution
to take decisions.

Linked Interpretation Algorithms and Linked Meta Components can be directly discovered
by their type as well as pre- and postconditions. However, a good selection of the latter is
based on two aspects, namely finding a conceptually eligible component or interpretation
algorithm and finding a well performing component or interpretation algorithm given the
current data point. Both aspects might be approached by keeping and using appropriate
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provenance metadata about their performances for different tasks, based on which agents
have to learn and decide which interpretation algorithms and components to choose.

4. Solving Complex Tasks with Linked Meta Components

We will now explain the required interplay between the components of the semantic frame-
work to enable sequential decision making for complex (abstract-) tasks y(g(s0), sK) and
x(g(s0), sK). We, first, address the Linked abstract planning case where an abstract task
y(g(s0), sK) has to be solved by finding appropriate Linked interpretation algorithms ai .
Here, we do not try to distinguish between high- and low quality results (as this involves
checking the instances), and trust the descriptions of Linked interpretation algorithms. Each
Linked interpretation algorithm applicable in g(sk) and needed for reaching sK will be cho-
sen. The second case deals with Linked meta learning and builds on Linked interpretation
algorithms selected by Linked abstract planning. An ’optimal’ output of Linked interpreta-
tion algorithms is returned for g(sk) if |Ag(sk)| > 1 (as otherwise there is no choice to make).
In the planning setting, both the rewards R of Linked interpretation algorithms and possible
transitions T are known (e.g. because of a Linked meta learners and abstract planners) but a
grounded plan has to be generated. The final case deals with planning-related learning where
R and T are unknown and prior meta components have to be reused and extended to deal
with uncertainties.

In fig. 5 we give a generic overview of interactions between the Linked agent and Linked
meta components, Linked interpretation algorithms and the structured knowledge base. The
Linked agent first queries the knowledge base to get all available Linked interpretation al-
gorithms and then calls a Linked abstract planner. It executes the resulting set of Linked
interpretation algorithms for reaching goal sK and subsequently calls a Linked meta learner
capable of assessing and combining the generated candidate outputs. In section , we discuss
the case where this workflow has to be repeated multiple times, as more than one subtask xk

exists.

4.1. Linked Abstract Planning

Depending on a new task y(g(s0), sK), the Linked agent evaluates the grounded state g(sk)
in terms of rule checking. The Linked agent, therefore, keeps a set of automatically generated
rules for each Linked interpretation algorithm. We cannot assume, however, that g(sk) only
triggers interpretation algorithms which help reaching the goal sK , as there might be a large
amount of Linked interpretation algorithms. We, thus, need a Linked abstract planner to
only return candidate Linked interpretation algorithms for reaching sK .

A Linked abstract planner has to first query the structured knowledge base for all available
Linked interpretation algorithms. It, then, decides which Linked interpretation algorithms are
applicable to reach sK based on an arbitrary mechanism and finally outputs a subset of A. Fig.
5 illustrates the agent rule to call the Linked abstract planner depending on its precondition.
We describe one implementation of a Linked abstract planner in section .

4.2. Linked Meta Learning

In the meta learning setting, we want to find an optimal output based on several Linked
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Fig. 5. Interactions within the framework to integrate Linked meta components.
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interpretation algorithms ai solving the same subtask xk(g(sk), sk+1). Eligible Linked inter-
pretation algorithms candidates Ag(sk) to reach sk+1 are known (e.g. due to a Linked abstract
planner), but one is still faced with uncertainty about their performances given g(sk). Solv-
ing the learning setting can be approached with simple heuristics, but might require complex
machine learning approaches which exploit past labelled executions of Linked interpretation
algorithms available in the Structured Knowledge Base to give good estimates. With our
framework, we enable using any meta learning approach by wrapping it as Linked meta
learner.

Fig. 5 describes the generic rule to execute any available Linked meta learner. Section
introduces a Linked meta learner for medical phase recognition which can be reused for other
tasks, such as named entity recognition and -disambiguation. Multiple outputs of Linked
interpretation algorithms are combined (e.g. by a weighted majority voting) after all eligible
Linked interpretation algorithms have been executed. The linked meta learner, thus, expects
results of Linked interpretation algorithms to compute weights.

Linked meta learners could also be used to select Linked interpretation algorithms before
executing them based on their predicted performance. This might be crucial if a task has
constraints, such as a budget in terms of number of executions. Reasons for execution budgets
include the prevalence of cost models for available Linked interpretation algorithms or the
massive use of resources (as is often the case for image processing algorithms).

4.3. Linked Planning

Other than in abstract planning, planning requires information about state- and interpretation
algorithm groundings other than for the starting state g(s0). Linked planners are needed when
pre- and postconditions of a Linked API do not suffice to solve a task, as state representation
are too complex. This is the case for our named entity recognition and -disambiguation
scenario presented in section .

A Linked planner is to be invoked before Linked interpretation algorithms are executed,
i.e. under the same conditions as Linked abstract planners. However, we might need to replan
several times for solving a grounded task y(g(s0), sK), namely after several grounded subtasks
gk have been solved. To enable a data-driven execution of this process, we need to ground
preconditions based on available data and Linked interpretation algorithms, and reason about
uncertainties (as is done in Linked planning-related learning).

4.4. Linked Planning-Related Learning

As defined in section , planning-related learning entails estimating both R and T . Developing
Linked planning-related learners entails using Linked meta learners, -abstract planners and
planners, extended with uncertainty handling. One has to keep probability distributions about
the states g(sk) (e.g. based on hypotheses by Linked meta learners), as one is uncertain about
their correctness. We deal with Linked planning-related learning in section to optimize and
automate the task of entity linking.

An extension of planning-related learning might be incorporating constraints for executing
interpretation algorithms, such as cost or time budgets. Then, one has to deal with further
challenges, such as dealing with more incompleteness in data (i.e. one does not know about
the results of several interpretation algorithms).
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5. Medical Scenarios with Meta Components & Evaluations

We now introduce two scenarios set in the medical domain and illustrate possible Linked
meta components. The first scenario deals with image processing, where a number of image
processing interpretation algorithms need to be pipelined to derive a so-called brain tumor
progression mapping. We developed a Linked abstract planner to derive eligible Linked in-
terpretation algorithms for the so-called brain tumor progression mapping (TPM). In the
second scenario, we optimized the choice among two Linked interpretation algorithms for
phase recognition in minimal invasive surgeries with a Linked meta learner. Both scenar-
ios use a common instantiation of our framework. We will start by explaining the shared
components and subsequently focus on the individual scenarios.

5.1. A Semantic Framework for Medical Sequential Decision Making

The medical framework with its interpretation algorithms and data is being developed within
the Cognition-Guided Surgery project i. Every interpretation algorithm considered in the
scenarios was wrapped as Linked interpretation algorithm. We modelled the descriptions
with domain experts and developers of the interpretation algorithms, and integrated them in
a central instance of a Semantic MediaWiki (SMW). To this end, all semantic annotations
were based on MeSH (Medical Subject Headings) j, RadLex k, SNOWMED-CT l and FMA
(Foundational Model of Anatomy) m.

We use an instance of XNAT nto store patient-relevant data and provide a RDF wrapper
which lifts XNAT with semantic concepts. The knowledge base can be considered as union
between the SMW and its links to other resources, such as XNAT.

Linked interpretation algorithms can automatically be executed with the Linked agent.
We implemented a conversion mechanism from Linked interpretation algorithm descriptions
to Linked agent rules (see fig. 4), and, thus, reduced the manual work for integrating new
Linked interpretation algorithms. The Linked agent crawls the hierarchy imposed by XNAT
according to simple rules and executes every Linked interpretation algorithm per patient if
it is eligible. While this only covers offline scenarios, we can easily extend the setting to the
online case. The complete framework with two Linked meta components is illustrated in fig.
6.

5.2. Tumor Progression Mapping in the Semantic Framework

Tumor Progression Mapping (TPM) is an approach to visualize brain tumors in their pro-
gression over time. One, thereby, focuses on supporting radiologists in their daily work.
Radiologists, otherwise, would have to assess the irregular growth of brain tumors based on
raw headscans which causes a lot of extra effort. When generating a TPM, different types of
images are used and produced, and adequate interpretation algorithms need to be executed
in correct order and with correct subsets of images.

i http://www.cognitionguidedsurgery.de/
jhttps://meshb.nlm.nih.gov
khttps://www.rsna.org/RadLex.aspx
l http://www.snomed.org/snomed-ct
mhttp://si.washington.edu/projects/fma
nhttp://www.xnat.org/
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Fig. 6. The Semantic Framework for Medical Sequential Decision Making (extended based on
[32]).

The TPM generation process is illustrated in the framework overview (fig. ). The images
are stored in our knowledge base and converted into a common format. A mask for the brain
region is created by the next interpretation algorithm, ensuring that subsequent tasks are
not influenced by bones or other structures. A registration algorithm, then, spatially reg-
isters all brain images of a patient. The following normalization task adapts the intensities
of MRI scans and generates similar values for similar tissue types. If additional annotations
for a patient are available, the normalization becomes more robust by making use of a dif-
ferent normalization interpretation algorithm. The TPM can now be created by invoking the
appropriate interpretation algorithm. An optional additional interpretation algorithm can
automatically segment tumors and integrate the results into the map.

We studied how to wrap interpretation algorithms used in the TPM setting in [17] and
initially applied Linked Data-Fu in [33, 32]. We now integrate these ideas into the semantic
framework and introduce a Linked planner.

5.2.1. A Linked Abstract Planner for TPM.

We developed Linked interpretation algorithms for every step in the TPM generation process.
Listing 1 contains the preconditions of the brain stripping algorithm (’Brain Mask Genera-
tion’) with headscan and initialization images as inputs.
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?inputImage rdf:type kbont:Headscan;
dc:format "image/nrrd".

?brainImage rdf:type kbont:BrainAtlasImage;
dc:format "image/mha".

?brainAtlasMask rdf:type kbont:BrainAtlasMask;
dc:format "image/mha".

Listing 1 Preconditions of the Linked brain mask generation algorithm.

We created a finite MDP by using the pre- and postconditions of Linked interpretation
algorithms to define abstract states sk with local scopes, i.e. we only consider preconditions
of sk. The transition probabilities T are defined in equation 1 and make up an S× (A+1)×S
matrix by adding a dummy interpretation algorithm pointing to the goal state, when the
latter was reached. The reward function R is a S× (A+1) matrix (see equation 2). By using
any strategy to solve the MDP (e.g value iteration), we find eligible Linked interpretation
algorithms to solve the task.

T (s, a, s′) =

{
tsas′ =

1
|Ask

| ∃(s, a, s′) with respect to Fs and Fs′

tsas′ = 0 otherwise
(1)

R(s, a) =

{
rsa = 1 if a equals dummy algorithm and s equals goal
rsa = 0 otherwise

(2)

The resulting Linked abstract planner takes as input Linked interpretation algorithms, pa-
tient information of type kbont:ImageFeature (i.e. g(sk)), and goal state kbont:TumorProgressionMapping
(i.e. sK), and returns a set of eligible Linked interpretation algorithms. The abstract Linked
Data-Fu rule for the Linked abstract planner is depicted in listing 2. The Preconditions for
the brain mask generation algorithm (see listing 1) could, then, replace the abstract image
features.

{
?algo rdf:type kbont:InterprAlgorithm.
?goal kbont:goal kbont:TumorProgressionMapping.
?grounding rdf:type kbont:ImageFeature.
} => {
_:a http:mthd httpm:POST ;

http:requestURI kb:mplanermdp;
http:body

{
?algo rdf:type kbont:InterprAlgorithm.
?goal kbont:goal kbont:TumorProgressionMapping.
?grounding rdf:type kbont:ImageFeature.

} .
} .

Listing 2 Linked Data-Fu rule for executing the Linked abstract planner.
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Algorithm Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

ML-based 0, 9062 0, 6635 0, 9032 0, 4484 0, 6383

SWRL 0, 9315 0, 7753 0, 89 0, 8137 0, 7241

Table 2. Performance evaluation of phase recognition algorithms in 5 different surgeries in terms
of success rate.

5.2.2. Evaluation.

A part of the evaluation of the Linked TPM scenario was conducted in [32] and [17]. The TPM
generation process was shown to work based on the descriptions of the single Linked image
processing algorithms and an initial implementation of Linked Data-Fu without a Linked plan-
ner. We showed that no substantial overhead is produced while executing the interpretation
algorithms on the web and that the correct pipeline is built automatically.

Our Linked abstract planner, now, creates a finite MDP and automatically constructs T
and R based on the available Linked interpretation algorithms A, the goal sK and the current
grounding g(sk). Consider a grounding g(sk) for the brain stripping algorithm (listing 1) and
the goal kbont:TumorProgressionMapping with all paths to the TPM being possible. Besides
the 6 Linked interpretation algorithms involved in the TPM process, the algorithm pool con-
sists of 2 Linked phase recognizers of the subsequent scenario. We use a discount factor of 0.9,
perform value iteration and derive V =< 0.32805.0.3645, 0.405.0.405, 0.45, 0.45, 1.00, 0, 0 >

after 6 iterations. States with values greater than zero depict preconditions of Linked inter-
pretation algorithms which have to be executed to reach the goal (except for the absorbing
goal state sK).

5.3. Surgical Phase Recognition in the Semantic Framework

Surgical phase recognition is crucial to reduce information overload for surgeons during
surgery. Depending on the current phase, one can display an adequate subset of informa-
tion, which benefits the surgeons in his or her decision making. To recognize the phase, one
might leverage a variety of sensor outputs. In this scenario, only activity triples consisting
of the currently used instrument, the performed action and the corresponding anatomical
structure are used to determine the current phase (e.g. <Scalpel, cut, Gallbladder >).

The interpretation algorithms we considered for our learning scenario consisted of a rule-
based interpretation algorithm using the Semantic Web Rule Language (SWRL) introduced in
[22] and a machine learning (ML)-based phase recognition algorithm which needs to be trained
with adequate samples (i.e. activity triples with the correct phase as label, retrieved from
annotated video recorded surgeries). Both algorithms have varying degrees of performance
and make mistakes in their predictions, as shown in table 2. If one could learn in which
situations the respective interpretation algorithms excel, it would be highly beneficial. Our
first approach to empirically learn the optimal phase recognition algorithm was mentioned in
[32] and is now explained in terms of a generalizable Linked meta learner.

5.3.1. A Linked Meta Learner for Surgical Phase Recognition.
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We developed Linked interpretation algorithms for both phase recognition algorithms, and
defined their inputs and outputs in terms of semantic pre- and postconditions [32]. See listing 3
for the preconditions of the Linked ML-based phase recognition algorithm. The postcondition
simply states that the result has to be of type kbont:Phase which ensures, by inference, that
only modelled phases can occur. The resulting Linked interpretation algorithms need to be
initialized with a laparoscopic ontology with concepts for the surgical setting. The ML-based
phase recognizer, in addition, has to be trained with samples.

?trainingSample rdf:type kbont:Surgery.

?ontology rdf:type kbont:Ontology.

?event rdf:type kbont:SurgicalEvent;
kbont:instrument ?instrument;
kbont:action ?action;
kbont:structure ?structure.

?instrument rdf:type kbont:Instrument.
?action rdf:type kbont:InstrumentalProperty.
?structure rdf:type kbont:TreatedStructure.

Listing 3 Preconditions of the Linked ML-based algorithm.

We developed a Linked meta learner for the setting of two competing Linked phase recogni-
tion algorithms. As it is quite specific and works only for Linked phase recognition algorithms,
we define a less general description of the Linked meta learner. Listing 4 depicts the rule for
executing the Linked meta learner. It assumes available candidate outputs of Linked interpre-
tation algorithms to choose the best fitting surgical phase. Note that we can elegantly define
the generality of the Linked meta learner based on the concept types we use. If it was able to
optimally choose among two or more image processors as well, we could easily express that
in the pre- and postconditions.

The Linked meta learning component assesses the performance of a given Linked phase
recognizer based on training samples close to the current state g(sk). It trains the ML-based
phase recognizer on parts of the training sets (i.e. all surgeries but one) and predicts on the
remaining surgery. The process is repeated until we have predictions for all surgeries. g(sk)
based on its performance on similar samples. Finally, the optimal hypothesis V ?(s′), i.e.
the value of the optimal grounding g(s′), is generated based on the weighted combination of
available Linked interpretation algorithms ai. The heuristic needs interpretation algorithms
A, training sample states STrain, similarity measures K, threshold function u for similarity
measures, cut t for cross-validating machine learning-based interpretation algorithms and the
current state g(s) as inputs. It is summarized in algorithm 1.
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{
?algo rdf:type kbont:PhaseRecognitionAlgorithm;

kbont:result ?result.
?mplaner kbont:eligible ?algo.
?grounding rdf:type kbont:StateFeature.
} => {
_:a http:mthd httpm:POST;

http:requestURI kb:mlearnerheuristic;
http:body

{
?algo rdf:type kbont:PhaseRecognitionAlgorithm;

kbont:result ?result.
?grounding rdf:type kbont:StateFeature.

} .
} .

Listing 4 Linked Data-Fu rule for executing the Linked meta learner.

Algorithm 1 MetaLearn(A,STrain,K, u, t, g(s))

1: Train← STrain cut into t subsets
2: for all a ∈ A do
3: if trainable(a) then
4: PerformanceTable← crossValidate(a, Train)
5: else
6: PerformanceTable← validate(a, STrain)

7: for all sim ∈ K do
8: Nsim ← nearestNeighbours(g(s), sim, u(sim))
9: for all a ∈ A do

10: for all nsim ∈ Nsim do
11: R(nsim, a)← checkPerformance(a, nsim, PerformanceTable)
12: for all a ∈ A do
13: V (s′)sim = V (g(s′))sim + T (g(s), a, g(s′))R(g(s), a)

14: V (g(s′))sim? ← argmaxs′∈S V (g(s′))sim

15: for all g(s′) ∈ g(S) do
16: V (g(s′))←

∑
sim∈K V (g(s′))sim?

|K|

17: V (g(s′))? ← argmaxg(s′)∈g(S) V (g(s′))
18: return V (g(s′))?

5.3.2. Evaluation.

We determined the nearest neighbours based on a straightforward similarity measure for
surgical activities, namely the exact pairwise match of structure, instrument and action. If
for two activities the current triples plus their three predecessors match, the activities get
assigned a similarity of 1. The similarity linearly decreases to 0.25 if only the current activity
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Algorithm Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

LMR 0, 9332 0, 7786 0, 9180 0, 7782 0, 7238

Table 3. Performance evaluation of the Linked meta learner in terms of success rate [32].

triples match and has value 0 otherwise.
We performed five-fold cross validation, where we trained on four surgeries and predicted

on the residual one. The evaluation metric we used was the success rate, which is defined as
average of correct predictions for the test set.

The resulting success rate of the Linked meta learning component reached a better success
rate than the best phase recognizer or was at least able to compete [32]. The results are
summarized in table 3. In general, meta approaches learning a probability distribution over
such algorithms often provide stabler results in the longterm, but often fail to choose the
optimal algorithm for every single g(sk) in hindsight.

Based on meta learning for surgical phase recognition and abstract planning for tumor
progression mapping, sequential decision-making can be enabled for medical scenarios. The
central limitation for abstract planning is that no data point-specific choices are made for
constructing the Linked interpretation algorithm pipelines and, as such, optimal results cannot
be achieved. Similarly, we only explored meta learning for a one-step task, where the problem
of considering future impacts when taking decisions is not prevalent. Finally, the need for
developing grounded planning components did not occur, as pre- and postconditions were
concisely defined.

We, now, deal with a NLP scenario, where all prior mentioned complexities are available.
Here, the meta learning technique can be completely reused, but the semantic description for
the respective Linked meta learners has to be adapted. However, novel Linked components
for planning as well as planning-related learning have to be developed.

6. The Named Entity Recognition & -Disambiguation Scenario

The Web-related scenario focuses on the additional challenge of planning-related learning, i.e.
learning the reward function R for more than one subtask xk and choosing which transitions
in T to follow.

In entity linking, one deals with the problem of ambiguity in unstructured text, mostly
available on the Web. As a mention or surface form of an entity in text can be quite ambiguous,
it often remains unclear which real world entity is actually being referred to. It is, thus,
important to find links between such mentions and unique entities available in knowledge
bases, such as Wikipedia o, DBpedia [2] or Yago [47].

More specifically, entity linking consists of the subtasks named entity recognition (NER)
and named entity disambiguation (NED). We will refer to the complete NERD task as xNERD

and will use xNER and xNED for the respective subtasks. In xNER, one needs to annotate
tokens in raw text as either being a distinct type of named entity (e.g. a person, a location
or an organization) or not being a named entity (i.e. NIL). Other than in traditional NER,
we only need a binary decision for solving xNERD, i.e. xNER only needs to map tokens (or
ohttps://en.wikipedia.org/wiki/Main_Page
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Fig. 7. Decision Process for xNERD.

token sequences) to [0, 1] with 1 referring to the presence of an entity and 0 to the absence.
In this context, NER is often referred to as mention detection. xNED, in turn, uses text
annotated with named entity candidates as input and links the latter to a modelled resource
in a structured (or semi-structured) knowledge base.

Although numerous interpretation algorithms for NERD have been developed so far –
using diverse theoretical approaches for their predictions – no single one is paramount on all
available data distributions on the Web, such as news articles or tweets. Tweets are short text
snippets with a restriction to 140 characters and often contain highly colloquial and informally
written speech, yielding different challenges than disambiguating news articles, which consist
of longer text snippets with rather formal speech. Even if there was one NERD interpretation
algorithm which dominated all others for all data sets, it would be highly unlikely that it
was superior for all single articles or tweets. A combination of outputs of several NERD
interpretation algorithms might, thus, yield even better performs than the single best NERD
interpretation algorithm.

To achieve this, we explore meta-learning for xNERD, which can be applied to xNER,
xNED or xNERD, i.e. we can combine NER interpretation algorithms, NED interpretation
algorithms or interpretation algorithms which solve both xNER and xNED at once. In this
paper, we will focus on combining NER- and NED interpretation algorithms separately. Our
resulting decision process is visualized in figure 7.

As can be seen, retrieved candidate results are first combined for xNER, but not only
a single choice has to be used for approaching xNED. Choosing annotations for xNED is
one part of the planning-related learning problem, as R (i.e. the reward of executing an
interpretation algorithm) as well as T (i.e. the transitions we choose to use for xNED) need
to be estimated. While R is learned separately for xNER and xNED, and eventually averaged
(see section refmetalearningsection), we are approaching estimating T by a sampling technique
(see section ). In addition, executing the NER- and NED interpretation algorithms entails
novel challenges for a data-driven approach, which we tackle in section .

We will now present the planning-related learning approach for xNERD and will subse-
quently evaluate its performance.

6.1. A Planning-Related Learner for xNERD
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We, first, present the semantic descriptions for NER and NED interpretation algorithms,
as we need to develop Linked interpretation algorithms to automate the planning-related
learning process. Based on the latter, we discuss our approach to estimate R and T for
xNERD based on available Linked interpretation algorithms for both xNER and xNED. The
approach consists of Linked meta learners and a novel Linked planner to enable a data-driven,
automatic and dynamic execution for solving xNERD. We, therefore, reuse the Linked meta
learner introduced in section and will present specifics of its application in the evaluation
section.

6.2. Semantic Descriptions for Linked NER & NED Interpretation Algorithms

Numerous NER, NED and NERD interpretation algorithms are available as Web services
and provide for rich descriptions of inputs and outputs (see section for examples). While
inputs for xNER are confined to text, outputs usually consist of mappings of tokens or token
sequences to named entities with start and end positions of the latter, and the predicted
type of the named entity (which we do not need for solving xNERD). Depending on the
implementation of the interpretation algorithm and the Web service, the output might also
provide a confidence measure for each mapping. NEDWeb services, for the most part, need an
annotated version of the text under consideration. The produced output consists of mappings
from token or token combinations to knowledge base resources, the position of the token or
token sequence and, if available, a confidence measure for each prediction. NER and NED
Web services might provide further parameters which deal with their functionality.

For modelling the pre- and postconditions, we reuse the NLP Interchange Format (NIF) p,
a RDF vocabulary for describing both Web services and datasets for several NLP tasks. The
preconditions for Linked NER algorithms are depicted in listing 5. It confines text inputs
to be either sentences or complete paragraphs with adequate NIF annotations. Parameters
specific to the respective interpretation algorithm can be set as well but remain optional as a
default setting exists.

?text rdf:type ?textType.

FILTER (?textType = nif:Sentence || ?textType = nif:Paragraph).

OPTIONAL {
?parameterConfig rdf:type kbont:ParameterConfig;

kbont:parameter ?parameter;
kbont:parameterValue ?parameterValue.

}

Listing 5 Preconditions of Linked NER algorithms.

The preconditions of Linked NED algorithms are depicted in listings 6. Inputs are NER
annotations with information about start and end indexes of a named entity candidate (i.e.
a token or a token sequence).

phttp://persistence.uni-leipzig.org/nlp2rdf/



494 A Semantic Framework for Sequential Decision Making

?annotation rdf:type kbont:Annotation;
kbont:text ?textResource;
kbont:token ?token.

?token kbont:isEntity "true";
nif:anchorOf ?mention;
nif:beginindex ?start;
nif:endIndex ?end;
nif:referenceContext ?textResource.

OPTIONAL {
?parameterConfig rdf:type kbont:ParameterConfig;

kbont:parameter ?parameter;
kbont:parameterValue ?parameterValue.

}

Listing 6 Preconditions of Linked NED algorithms.

Every NER and NED Linked interpretation algorithm considered in the scenarios was
wrapped as Linked interpretation algorithm. We modelled the descriptions with NLP domain
experts and developers of NER and NED interpretation algorithms, and made them available
via the respectively developed Linked APIs. The texts and resulting annotations are stored
in a triple store, which makes up the knowledge base together with the semantic description
of the NER and NED Linked interpretation algorithms.

6.3. Extending the Linked Meta Learner

We reuse the Linked meta learner presented in section and instantiate it for both xNER and
xNED. In contrast to the phase recognition scenario, we use multiple similarity measures,
summarized in table 4.

Similarity Metric NERD Application Implementation
State length Length Input text Character length
State Extra Characters ’’, ’#’, smileys in input text Count
Candidate Embeddings Token- or named entities Pretrained
Candidate MinHash Token- or named entities Jaccard similarity

Table 4. Used similarity measures for xNER & xNED.

Two similarity measures leverage text similarities to find nearest neighbours for the token
candidates in xNER and for the named entity candidates in xNED. Here, we reuse existing
implementations for word embeddings qand locality sensitive hashing r. The state dependent
measures, i.e. text length and amount of extra characters, are calculated based on the input
text snippets for both xNER and xNED.

One central difference to both the phase recognition and TPM scenario is the complexity
of decision making per grounded state g(s) for xNER and xNED. For xNER, tokens or

qhttps://code.google.com/archive/p/word2vec/
rhttps://github.com/ekzhu/datasketch
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token sequences of a text snippet (i.e. a grounded state g(s)) are mapped to named entity
candidates at once, which clearly depends on g(s), as the available amount of text potentially
impacts the decision. The same holds for xNED when mapping named entities to knowledge
base resources or NIL. We, thus, define grounded decision candidates cs ∈ CS as part of
states s ∈ S to express fine-grained decision making, dependent on the respective states.
TC : CS × A × CS → [0, 1] and RC : CS × A → [0, 1] are defined accordingly, denoting the
transition and reward functions for a decision candidate cs.

The final values of disambiguated named entities V (g(cs)) are calculated by averaging the
scores retrieved by Linked meta learners for xNER and xNED, as formalized in algorithm 2

Algorithm 2 CalculateV(c′s′)

1: V ← 0
2: if k > 0 then
3: for all a ∈ A do
4: if TC(cs, a, c′s′) = 1 then
5: V = V +RC(cs, a)
6: V = V + CalculateV(cs)

7: else
8: return 1
9: return V

6.4. A Linked Planner for xNERD

In contrast to the TPM scenario, precondition groundings of Linked NED algorithms are not
able to construe correct state configurations, as multiple token/named-entity mappings might
have been chosen. To give an example, consider the following tweet:

Michael Jordan is a famous basketball player.
There is no ambiguity for xNER and, thus, all available interpretation algorithms take the

full text as input. Given the annotation candidates "Michael", "Jordan", "Michael Jordan"
and "basketball player" one, now, has to construe valid annotations for xNED which causes
two problems:

1. The triple pattern of the NED precondition will never construe annotated texts with
more than one annotation.

2. We cannot express that "Michael Jordan" and "Michael" must not be used for one text
annotation due to their overlap.

3. It quickly becomes intractable to try out all valid annotations for xNED.

We, therefore, develop a novel Linked planner and will first deal with problem 1, i.e.
enabling complex grounding of preconditions to be created.

6.4.1. Semi-Grounded Plans.

We approach problem 1 by grounding responsible parts of the triple patterns while keeping
the residuals variable such that the triple pattern returns eligible and correct solutions. How-
ever, we cannot ground NED inputs before having executed NER interpretation algorithms
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and, thus, need to re-plan after every subtask xk. Based on a selection of state configura-
tions g(s), the Linked Planner creates a new Linked Data-Fu program for the available NED
interpretation algorithms. The procedure is formalized in algorithm 3.

Algorithm 3 plan(g(S), A)

1: program← instantiate()
2: for all g(s) ∈ g(S) do
3: for all a ∈ A do
4: rule← semiGroundPrecondition(g(s), a)
5: program← program ∪ rule
6: return program

The algorithm can be easily extended to the case where not all candidate solutions in
g(S) should be executed by every Linked interpretation algorithm. This might be needed in
budgeted scenarios where meta learners have to abide by constraints.

Problems 2 and 3 – generating a reduced set of valid candidates for the Linked planner –
are approached by a sampling technique which will be discussed next (section ).

6.4.2. A Sampler for Valid State Configurations.

Trying out all NER output combinations quickly becomes intractable, as some Linked NER
algorithms potentially produce a large set of outputs (i.e. candidates cs ∈ Cs). The problem
becomes more serious with more subtasks, as might be the case for the TPM use case we
dealt with in section . An upper bound to the number of executions is defined by all possible
n-grams (with n = 1, . . . , |tokens(text)|) of a text.

After several Linked NER algorithms haven been executed and a Linked meta learner
has ranked their outputs, we have to restrict the number of configurations (g(S)) we want
the Linked planner to build. We propose a sampling approach which generates probability
distributions based on the weights of the Linked meta learner and draws a predefined number
of samples. We, therefore, iteratively cluster all named entity candidates cs ∈ Cs until
we derive valid named entity assignments for a text g(s). More specifically, we first create
clusters for each named entity candidate cs to decide if we consider it for a sampling round. As
there might be several conflicting named entity assignments, we use the retrieved samples to
create new clusters for each sampled candidate cs plus its dependent named entity candidates
(i.e. the candidates which overlap cs in g(s)) The sampling process continues until a valid
annotation is reached, i.e. we have mapping from tokens to named entities which do not
overlap. The procedure is formalized and summarized in algorithm 4, having the set of
candidate named entities Cs and their prior computed values V as input.

6.5. Evaluation

For our evaluation, we implemented the novel Linked planner which semi-grounds precondi-
tions of Linked interpretation algorithms based on sampled state configurations. We, also,
implemented Linked meta learners for xNER and xNED based on the Linked meta learner for
surgical phase recognition and compute the final candidate values V (c) based on algorithm
2. The performance of our approach is quantified in terms of correct mappings from tokens
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Algorithm 4 sample(Cs, V )

1: clusters← ∅
2: for all cs ∈ Cs do
3: clusters← clusters ∪ (cs,¬cs)
4: divide← true

5: while divide do
6: for all cluster ∈ clusters do
7: P ← getProbabilityDistribution(cs)
8: clusters.decision← draw(P ) // 1 if named entity
9: divide← checkValidity(clusters) // false if assignment is valid

10: if divide then
11: CDep = neighbourDependencies(clusters)
12: clusters← ∅
13: for all c ∈ CDep do
14: clusters = clusters ∪ (c ∪ c.deps) // c.deps returns the dependencies
15: g(S)← transformToStates(clusters)
16: return g(S)

and token sequences of a text to disambiguated named entities.

6.5.1. Data.

Our approach is applied to two datasets, namely Microposts 2014 train+test [3] and Spotlight
Corpus [28]. As the predictive performance of available interpretation algorithms significantly
varies for tweets, applying a planning-related learning approach might both improve predic-
tions and make them more robust. In addition, with limited amounts of labeled data for
benchmarking interpretation algorithms, knowledge transfer becomes important. We, thus,
evaluate our approach in terms of reusing tweets for solving xNERD for articles.

6.5.2. Baseline.

The baseline to our approach consists of 1) individual performances of the used interpretation
algorithms and 2) static weighted combination of the individual interpretation algorithms. For
computing the former we use GERBIL [50], a benchmark for entity linking which features well
known NERD interpretation algorithms and numerous data sets to quantify their performance.
For baseline 2) we implemented an additional Linked meta learner which uses the individual
f1-measure scores of a dataset as static weights.

6.5.3. Setup.

Table 5 summarizes the NER and NED interpretation algorithms we used. We only used
implementations available as Web services and did not tune parameters, i.e. we took the
default settings the Web services provided.

The results for baseline 1) are available via GERBIL sHere, the NER- and NED interpre-
tation algorithms of table 5 are merged to their original NERD setting. That is, DBpedia
shttp://gerbil.aksw.org/gerbil/experiment?id=201605010000.
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Interpretation algorithm Task
Stanford Tagger [15] NER
FOX [42] NER
Spotlight Spotter NER
AGDISTIS [49] NED
AIDA [20] NED
Spotlight Tagger [28] NED

Table 5. NER and NED interpretation algorithms.

Spotlight Spotter and -Tagger make up DBpedia Spotlight, AGDISTIS uses FOX as NER ap-
proach and AIDA relies on Stanford Tagger to propose named entities. Note that the results
for baseline 1) in table 6 deviate from the ones by GERBIL, as we needed to re-evaluate the
interpretation algorithms for the Spotlight corpus. Here, we treated every sentence as single
grounded state g(s). Baseline 2) uses, as already mentioned, static weights to combine NER
and NED interpretation algorithms (see "Static weights" in the result table). The approach
was proposed by [38] in a slightly different version, additionally incorporating a rank feature
for interpretation algorithms. Our approach, LinkedPRL, uses 1800 tweets of the Microposts
2014 averaged dataset as training data for solving xNERD for tweets and articles. We, thus,
also evaluate its ability of knowledge transfer, as only tweets are used for training when pre-
dicting disambiguated named entities for the Spotlight corpus. For both instantiations, we
sample 8 valid state configurations for xNED. The results were retrieved by 10-fold cross
validation for learning and predicting on the same dataset. We evaluate the approaches in
terms of precision (Prec), recall (Rec) and f1-measure (F1). Note that we only make rela-
tive statements about the performance of our approach as it is dependent on the residual
interpretation algorithms.

6.5.4. Results.

Table 6 summarizes our results.

Microposts 2014 averaged Spotlight
Approach F1 Prec Rec F1 Prec Rec
Spotlight 0.4887 0.6666 0.3859 0.419 0.3598 0.5013
AGDISTIS 0.3713 0.37135 0.3713 0.1795 0.5526 0.1071
AIDA 0.379 0.5388 0.2924 0.2437 0.6905 0.148
Static weights 0.4025 0.5036 0.3352 0.3598 0.477 0.2889
LinkedPRL 0.5143 0.7351 0.3955 0.4213 0.4977 0.3652

Table 6. Evaluation results for xNERD.

In total, our Linked planning-related learner yields superior results for tweets compared
to the individual interpretation algorithms and the statically weighted combination approach.
For articles, DBpedia Spotlight and AIDA are dominating in terms of precision and recall.
LinkedPRL, however, provides stable results and yields the best f1-measure score and, thus,
is able to transfer knowledge from tweets to articles.
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Based on our qualitative and quantitative findings for developing and integrating Linked
interpretation algorithms as well as Linked meta components for the Semantic Framework,
we now discuss central questions concerning its generalizability and limitations.

7. Discussion

We split our discussion into (i) the added value of the framework in general, (ii) the gen-
eralizablity of Linked meta components as well as Linked interpretation algorithms to new
domains or new tasks, (iii) the problem of different reward impacts and (iv) the overall goal
of our approach.

7.1. On the Added Value of the Semantic Framework

Modelling fine-grained semantic annotations, and developing and integrating meta compo-
nents adds manual work for domain- and machine learning experts. Still, resulting Linked
meta components enable to gradually learn which Linked interpretation algorithms to select
given characteristics of data points and how to automatically pipeline them. Pipelines can
thus be dynamically changed for each data point to reach better performances. The latter
would otherwise remain static unless manually changed for each single data point or unless
fine-grained preconditions are available which have to be frequently updated.

Also, automatically taking into account novel Linked interpretation algorithms with ade-
quate semantic interfaces is not trivial without the Semantic Framework. As a consequence,
instantiated workflow systems for a task often remain unchanged irregardless of novel candi-
date interpretation algorithms being available.

7.2. On the Generalizability of Linked Components to New Domains or Tasks

The ability to generalize and reuse the Linked meta components we developed throughout
this work is dependent on (i) the flexibility of the underlying meta component and (ii) its
semantic description. (i) Our meta learner is based on the idea of instance-based learning
and only requires domain-dependent similarity metrics to be defined for new data points.
Our meta planer is based on MDPs and completely generalizable. (ii) The semantic descrip-
tions we modelled are domain-dependent for both meta learning and meta planning, as they
need to capture respective constraints for execution and correct functioning. The semantic
descriptions for Linked meta learners can, however, be automatically inferred from Linked
interpretation algorithms, while Linked meta planners need to capture goal-dependent task
parameters, such as the constraint of having one decision per token or token sequence for
NERD.

To this end, one could relax the impact of the pre- and postconditions and shift the
decision to planning-related learning components, i.e. model generic pre- and postconditions
and learn their eligibility for a datapoint via feedback. This might be useful for generalizing
the applicability of a Linked interpretation algorithm or for dealing with situations where few
semantics are available.

Also, using the framework for novel tasks is dependent on the goal of the respective task,
as Linked meta components as well as Linked interpretation algorithms have to be modelled
accordingly. More specifically, if a novel task could theoretically be solved by available Linked
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interpretation algorithms in terms of their functionality, their semantic description might not
capture all needed information of the task’s goal. To this end, the respective Linked API
might have to be adjusted, as extended semantic annotations might influence the underlying
interpretation algorithm.

7.3. On Domain-dependent Impacts of Rewards

The meta learning and planning-related learning tasks both entail learning R, the reward
function for interpretation algorithms. We neglected the aspect that R might have different
interpretations and impacts for different domains. While for NLP techniques applied to
Web-based tasks, choosing the highest estimated reward measured on past executions might
not cause problems, it might have critical and ethical consequences for medical scenarios.
Provenance metadata might have to be extended with more specific criteria for decision-
making, where manually defined decision policies potentially need to be followed based on
strict medical guidelines. Hence, a static interpretation algorithm pipeline might be preferred
for all data points, as it is trusted by physicians.

A related challenge is that institutions might differ in their perceptions of what conceptual
provenance metadata is needed to trust it or that different guidelines are followed. Hence,
reusing task outcomes published as Linked Data requires developing strategies to deal with
uncertainties coming from missing information.

7.4. On The Goal of an Self-Adaptive System

Since we enable to use multiple Linked meta components at once, one could have them
compete as well. This is what Vilalta & Drissi [52] depict as curse of infinite bias. We want
the system to be self-adaptive and improve with experience, which it already does to some
extent by automatically considering training samples or further data sources. However, each
Linked meta components has some kind of bias in terms of their methodology used. Hence,
while is might interesting to have meta components compete with each other, the problem
how to deal with their respective bias is important on its own.

8. Conclusion

We introduced our work on a proposing a first semantic framework for sequential decision
making in a heterogeneous environment. We reused established techniques of the Semantic
Web to develop a data-driven, declarative framework for Linked interpretation algorithms and
extended it with means to solve complex tasks. Therefore, the problem of complex task solving
was defined and we distinguished between (abstract-) planning- and (meta-) learning scenar-
ios, with initial observations on the interplay with Linked Data. By now, we realized solutions
to all prior defined problems with first Linked meta components and Linked interpretation
algorithms, which can be naturally integrated with the Linked agent (contribution (i)). We
applied the framework to two exemplary use cases in the medical domain and to one use case
in the Web domain. All interpretation algorithms – i.e. image processors, phase recognizers,
and named entity recognizers -and disambiguators – were transformed into Linked interpre-
tation algorithms by wrapping them as Linked APIs and executed by the Linked agent. The
Linked meta components we developed for the use cases realized and optimized the pipeline
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construction for solving our complex tasks (contributions (ii) and (iii)). We, finally, discussed
current shortcomings of our framework, potential improvements we are investigating and the
long-term goal of a self-adaptive framework.

9. Future Work

In case of abstract planning and MDPs, we only leveraged semantics to a small degree,
namely in terms of pre- and postcondition matchings. We want to investigate the potential
advantages of richer classes such as relational MDPs [31]. In addition, linked meta components
can make large use of an arbitrary amount of features besides their preconditions. Linked
interpretation algorithm descriptions, although potentially modelled by domain experts, do
not necessarily capture all relevant dependencies. Hence, learning the optimal feature subset of
Fsk to better estimate transition probabilities T (s, a, s′) or enriching Fsk with more features
seem interesting extensions to our framework. We also want to develop new Linked meta
components for the pure planning and planning-related learning task as defined in section .

The Linked meta learner we developed makes fine-grained predictions by using train-
ing data of instance-specific neighbourhoods. Therefore, numerous heterogeneous similarity
measures can be easily incorporated to define these neighbourhoods. However, resulting pre-
dictions are evenly averaged and no weights for the individual impact of similarity measures
are used. Thus, one extension of our meta learner would be approaching to learn a supervised
model to dynamically weigh the results proposed in different neighbourhoods.

While we already generate provenance metadata based on Linked interpretation algorithm
as well as Linked meta component executions, reusing established sophisticated ontologies
(such as OPMW) is beneficial and might open further opportunities and research challenges.
One example might be discovering and selecting interpretation algorithms when no training
data is available, which requires to examine generated metadata from other institutions (pub-
lished as Linked Data). To this end, guaranteeing reproducibility of results and determining
if sufficient contextual information is available to trust these outcomes are essential.

Finally, our evaluations showed that the proposed Linked Agent using Linked meta com-
ponents is able to pipeline Linked interpretation algorithms for medical and Web-related
tasks, thereby achieving high outcome performances. However, with regards to prior dis-
cussed critical reward impacts, further qualitative and quantitative evaluations are needed to
work towards richer provenance models and thus higher end user acceptance of automatically
pipelined workflows, e.g. end user questionnaires to quantify trust thresholds for suggested
task solutions.
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