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One of the facets of the data explosion in recent years is the growing of the repositories of
RDF Data on the Web. Keyword search is a popular technique for querying repositories
of RDF graph data. Recently, a number of approaches leverage a structural summary
of the graph data to address the typical keyword search related problems of: (a) identi-
fying relevant results among a multitude of candidates, and (b) performance scalability.
These approaches compute queries (pattern graphs) corresponding to alternative inter-

pretations of the keyword query and the user selects one that matches her intention
to be evaluated against the data. Though promising, these approaches suffer from a
drawback: because summaries are approximate representations of the data, they might
return empty answers or miss results which are relevant to the user intent. In this paper,
we present a novel approach which combines the use of the structural summary and
the user feedback with a relaxation technique for pattern graphs. We leverage pattern
graph homomorphisms to define relaxed pattern graphs that are able to extract more
results potentially of interest to the user. We introduce an operation on pattern graphs
and we prove that it is complete, that is, it can produce all relaxed pattern graphs.
To guarantee that the result pattern graphs are as close to the initial pattern graph as
possible, we devise different metrics to measure the degree of relaxation of a pattern
graph. We design an algorithm that computes relaxed pattern graphs with non-empty
answers in relaxation order. To improve the successive computation of relaxed pattern
graphs, we suggest subquery caching and multiquery optimization techniques adapted to
the context of this computation. Finally, we run experiments on different real datasets
which demonstrate the effectiveness of our ranking of relaxed pattern graphs, and the ef-
ficiency of our system and optimization techniques in computing relaxed pattern graphs
and their answers.
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1. Introduction

In the era of big data, the information stored is growing every minute on the Web. This
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information is usually unstructured or semistructured and graphs are often an organizational

option. Keyword search is the most popular technique for querying data on the Web because

it allows the user to retrieve information without knowing any formal query language (e.g.,

SPARQL) and without being aware of the structure/schema of the data sources against which

the keyword query is issued. The same keyword query can be used to extract data from

multiple data sources with different structures and this is particularly useful in the web where

the data sources that can provide the answers are not known in advance. Unfortunately, the

convenience and the simplicity of keyword search come along with a drawback. Keyword

queries are imprecise and ambiguous. For this reason, they return a very large number

of results. This is a typical problem in IR. However, it is exacerbated in the context of

tree and graph data where a result to a query is not a whole document but a substructure

(e.g., a subtree, or a subgraph) which exponentially increases the number of results. As a

consequence, the keyword search on graph data faces two major challenges: (a) effectively

identifying relevant results and (b) coping with the performance scalability issue.

In order to identify relevant results, previous algorithms for keyword search over graph data

compute candidate results in an approximate way by considering only those which maintain

the keyword instances in close proximity [1, 2, 3, 4, 5, 6, 7, 8]. The filtered results are

ranked and top-k processed usually by employing IR-style metrics for flat documents (e.g.,

tf*idf or PageRank) adapted to the structural characteristics of the data [9, 10, 11, 12, 13].

Nevertheless, the statistics-based metrics alone cannot capture effectively the diversity of the

results represented in a large graph dataset neither identify the intent of the user. As a

consequence, the produced rankings are, in general, of low quality. In order to cope with

the second challenge, the performance scalability issue, current algorithms compute all the

results of a certain form whose size is below a certain threshold. Despite the restriction, these

algorithms are still of high complexity and they do not scale satisfactorily when the size of

the data graph and the number of query keywords increase.

Leveraging the structural summary. In order to address these challenges, recent ap-

proaches to keyword search on graph data developed techniques which exploit a structural

summary of the data graph [10, 11, 14, 15, 16]. This is a concept similar to the 1-index [17]

or data guide [18] in tree databases. The structural summary summarizes the structure of

an RDF graph and associates inverted lists of keyword instances (extensions) with nodes. A

structural summary is typically much smaller than its data graph. These techniques use the

structural summary to produce pattern graphs for a given keyword query. The pattern graphs

are structured queries corresponding to interpretations of the imprecise keyword query. Eval-

uating the pattern graphs on the data graph, the candidate results for the keyword query can

be produced. Interestingly, a pattern graph can be expressed as a SPARQL query. Therefore,

all the machinery of query engines and optimization techniques developed for SPARQL can

be leveraged to efficiently evaluate pattern graphs.

Example 1 Consider the RDF graph D shown in Figure 1(a). This is a database about

publications, projects, researchers and universities. Let’s assume that the queryQ ={Ananya,
NJIT, 2014} is issued against the database D. The user is looking for publications by Ananya

published in 2014 which have an author working for NJIT. Figure 1(b) depicts the structural
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(a) (b)

Fig. 1. (a) An RDF data graph D, (b) The structural summary SD of D

(a) (b) (c) (d)

Fig. 2. Pattern graphs for the keyword query {Ananya, NJIT, 2014}

summary SD of D. Finding the instances of the keywords Ananya, NJIT and 2014 on SD,

the system will construct pattern graphs. Different algorithms can be employed for this

task which aim at constructing pattern graphs by connecting the instances of the keywords

in the structural summary in some minimal way [10, 11, 14, 19, 20]. All these algorithms

will basically construct the pattern graphs shown in Figure 2. These pattern graphs are

structured queries that can be matched against the data graph to produce answers for the

keyword queries (X,Y,Z are variable nodes to be matched against entity nodes in the data

graph). Notice that these pattern graphs represent different interpretations of the given

keyword query. For instance, the first pattern graph looks for publications by Ananya, who

works at NJIT, published in 2014 while the last one is looking for a project initiated in 2014

which employs a researcher named Ananya who graduated from NJIT. Evaluating these queries

on D will return all the results for the initial keyword query Q on D.

Benefits of the structural summary. A structural summary approach can resolve the

challenges mentioned above of: (a) effectively identifying relevant results, and (b) coping

with the performance scalability issue. Indeed, the pattern graphs (structured queries) can

be ranked using a scoring function and the top-k of them are presented to the user. As these

structured queries represent different interpretations of the keyword query on the data graph,

the user can choose one that meets his intention, and only the corresponding structured query

is evaluated against the data graph [10, 11]. A more recent approach exploits a hierarchical
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clustering of the pattern graphs. In order to select a relevant pattern graph, the user chooses

semantic interpretations for the query keywords and only the pattern graphs that correspond

to these interpretations are generated and presented to the user [14]. Effectiveness studies

show that the approaches based on the structural summary display good precision [11]. Fur-

ther, computing, ranking and identifying top-k subgraphs (query results) for a keyword query

directly on the data graph is very expensive even when answers are computed in an approxi-

mate way [1, 2]. In contrast, since the structural summaries are much smaller than the actual

data, generating and manipulating relevant pattern graphs can be done efficiently. There-

fore, the structural summary-based approaches scale satisfactorily and compute answers of

keyword queries efficiently even on large RDF graphs stored in external memory [11, 14, 21].

The missing relevant result problem. Despite its advantages, the structural summary-

based approach for keyword search on RDF data has a drawback. The problem is that the

pattern graph selected by the user might return no result when evaluated against the RDF

graph even though results that match the user intent exist in the RDF graph. It is also

possible that the pattern graph returns a non-empty answer but misses relevant results. This

might happen even if a pattern graph is correctly selected by the user, that is, even if the

selected pattern matches the user intent.

Example 2 In our running example the pattern graph of Figure 2(a) is relevant and is

selected by the user. One can see that this pattern graph does not have a match on the RDF

graph D shown in Figure 1(a). Indeed, Ananya has authored a paper in 2014 but she does not

work for NJIT. However, there is a result in the data graph D which matches the user intent

since there is a publication authored by Ananya in 2014 which has an author (the co-author

named Dimitri) working for NJIT. This relevant result cannot be directly obtained from any

of the pattern graphs of Figure 2. It is missed by the structural summary-based approach.

As another example consider the keyword query {publication, describes, project,

produces, Steiner} on the RDF graph D. The user is looking for a publication which

describes a project that produces a paper titled Steiner graph algorithm. The structural

summary-based approach will generate one pattern graph shown in Figure 3(a). As one can

easily see, this pattern graph does not have a match on D since there is no publication Y

having “Steiner” in its title, is produced by a projectX and the same projectX is described in

the publication Y . However, there is a result in D which matches the user intent. Figure 3(b)

shows a subgraph of D which reflects this result. This relevant result is again missed by the

structural summary-based approach. The reason for this discrepancy is that the structural

summary merges entity vertices of the same type of the RDF data into one vertex and this

coarse representation loses information as to how an entity vertex is related to other entity

vertices or is assigned properties and values.

Our Approach. In this paper, we provide an approach for keyword search over RDF graph

data which addresses the weakness of the structural summary based approach while main-

taining its advantages. Our system allows the user to navigate through a clustering hierarchy

to select a relevant pattern graph. It then enables the gradual relaxation of this pattern graph

so that additional results of interest to the user are retrieved from the RDF graph, if needed
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(a) (b) (c)

Fig. 3. (a) Pattern graph (b) Result graph (c) Relaxed pattern graph

(for example, if the original pattern graph returns no result or if the user wants to extract

more semantically similar results). For instance, in the example of Figure 3, our system will

produce the relaxed pattern graph of Figure 3(c) from the pattern graph of Figure 3(a). This

relaxed pattern graph can retrieve the relevant result shown in Figure 3(b) missed by the

original pattern graph of Figure 3(a).

Contribution. The main contributions of the paper are the following:

• We present a clustering hierarchy for the query results. Our clustering hierarchy allows

the user to disambiguate the query and select a relevant pattern graph while examining

a small portion of the hierarchy components. To shorten the user interaction we devise

ranking techniques for the hierarchy components that take into account structural, and

semantic information, and occurrence frequency statistics.

• We leverage pattern graph homomorphisms to define relaxed pattern graphs. Relaxed

pattern graphs can expand the result space of an original pattern graph. They can

produce additional results of possible interest to the user based on her choice of an

original pattern graph.

• We define an operation on pattern graphs (vertex split operation) in order to allow the

construction of relaxed pattern graphs. A vertex split operation creates a split image

of an entity variable vertex in a pattern graph and partitions its incident edges between

the two vertices in order to increase the chances for the relaxed pattern graph to have

embeddings to the RDF graph. We prove that this operation is complete, that is it can

produce all the relaxed pattern graphs.

• Since we want to relax a pattern graph so that it is as close to the initial pattern graph

as possible, we introduce three metrics of decreasing importance to measure the degree

of relaxation of a pattern graph. All three metrics take into account structural and

semantic characteristics of the relaxed pattern graph and depend on the vertex split

operations applied to the original pattern graph.

• If an original pattern graph has an empty answer on an RDF graph, we would like to

identify its vertices which contribute to this condition. We call these vertices empty

vertices and we provide necessary and sufficient conditions for characterizing them in a
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pattern graph. Empty vertices are used to guide the relaxation process so that relaxed

pattern graphs with non-empty answers are produced.

• We design an algorithm which takes a pattern graph as input and gradually generates

relaxed pattern graphs having non-empty answers. The algorithm returns the relaxed

patterns graph in ascending order of relaxation as this is defined by the three relaxation

metrics mentioned above, and computes their answer on the RDF graph.

• The evaluation of the relaxed pattern graphs in the algorithm requires the concurrent

and sequential computation of multiple graph queries which share common sub expres-

sions. We exploit subquery caching and multiquery optimization techniques to suggest

a global evaluation plan for the produced relaxed pattern graphs which reduces the

repeated computation of common subexpressions.

• In order to measure the effectiveness of our ranking of relaxed pattern graphs, we run

experiments with two different metrics on two real datasets. We also run experiments

to measure the efficiency of our system in computing relaxed pattern graphs and their

answers. The results show that our ranking of relaxed pattern graphs is of high quality,

and our system displays interactive times while our optimization techniques substan-

tially reduce the execution time of the algorithm.

Outline. The next section presents our data model and the semantics of keyword queries.

Section 3 outlines how pattern graphs can be constructed from the structural summary. Sec-

tion 4 describes the clustering hierarchy and the selection of pattern graph by the user. Section

5 defines relaxed pattern graphs and the vertex split operation and introduces metrics for mea-

suring the relaxation of pattern graphs. In Section 6, we present our algorithm for computing

relaxed pattern graphs and our optimization techniques. The experimental study is reported

in Section 7. Related work is discussed in Section 8 while concluding remarks are provided in

Section 9.

2. Data Model and Query Language Semantics

We now formally represent our data model. Next, we define keyword queries and their se-

mantics.

2.1. Data Model

Resource Description Framework (RDF) provides a framework for representing information

about web resources in a graph form. The RDF vocabulary includes elements that can be

broadly classified into Classes, Properties, Entities and Relationships. All the elements are

resources. RDF has a special class, called Resource class and all the resources that are defined

in an RDF graph belong to the Resource class. Our data model is an RDF graph defined as

follows:

Definition 1 (RDF Graph) An RDF graph is a quadruple G = (V,E, L, l) where:

V is a finite set of vertices, which is the union of three disjoint sets: VE (representing

entities), VC (representing classes) and VV (representing values).
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E is a finite set of directed edges, which is the union of four disjoint sets: ER (inter-entity

edges called relationship edges representing entity relationships), EP (entity-to-value

edges called property edges representing property assignments), ET (entity-to-class edges

called type edges representing entity-to-class membership) and ES (class-to-class edges

called subclass edges representing class-subclass relationship).

L is a finite set of labels that includes the labels “type”, “subclass” and “resource”.

l is a function from VC ∪ VV ∪ ER ∪ EP ∪ ET ∪ ES to L. That is, l assigns labels to

class and values vertices and to relationship, property, type and subclass edges. In

particular, l assigns the label “type” and the label “subclass” to a type and subclass

edge respectively.

Entity and class vertex and edge labels are Universal Resource Identifiers (URIs). Vertices

are identified by IDs which in the case of entities and classes are URIs. Every entity belongs

to a class. Figure 4 shows an example RDF graph (inspired by the Jamendoadataset). For

simplicity, vertex and edge identifiers are not shown in the example graph below.

Fig. 4. An RDF graph

2.2. Queries and Answers

A query is a set of keywords. The answer of a query Q on an RDF graph G is a set of

subgraphs (result graphs) of G, where each result graph involves at least one instance of every

keyword in Q. A keyword instance of a keyword k in Q is a vertex or edge label containing

k. In order to facilitate the interpretation of the semantics of the keyword instances, every

instance of keyword in a query is matched against a small subgraph (matching construct) of

ahttp://dbtune.org/jamendo/
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the graph G which involves this keyword instance. Each matching construct provides a deeper

insight about the context of a keyword instance in terms of classes, entities and property and

relationship edges. We link one matching construct for every keyword in the query Q through

edges (inter-construct connection) and common vertices into a connected component to form

a result graph. A query Q can have multiple signatures, representing different interpretations

for the keywords. Each signature can generate multiple result graphs. Next, we provide

definitions for the concepts of keyword matching construct, query signature, inter-construct

connection and result graph in order to formally define a query answer.

Definition 2 (Matching Construct) Given a keyword k of a query and an RDF graph G,

for every instance of k in G, we define a matching construct as a small subgraph of G. If the

instance i of k in G is:

- the label of a class vertex vc ∈ VC , the matching construct of i is the vertex vc (class

matching construct).

- the label of a value vertex vv ∈ VV , the matching construct of i comprises the value

vertex vv, the corresponding entity vertex, and its class vertices along with the property

and type edges between them (value matching construct).

- the label of relationship edge er ∈ ER, the matching construct of i comprises the

relationship edge er, its entity vertices and their class vertices along with the type edges

between them (relationship matching construct).

- the label of property edge ep ∈ EP , the matching construct of i comprises the property

edge ep, its value vertex and entity vertex, and the class vertex of the entity vertex

along with the type edges between them (property matching construct).

(a) (b) (c) (d)

Fig. 5. matching constructs (a) class (b) value (c) relationship (d) property

Figure 5 shows a class, value, relationship and property matching constructs for different

keyword instances in the RDF graph of Figure 4. Underlined labels in a matching construct

denote the keyword instances on which the matching construct is defined (called active key-

word instances of the matching construct). This is necessary because a value instance and a

property instance can share the same matching construct. Each matching construct provides

information about the semantic context of the keyword instance under consideration. For
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instance, the matching construct of Figure 5(b) shows that Rebirth is the title of entity R2

of type Record.

Definition 3 (Query Signature) Given a query Q and an RDF graph G, a signature S of

Q is a function from the keywords of Q that matches every keyword k to a matching construct

of k in G.

Figure 5 shows a query signature for the query {Playlist, Rebirth, track, name}. Note
that a signature of a query Q can have less matching constructs than the keywords in Q, since

one matching construct can have more than one active keyword instance.

Definition 4 (Inter-construct Connection) Given a query signature S, an inter-construct

connection between two distinct matching constructs C1 and C2 in S is a simple path aug-

mented with the class vertices of the intermediate entity vertices in the path (if not already

in the path) such that: (a) one of the terminal vertices in the path belongs to C1 and the

other belongs to C2, and (b) no vertex in the connection except the terminal vertices belong

to a construct in S.

Figure 6 shows an inter-construct connection between the matching constructs for key-

words Torrent and Cicada in the RDF graph of Figure 4. The matching constructs are

shaded and the inter-construct connection is circumscribed.

Fig. 6. Inter-construct connection

In order to define result graphs we need the concept of acyclic subgraph with respect to a

query signature. Let Gs be a subgraph of the RDF graph that comprises all the constructs in

the signature of a query. We construct an undirected graph Gc as follows: there is exactly one

vertex in Gc for every matching construct and for every vertex not in a matching construct

in Gs. Further: (a) if v1 and v2 are non-construct vertices in Gc, there is an edge between

v1 and v2 in Gc iff there is an edge between the corresponding vertices in Gs, (b) If v1 is

a construct vertex and v2 is a non-construct vertex in Gc, there is an edge between v1 and

v2 in Gc iff there is an edge between a vertex of the construct corresponding to v1 and the

vertex corresponding to v2 in Gs, and (c) if v1 and v2 are two construct vertices, there is an

edge between them in Gc iff there exists in Gs, an edge between a vertex of the construct

corresponding to v1 and a vertex of the construct corresponding to v2 that edge does not



372 Relaxation of Keyword Pattern Graphs on RDF Data

occur in any one of the constructs. Graph Gs is said to be connection acyclic if there is no

cycle in Gc.

Consider the query Q = {Cicada, mp3, Record} on the RDF graphG of Figure 4. Figure

7 shows two subgraphs of G which comprise a signature of Q on G. The active keyword

instances are underlined and the corresponding matching constructs are shaded. One can see

that the subgraph in Figure 7(a) is connection cyclic while the subgraph in Figure 7(b) is

connection acyclic.

(a) (b)

Fig. 7. (a) Invalid result graph (b) Valid result graph for Q = {Cicada, mp3, Record}

Note that a result graph can be connection acyclic even if it contains a cycle. One example

is shown in Figure 8(b). The keyword instances are underlined and the matching constructs

are shown shaded. We can now define result graphs.

Definition 5 (Result Graph) Given a signature S for a query Q over an RDF graph G, a

result graph of Q for S is a connected connection acyclic subgraph GR of G which contains

only the matching constructs in S and possibly inter-construct connections between them.

Therefore, a result graph of a query contains all the matching constructs of a signature

of the query and guarantees that they are linked with inter-construct connections into a con-

nected whole. Note that a result graph might not contain any inter-construct connection

(this can happen if every matching construct in the query signature overlaps with some other

matching construct). However, if inter-construct connections are used within the result graph,

no redundant (cycle creating) inter-construct connections are introduced.

(b)(a)
Fig. 8. (a) and (b) result graphs with overlapping matching constructs for Q = {Authentic,
Rebirth}

Consider the query Q = {Authentic, Rebirth} on the RDF graph G of Figure 4. Figure



A. Dass, C. Aksoy, A. Dimitriou, and D. Theodoratos 373

8(a) shows a result graph forQ inG that is formed by overlapping matching constructs without

any inter-construct connections. The result graph in Figure 8(b) has the same overlapping

matching constructs but it also includes an inter-construct connection between them. This

is permissible since this subgraph is connection acyclic. We can now define the answer of a

query.

Definition 6 (Query Answer) The answer of a query Q on an RDF graph G is the set of

result graphs of Q on G.

3. Computing Pattern Graphs on the Structural Summary

We introduce in this section the structural summary of a data graph and the pattern graphs

of a query. Then, we present an algorithm which uses the structural summary for computing

the pattern graphs of a query.

3.1. The Structural Summary and Pattern Graphs

In order to construct pattern graphs we use the structural summary of the RDF graph.

Intuitively, the structural summary of an RDF graph G is a special type of graph which

summarizes the data graph showing vertices corresponding to class and value vertices and

edges corresponding to the property, relationship and subclass edges in G. Entity vertices are

omitted. Roughly speaking, the structural summary can be constructed by merging all the

entity vertices of a class with their class vertex and then by merging together all the property

edges and all the relationship edges that are of the same kind.

Definition 7 (Structural Summary) The structural summary of an RDF graph G is a

vertex and edge labeled graph constructed from G as follows:

(a) Merge every class vertex and its entity vertices into one vertex labeled by the class

vertex label and remove all the type edges from G.

(b) Merge all the value vertices which are connected with a property edge labeled by the

same label to the same class vertex into one vertex labeled by the union of the labels

of these value vertices. The label of this new value vertex is called extent of the vertex.

Merge also the corresponding edges into one edge labeled by their common label.

(c) Merge all the relationship edges between the same class vertices which are labeled by

the same label into one edge with that label.

Figure 9(a) shows the structural summary for the RDF graph G of Figure 4. Similarly to

matching constructs on the data graph we define matching constructs on the structural sum-

mary. We refer to these constructs also as “matching constructs” or MCs. Since the structural

summary does not have entity vertices, matching constructs on structural summaries possess

one distinct entity variable vertex for every class vertex labeled by a distinct variable. The

underlined keywords in matching constructs indicate active keyword instances.
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(a) (b)

Fig. 9. (a) Structural Summary, (b) Query Pattern Graph

The next objective is to compute result pattern graphs. These are subgraphs of the

structural summary, strictly consisting of one matching construct for every keyword in the

query Q and the connections between them without these connections forming a cycle.

Definition 8 (Pattern Graph) A pattern graph for a keyword query Q is a graph similar

to a result graph for Q, with the following two exceptions :

(a) the labels of the entity vertices in the result graph, if any, are replaced by distinct

variables in the pattern graph. These variables are called entity variables and they

range over entity vertices.

(b) The labels of the value vertices are replaced by distinct variables whenever these labels

are not the active keyword instances in the result graph. These variables are called

value variables and they range over value labels in the RDF graph.

Therefore a pattern graph is a connected graph which comprises one matching construct

for every keyword. Figure 9(b) shows an example of a pattern graph, for the keyword query

Q = {Cicada, Authentic, Girl} on the RDF graph of Figure 4. Labels X , Y , and Z are

entity variables.

In order to compute pattern graphs, we use the algorithm presented in [14]. This algorithm

takes as input a structural summary and a signature S of a keyword query and produces the

pattern graphs for S. The produced pattern graphs are r-radius Steiner graphs [6] whose

radius r is minimum. A pattern graph is an r-radius Steiner pattern graph if there is a class

vertex in it whose distance from all the other class vertices is r or less and there is no class

vertex in it whose distance from all the other vertices is less than r.

4. Selection of a Pattern Graph through Semantic Hierarchical Clustering and

Ranking

We describe in this section how the user can chose a relevant pattern graph by navigating

through a hierarchy which also ranks the pattern graphs to better support the relevant pattern
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graph selection process.

Semantic hierarchical clustering. The hierarchy has two levels on top of the result graph

layer. The pattern graphs of a query Q on an RDF graph G define a partition of the result

graphs of Q on G. The pattern graphs constitute the first level of the clustering hierarchy.

Multiple pattern graphs can share the same signature. The signatures determine a partition

of the pattern graphs of Q on G. They, in turn, define a partition of the results which is

coarser than that of the pattern graphs. The signatures constitute the second (top) level of

the hierarchy.

Hierarchy navigation. In order to navigate through the hierarchy after issuing a query the

user starts from the top level. The top level may have numerous signatures. However, the user

does not have to examine all the signatures. Instead, she is presented with the MC list for

one of the query keywords. We describe below how this list of MCs is ranked. As mentioned

earlier, the MCs of a keyword provide all the possible interpretations for this keyword in the

data. The user selects the MC that she considers relevant to her intent. Subsequently, she is

presented with the MC lists of the other query keywords, though some of the MC lists can be

skipped. This can happen if the user selects an MC which involves more than one keyword

instances that she wants to see combined together in one MC. Once MCs for all keywords have

been selected, that is, a query signature has been determined, the system presents a ranked

list of all the pattern graphs that comply with the signature. The user chooses the pattern

graph of her preference which is evaluated by the system. The result graphs are returned to

the user.

Ranking. The MCs for a keyword are ranked in an MC list based on the following rules:

(a) MCs that involve more than one active keyword instances are ranked first in order of

the number of active keyword instances they contain, (b) class MCs, relationship MCs and

property MCs are ranked next in that order, (c) value MCs follow next and are ranked in

descending order of the frequency of their value. The value frequency fv
m of a value MC m

with property p, class c and value (keyword) v is the number nv
p,c of occurrences of the value

v in matching constructs involving p and c in the data graph divided by the number np,c of

occurrences of property matching constructs in the data graph involving p and c. That is,

fv
m = nv

p,c/np,c.

This ranking of the MCs favors MCs with multiple keyword instances based on the as-

sumption that keywords that occur in close proximity are more relevant to the user’s intent.

Further, it favors MCs whose active keyword matches a schema element (class, relationship or

property), favoring most class MCs which have unique occurrences in the data graph. Finally,

value MCs are ranked at the end since they are more specific. The value frequency of a value

MC reflects the popularity of this MC in the data. Therefore, value MCs with high value

frequency are ranked higher than value MCs for the same value with low value frequency.

The pattern graphs the system ranks share the same signature. Thus, they are r-radius

graphs with the same r. In almost all the cases they have the same number of edges and they

differ only in the relationship edges which are not part of any MC. For this reason, the pattern

graphs are ranked in descending order of their connecting edge frequency defined next. Given

a pattern P , its connecting edge frequency fc(P ) is the sum of the number of occurrences ne

in the data graph of the relationship edges e in P that do not occur in an MC in P divided
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by the total number |ER| of relationship edges in the data graph. That is, if Ec is the set of

these relationship edges in P , fc(P ) =
∑

e∈Ec
ne/|ER|.

In order to rank MCs and pattern graphs our system needs statistics about value MCs and

their property edges and about connecting relationship edges in pattern graphs. This infor-

mation is precomputed and stored with the structural summary when this one is constructed.

Therefore, no access to the data graph is needed.

5. Relaxing Pattern Graphs

A pattern graph selected by the user might return no results, or if it does, it might miss some

interesting results the user would like to see. In order to expand the result set of this pattern

graph chosen by the user and get additional results for the same query signature that involve

the same classes, relationships, properties and values but additional entities, we relax this

pattern graph. In this section, we first define relaxed pattern graphs. We then introduce an

operation on pattern graphs, called vertex split operation, and we show that a pattern graph

can be relaxed by applying vertex split operations. Pattern graphs which are less relaxed are

preferable over pattern graphs which are more relaxed since, they are closer to the original

pattern graph selected by the user. Therefore, we introduce different metrics to characterize

the degree of relaxation of a relaxed pattern graph.

5.1. Relaxed Pattern Graphs

In order to define relaxed patterns, we need the concept of homomorphism between pattern

graphs.

Definition 9 (Pattern Graph Homomorphism) Let P1 and P2 be two pattern graphs.

A homomorphism from P1 to P2 is a function h from the variable vertices (entity variable

and value variable vertices) of P1 to the variable vertices of P2 such that, if X is an entity

variable vertex in P1:

(a) for any type edge (X, c) in P1, there is a type edge (h(X), c) in P2. That is, X in P1

and h(X) in P2 are of the same type c.

(b) for every relationship edge (X,Y ) in P1 labeled by r, where Y is another entity variable

in P1, there is a relationship edge (h(X), h(Y )) in P2 labeled by the same label r.

(c) for every property edge (X,Y ) in P1 labeled by p, where Y is a value variable vertex,

there is a property edge (h(X), h(Y )) in P2 labeled by the same label p.

(d) for every property edge (X, v) in P1 labeled by p, where v is a value vertex labeled by

the value (keyword) V , there is a property edge (h(X), v′) in P2 labeled by the same

label p, where v′ is a value vertex also labeled by V .

Figure 10 shows four pattern graphs P1, P2, P3 and P4 and a homomorphism from the

pattern graph P2 to the pattern graph P1. The vertex mapping is illustrated with dashed

arrows. One can see that there are also homomorphisms from the pattern graphs P3 and P4
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Pat. graph P1 Pat. graph P2

Pat. graph P3 Pat. graph P4
Fig. 10. An original pattern graph P1 and relaxed pattern graphs P2, P3, P4. The thick arrows
indicate vertex split operations and their labels indicate the vertex on which the operation is
applied.

to the graph pattern P1. However, there is no homomorphism from pattern graph P1 to any

one of the other pattern graphs.

We use the concept of homomorphism to define a relation on pattern graphs.

Definition 10 (Relation ≺) Let P1 and P2 be two pattern graphs. We say that P2 is a

relaxation of P1 or that P2 is a relaxed version of P1 if there is a homomorphism from P2 to

P1 but there is no homomorphism from P1 to P2. In this case, we write P1 ≺ P2.

In the example of Figure 10, P1 ≺ P2 and P1 ≺ P3 ≺ P4. No other ≺ relationship holds

between these patterns.

Clearly, relation ≺ is a strict partial order on the set of pattern graphs (it is irreflexive,

asymmetric and transitive). We call its minimal elements original pattern graphs. In an

original pattern graph every class vertex is connected through a type edge exactly to one

entity variable vertex. The patterns initially presented to the user are original pattern graphs

and one of them is selected and possibly relaxed. If an (original) pattern graph P has an

embedding to an RDF graph, a relaxed version of P also has an embedding to the same RDF

graph. The opposite is not necessarily true. Therefore with relaxed pattern graphs we can

expand the result set of an original pattern graph.

5.2. Vertex Splitting

A pattern graph is relaxed by applying the vertex split operation to one or more of its entity

variable vertices. The split operation “splits” an entity variable vertex in a pattern graph into

two entity variable vertices of the same type and partitions the incident edges of the original



378 Relaxation of Keyword Pattern Graphs on RDF Data

entity variable vertex between the two new vertices as indicated by the operation.

Definition 11 (Vertex split operation) Let P be a pattern graph, v be an entity variable

vertex in P connected with a type edge to a class vertex c, and E = {e1, . . . , ek}, k ≥ 1, be

a proper subset of the set of non-type edges incident to v in P . Assume the edges e1, . . . , ek,

are connecting the pairs of vertices (v, v1), . . . , (v, vk), respectively. The vertex split operation

split(P, v, E) returns a pattern graph constructed from P as follows:

(a) Add to P a new entity variable vertex v′ of type c.

(b) Remove all the non-type edges (incident to v) that occur in E.

(c) Add k edges (v′, v1), . . . , (v′, vk) having the same labels as the edges e1, . . . , ek, respec-

tively.

Splitting one or more of the vertices of an original pattern graph P results in a relaxed

pattern graph (a relaxed version of P ). Applying the split operation in sequence can create

a pattern graph where the non-type edges incident to v are partitioned into more than two

sets attached to different vertices, as desired.

Not all the entity variable vertices are interesting for splitting. This operation is defined

only on candidate split vertices. An entity variable vertex is a candidate split vertex if it has

at least two non-type edges.

As an example, consider the original pattern graph P1 of Figure 10. This is a pattern graph

for the keyword query {Cicada, Authentic, Girl}. Applying split(P1, X, {maker}) to P1

results in the pattern graph P2. Applying split(P1, Y, {track}) to P1 results in the pattern

graph P3. Applying, in turn, split(P3, Y, {title}) to P3 produces the pattern graph P4.

Since any partitioning of the edges incident to a vertex in an original pattern graph can

be obtained in a relaxed pattern graph by a successive application of vertex split operation,

the following proposition can be shown.

Proposition 1 Let P1 and P2 be two pattern graphs. Then, P1 ≺ P2 iff P2 can be produced

from P1 by applying a sequence of vertex split operations.

Proof: If part: If P2 can be produced from P1 by applying a vertex split operation then, as

stated in Definition 11, the non-type edges of an entity variable vertex X in P1 are partitioned

into two sets of edges which are incident to vertex X and its split image in P2. Then clearly,

there is a homomorphism from P2 to P1. If a sequence of vertex split operations is applied

then this homomorphism exists by transitivity. That is, P1 ≺ P2.

Only-if part: Since P1 and P2 are both pattern graphs there is a homomorphism from P2

to P1 only if for any entity variable vertex X in P1 there are X1, . . . , Xk, k ≥ 1, vertices of

the same type as X in P2 and the non-type edges of X are partitioned among these vertices

such that each one of X1, . . . , Xk has at least one non-type edge (Definition 9). Then clearly,

P2 can be obtained from P1 by applying in sequence k − 1 vertex split operations for every
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vertex in P1 where k > 1.

The above proposition shows that the vertex split operation is sound and complete w.r.t.

relaxed pattern graphs.

5.3. Measuring Pattern Graph Relaxation

Usually we want to relax a pattern graph so that it is as close to the initial pattern graph

as possible. To this end, we introduce three metrics of decreasing importance to measure the

degree of relaxation of a pattern graph. All these three metrics depend on the vertex split

operations applied to the original pattern graph. The first one is called keyword connectivity

of the pattern graph. In order to define the keyword connectivity of a pattern graph we use

the concept of tightly connected pair of keyword instances.

Two keyword instances in a pattern graph P are tightly connected if there exists a simple

path between them which does not go through a class vertex. For instance, in the pattern

graph of Figure 11(b), the keyword instances Rebirth and mp3 are tightly connected whereas

the keyword instances Cicada and Rebirth are not.

Definition 12 (Pattern graph Keyword connectivity) The keyword connectivity of a

pattern graph is the number of unordered keyword instance pairs that are strongly connected

divided by the total number of unordered keyword instance pairs.

In an original pattern graph, all pairs of keyword instances are strongly connected. There-

fore, its keyword connectivity is 1. Relaxing such a pattern graph by applying the vertex

split operation to any entity variable vertex produces a pattern graph of lower or the same

keyword connectivity. Relaxing an acyclic original pattern graph by applying vertex splitting

to any entity variable vertex always reduces the keyword connectivity of the original pattern

graph. For instance, the keyword connectivity of the pattern graph in Figure 11(a) is 1. The

keyword connectivity of the relaxed pattern graphs of Figures 11(b) and (d) is 0.4 and the

keyword connectivity of those of Figures 11(c), (e) and (f) is 0.3.

In order to distinguish between relaxed pattern graphs of the same pattern graph which

have the same keyword connectivity, we introduce another metric called “dispersion” of the

keyword instances of a pattern graph. Roughly speaking, this metric is used to capture

how much the keywords are dispersed as a result of vertex split operations in the pattern

graph. To formally define the keyword instance dispersion metric we introduce the concept

of “split distance”. The split distance of two keyword instances in a pattern graph P is the

minimum number of class vertices in the simple paths between these two keyword instances

in P excluding the terminal vertices. The term “split distance” is explained by the fact that

a class vertex is introduced in a simple path between two keyword instances only as a result

of the application of a split operation. For instance, in the pattern graph of Figure 11(c), the

split distance of the keyword instances of Gimma and mp3 is 1 and that of Gimma and Rebirth

is 2. The more split operations we apply to the vertices on a path between two keyword

instances, the more syntactically dispersed these keyword instances become in the pattern
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(a) (b)

(c) (d)

(e) (f)

Conn=1
Conn=0.4
KD=6

Conn=0.3
KD=8
Scatt=3.667

Conn=0.4
KD=12

Conn=0.3
KD=8
Scatt=3

Conn=0.3
KD=13

Rank=4 Rank=6

Rank=3Rank=5

Rank=2Rank=1

Fig. 11. The graphs show an original pattern graph (a) and its relaxed pattern graphs (b), (c),
(d), (e) and (f).

graph, reflecting a weaker semantic connection between these keywords.

Definition 13 (Pattern graph keyword dispersion) The keyword dispersion of a pat-

tern graph P is the sum of the split distances of all unordered pairs of keyword instances

in P .

A relaxed pattern graph with smaller keyword dispersion is preferred over a pattern graph

of the same keyword connectivity but higher keyword dispersion since its keywords are as-

sumed to be more closely related. For example, the pattern graphs of Figures 11(b) and

(d) have the same keyword connectivity of 0.4 whereas their keyword dispersion is 6 and 12,

respectively. Hence, the pattern graph of Figure 11(b) will be ranked higher than that of

Figure 11(d). Similarly, the keyword connectivity of the pattern graphs of Figures 11(c), (e)

and (f) is 0.3. However the keyword dispersion of the pattern graphs of Figures 11(c) and (e)
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is 8 and that of Figure 11(f) is 13. Hence, the pattern graphs of Figures 11(c) and (e) will be

ranked higher than that of Figure 11(f).

Nevertheless, it is possible that multiple relaxed patterns of the same original pattern

graph have not only the same keyword connectivity but also the same keyword dispersion.

In order to differentiate between the degree of relaxation of such pattern graphs, we employ

a third metric called scatteredness of a pattern graph. We first define the distance between

two tightly connected keyword instances in a pattern graph as the number of vertices in a

shortest path between them. The distance between a keyword instance which is the label of

a value vertex and a keyword instance which is the label of a property edge incident to this

vertex is 0. In the pattern graph of Figure 11(c) the distance between the tightly connected

keyword instances of Cicada and mp3 is 3 while the distance between the tightly connected

keyword instances of mp3 and good is 4.

A relaxed pattern graph partitions its keyword instances into sets of tightly connected

keyword instances such that any two keyword instances which are tightly connected belong

to the same set. The scatteredness of a pattern graph measures how sparsely are positioned

the keyword instances within the sets of the partition.

Definition 14 (Scatteredness of a pattern graph) Let N be the sum of the distances

between all the unordered keyword instance pairs that are tightly connected, and S be the total

number of tightly connected unordered keyword pairs in a pattern graph P . The scatteredness

of the tightly connected keyword instances of P (scatteredness of P for short) is N/S.

In the example of Figure 11, the pattern graphs (c) and (e) have the same keyword

connectivity of 0.3 and the same keyword dispersion of 8. However, the scatteredness of the

pattern graph of Figure 11(c) is 3.67 and that of the pattern graph of Figure 11(e) is 3. We

use the pattern graph scatteredness to rank the relaxed pattern graphs of a pattern graph

having the same keyword connectivity and keyword dispersion. In our running example, the

pattern graph of Figure 11(e) is ranked before the pattern graph of Figure 11(c), since the

tightly connected keyword instances of the latter pattern graph are more sparsely positioned

than that of the tightly connected keyword instances of the former pattern graph.

As another example, consider the pattern graph of Figure 2(a) and also shown in Figure

12(a) and two relaxations of it shown in Figures 12(b) and (c). The relaxed pattern graphs of

Figures 12(b) and (c) have the same keyword connectivity of and keyword dispersion but the

scatteredness of graph Figure 12(b) is 2 and that of Figure 12(c) is 3. Therefore, the graph

of Figure 12(b) should precede that of Figure 12(c) in a ranking.

5.4. Relaxation Order

Given two pattern graphs P1 and P2, we say that, P2 is “equally relaxed as” or “more re-

laxed than” P1, and we write P1 ≤r P2, if: (a) connectivity(P1) ≥ connectivity(P2), or

(b) connectivity(P1) = connectivity(P2) and dispersion(P1) ≤ dispersion(P2), or

(c) connectivity(P1) = connectivity(P2) and dispersion(P1) = dispersion(P2) and

scatteredness(P1) ≤ scatteredness(P2). Clearly, ≤r is reflexive and transitive and any two

pattern graphs are comparable w.r.t. ≤r. If a set of pattern graphs is ranked with respect to

≤r, with the less relaxed pattern graphs ranked first, we say that it is ranked in relaxation
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Fig. 12. (a) Original pattern graph (b) and (c) relaxed pattern graphs

order.

Since split operations introduce additional type edges in the pattern graph it is not difficult

to see that the following statement holds.

Proposition 2 Given two pattern graphs P1 and P2, if P1 ≺ P2 then P1 ≤r P2.

Proof: By Proposition 1, if P1 ≺ P2, there is a sequence of split operations which produce P2

from P1. Let now, P ′ be a pattern graph produced by applying split operation s to another

pattern P . Since, s cannot not increase the number of tightly connected keyword instance

pairs in P , connectivity(P ′) ≤ connectivity(P ). Similarly, since it cannot reduce the split

distance of any pair of keyword instance in P , dispersion(P ) ≤ dispersion(P ′). Finally, if

s does not change the keyword connectivity and keyword dispersion of P , P can only be a

cyclic pattern graph, and P ′ is produced by applying a vertex split operation to an entity

variable vertex which lies on a cycle in P . Hence, the sets of tightly connected keywords

instances of P are not affected by s. Further, the distance between two tightly connected

keyword instances within a set in P can only increase or remain the same when s is applied.

Therefore, scatteredness(P ) ≤ scatteredness(P ′). Consequently, P ≤r P ′. Since this is true

for all the split operations in the sequence that produced P2 from P1, and ≤r is transitive,

P1 ≤r P2.

Proposition 2 states that P1 ≺ P2 is compatible with P1 ≤r P2. If P2 is produced by

applying a vertex split operation to P1, P1 ≤r P2.

6. Computing Relaxed Pattern Graphs

In this section, we elaborate on the reasons for a pattern graph having an empty answer.

Then, we design an algorithm which computes relaxed pattern graphs with non-empty an-

swers ranked in ascending order of their degree of relaxation. Finally, we show how view

materialization and multiquery optimization techniques can be exploited to support the com-

putation of relaxed pattern graphs and their evaluation on the RDF graph.

6.1. Identifying Empty Vertices for Relaxation

If an original pattern graph for a query has an empty answer on an RDF graph, we would

like to identify vertices in the pattern graph which if not split, the relaxed pattern graph will
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keep producing an empty answer. Splitting these vertices does not guarantee that the relaxed

query does have a non-empty answer. However if we omit splitting any one of these vertices,

the relaxed pattern graph will not return any results. We call these vertices empty vertices.

Definition 15 (Empty vertex) An entity variable vertex X in a pattern graph P on a

data graph G is an empty vertex iff P or any relaxed version of P where X is not split has

an empty answer on G.

The following proposition characterizes empty vertices in a pattern graph. Let X be an

entity variable vertex of type c in a pattern graph P , p′1(X,Z ′
1), . . . , p

′
m(X,Z ′

m) be the property

edges incident to X whose value vertices Z ′
1, . . . , Z

′
m are variables, p1(X, v1), . . . , pn(X, vn) be

the property edges incident to X whose value vertices v1, . . . , vn are not variables (they are

keyword instances), r1(X,Y1), . . . , rk(X,Yk) be the relationship edges from X to some other

entity variable vertices Y1, . . . , Yk of type c1 . . . ck, respectively, and r′1(X,Y ′
1), . . . , r

′
l(X,Y ′

l )

be the relationship edges to X from some other entity variable vertices Y ′
1 , . . . , Y

′
l of type

c′1, . . . , c
′
l, respectively (see Figure 13). We call the graph of Figure 13 the star-join view of

the entity variable vertex X in P .

Fig. 13. Star-join view of entity variable vertex X

Proposition 3 An entity variable vertex X is an empty vertex of pattern graph P on an

RDF graph G iff the star-join view for X in P has an empty answer on G.

Proof:If part: If the star-join view VX of X has an empty answer, then P or any relaxed

version of P where X is not split has an empty answer since VX is a subgraph of this graph.

Therefore, X is an empty vertex.

Only-if part: Let’s assume that X is empty and the star-join view of X is non-empty.

We will show that this is a contradiction. Since X is empty, the pattern graph P or any

relaxed version of it where X is not split do not have an answer on G. Let P ′ be a pattern

graph obtained from P by splitting all entity variable vertices except X until no more split

operations can be applied. Since the star-view join of X is non-empty, P ′ has an answer on

G. This is a contradiction since we assumed that X is empty.

All empty vertices need to be split when relaxing a query in order to possibly get a

nonempty answer for the query.
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6.2. An Algorithm for Computing Relaxed Patterns

We provide now an algorithm which, given the pattern graph P chosen by the user (for

instance, by navigating through the clustering hierarchy discussed in Section 4), gradually

generates relaxed pattern graphs of P having non-empty answers. The algorithm returns

these pattern graphs and their answers in ascending relaxation order. The number of relaxed

pattern graphs returned is controlled by the user.

We provide now the intuition behind the algorithm. The chosen pattern graph might have

an empty answer on the RDF data graph. For example, for the keyword query Q = {Gimma,
Cicada, Rebirth, mp3, good}, the user chosen pattern graph shown in Figure 11(a) does

not have a match on the RDF data graph of Figure 4. Hence, it needs to be relaxed. One can

see that this pattern graph has an empty entity variable vertex (vertex X) since the star join

view of this vertex is empty (Proposition 3). All the empty vertices of a pattern graph need

to be split in order for the resulting pattern graph to have a non-empty answer (Definition

15). Therefore, vertex X needs to be split. Nevertheless, splitting all the empty vertices

of a pattern graph does not guarantee that the resulting pattern graph will not have empty

vertices. For instance, the pattern graphs 11(b) and (d) which are obtained from the pattern

graph 11(a) by splitting its only empty vertex X , still have an empty vertex. Further, even

if a relaxed pattern graph does not have empty vertices, it might still have an empty answer.

In our running example of Figure 11 the relaxed pattern graphs of Figures 11(c) and (e) do

not have empty vertices but have an empty answer on the RDF graph of Figure 4. In both

the above cases, additional split operations need to be applied to candidate split vertices in

order to reach a pattern graph with non-empty answer. On the other hand, splitting the

empty vertices of a graph might result on a pattern graph which has a non-empty answer

and this is the case of the pattern graph of Figure 11(f) which is obtained by applying a split

operation to the only empty vertex X of the pattern graph of Figure 11(d). Since we want

to return to the user relaxed pattern graphs with higher rank (w.r.t. ≤r) first, we chose for

relaxation a pattern graph with the highest rank at every iteration of the algorithm. For the

same reason, if the pattern graph chosen for relaxation does not have empty nodes, we apply

a split operation (in all possible ways) to all candidate split vertices separately. By choosing

a pattern graph with the highest rank for relaxation at every iteration of the algorithm, we

also avoid the redundant generation of relaxed pattern graphs.

6.2.1. Algorithm Description

The outline of our algorithm is shown in Algorithm 1. The input of this algorithm is an

original pattern graph P . The algorithm generates as output a list of relaxed pattern graphs

and their corresponding result graphs on the data graph in increasing order of relaxation.

The data structure R is a list used to store pattern graphs (both original and relaxed). The

variable MoreResults reflects the user’s choice of fetching more answers by further relaxing

the pattern graphs in R. The algorithm first chooses a pattern graph PTop with the highest

rank from R (line 5). The pattern graph PTop is then checked for empty vertices (line 7). If

PTop has non-empty vertices, they are marked (line 8) and they (and their split images) remain

marked in the relaxations of PTop. If EV , the set of empty vertices in PTop is non-empty,

the function GetRelaxedFromEmptyV ertices(PTop, EV ) is called (line 10). This function

relaxes PTop by applying one vertex split operation to all of its empty vertices in all possible



A. Dass, C. Aksoy, A. Dimitriou, and D. Theodoratos 385

Algorithm 1

Input: P : An original pattern graph.
Output: A list of relaxed pattern graphs of P with non-empty answers in ascending relax-

ation order. Every pattern graph is returned along with its answer.
1: R = {P};
2: MoreResults = True;
3: Ans = ∅;
4: while R �= ∅ and MoreResults do
5: PTop ← the pattern graph in R with the highest rank;
6: R← R − {PTop};
7: EV ← ComputeEmptyV ertices(PTop);
8: Mark the new non-empty vertices in PTop;
9: if EV �= ∅ then

10: NewR← GetRelaxedFromEmptyV ertices(PTop, EV );
11: Rank the pattern graphs in NewR in ascending relaxation order;
12: R ← merge R and NewR into one list of patterns ranked in ascending relaxation

order;
13: else
14: Ans← Evaluate(PTop);
15: if Ans �= ∅ then
16: Output (PTop, Ans);
17: MoreResults← input from the user on whether more results are needed;

18: if Ans = ∅ or MoreResults then
19: MoreR← GetRelaxed(PTop);
20: Rank the pattern graphs in R in ascending relaxation order;
21: R ← merge R and MoreR into one list of patterns ranked in ascending

relaxation order;

22: function GetRelaxed(P )
23: R = ∅
24: for every candidate split vertex X in P do
25: RX = {pattern graphs obtained by applying one vertex split operation to X in all

possible ways}
26: R = R ∪RX

27: return R

28: function GetRelaxedFromEmptyVertices(P,EV )
29: R = {P}
30: for every vertex X in EV do
31: RX = ∅
32: for every pattern graph P ′ in R do
33: RX = RX ∪ {pattern graphs obtained by applying one vertex split operation

to X in P ′ in all possible ways}
34: R = R− P ′

35: R = RX

36: return R
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ways (lines 30-35). The resulting relaxed pattern graphs form a new list NewR of relaxed

pattern graphs, which is then ranked in ascending relaxation order and is merged with the list

R (lines 11-12). Otherwise, if PTop does not have empty vertices, it is evaluated over the data

graph and if the set Ans of result graphs is non-empty, PTop is returned to the user along with

Ans (lines 14-16). In case the user wants more results, or the pattern graph PTop produces an

empty answer when evaluated over the data graph, the function GetRelaxed(PTop) is evoked

(lines 18-19). This function relaxes PTop by applying one vertex split operation to all of its

candidate split vertices in all possible ways (lines 24-26). The list of relaxed pattern graphs

returned by GetRelaxed(PTop) is stored in a list MoreR. The relaxed pattern graphs in

MoreR are then ranked and merged with the list R of pattern graphs (lines 20-21). The

whole process, as described in lines 5-21, continues until the user is satisfied with the results

or no more pattern graphs are left in R. The above discussion suggests the next proposition.

Proposition 4 Algorithm 1 correctly computes in relaxation order the relaxed pattern graphs

with non-empty answers of the pattern graph given as input.

Note that during the execution of the algorithm, the user can provide input on how to split

empty or non-empty vertices when a pattern graph comes up for relaxation either because it

has empty vertices or because it does not have empty vertices but has an empty answer. In this

case, the number of split operations applied in this iteration of the algorithm is reduced since

only the alternative dictated by the user is applied to the relevant vertex. We have omitted

this feature in the outline of the algorithm, showing only the fully automated version, for

simplicity of presentation.

The execution cost of our pattern graph relaxation algorithm depends on: (a) the cost

for determining the empty vertices (by evaluating star-join views over the data graph), (b)

the evaluation cost of relaxed pattern graphs over the data graph, and (c) the cost for gen-

erating relaxed pattern graphs using the functions GetRelaxed(P ) and GetRelaxedFrom-

EmptyV ertices(P,EV ). The star-join views can be computed efficiently by exploiting the

indexes defined on entity attributes of the relations for properties and relationships. For the

efficient evaluation of the relaxed pattern graphs we devise and discuss in the next section eval-

uation plans that exploit answering queries using materialized views and multiquery optimiza-

tion techniques. Functions GetRelaxed(P ) and GetRelaxedFromEmptyV ertices(P,EV )

can produce up to (Cn
1 + . . . + Cn

n−1)/2 = 2n−1 − 1 relaxed pattern graphs by applying

vertex split operations on one vertex X , where n is the number of keywords. The worst case

scenario can happen when each one of the n keyword instances in the pattern graph is linked

to X through a different non-overlapping path. Since every pattern graph is a Steiner graph,

it can have up to nr + 1 entity variable vertices, where r is the radius of the Steiner graph.

In the worst case, all of them are need to be split. Nevertheless, even though in the worst

case scenario an exponentially large number of relaxed pattern graphs can be produced, in

practice only few of them are produced. Further, only a tiny portion of those produced are

evaluated for empty vertices and empty results since otherwise the produced relaxed pattern

graphs would be very irrelevant to the original pattern graph and not of interest to the user.

This intuition is also confirmed in our experimental results.
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6.3. Optimization Techniques to Support Query Relaxation and Evaluation

Materializing views in the main or secondary memory is a well-known technique for improving

the performance of queries. This technique has been studied extensively over the years for

queries on relational databases [22, 23], but the contributions for queries over RDF databases

are limited [24, 25]. Queries to be evaluated are rewritten (inclusively or exclusively) using the

stored views [26] in order to produce a query evaluation plan involving the materialized views

which is more efficient than a plan involving exclusively the base relations. The technique

is useful both in a horizontal and in a vertical setting. In a vertical setting (query caching)

queries and subqueries are cached on the assumption that they will be useful for evaluating

subsequent queries. A new query to be evaluated is rewritten equivalently using previously

cached views. The expectation is that the produced evaluation plan will be cheaper and the

savings will amortize the cost for deciding what subqueries to cash and for finding a rewriting

of the query using the materialized views. In a horizontal setting (multiquery optimization)

multiple queries need to be evaluated concurrently. To this end, common subexpressions

among the queries in a given workload are detected on the fly and a global evaluation plan for

all the queries is derived, which might be more efficient to evaluate than evaluating each query

in the workload separately. A global evaluation plan reflects rewritings of the given queries

over the views (common subexpressions) which remain materialized until all the queries in

the workload that use them are evaluated. The expectation is that the savings produced from

the global evaluation plan will amortize the cost for detecting the common subexpressions

and producing the alternative global evaluation plans. The multiquery optimization problem

is a complex one. Not surprisingly, it has been shown to be NP-hard even for conjunctive

relational queries [27]. There are different sources of complexity to these problems in the

general relational context: (a) deciding whether a query Q can be answered using a set of

materialized views and producing an equivalent rewriting of Q using the views, (b) detecting

common subexpressions among queries in a query set, and (c) deciding which views/common

subexpressions to materialize in order to produce an efficient evaluation plan.

Our pattern graph relaxation algorithm generates multiple queries to be evaluated sequen-

tially or concurrently. We discuss in this section how the techniques discussed above can be

leveraged to design a global evaluation plan for all the queries that need to be computed.

The goal is to exploit extensively common subexpressions among the generated queries. We

consider a relational setting where the base relations are property and relationship relations.

Initially, the value matching construct views of a given original pattern graph are evaluated

and cached. Subsequently the star-join views are evaluated using the value matching con-

structs cached. Some of the generated queries are to be evaluated sequentially (when the

pattern graphs with the highest rank is chosen for evaluation) while others are to be eval-

uated concurrently (when value matching construct views or star-join views are evaluated).

Fortunately, these queries are not random queries but subgraphs of the original pattern graph

or of its relaxations. As a consequence, common subexpressions among different queries can

be detected easily based on the overlapping of the corresponding graphs because they are sub-

graphs of these graphs. Query rewritings can also be produced easily by simply joining the

materialized subqueries (graphs) on their common entity variable vertices. Finally, common

subexpressions among queries are selected so as to maximize the number of common entity

variable vertices.
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Base Tables

Value matching 
construct views 
evaluated and 
cached

X Empty

Y Non-empty

Rank=3Rank=2Rank=1

Relaxed Pattern graphs generated by 
splitting the empty vertex X

U Non-empty

V Non-empty

W Non-empty

Relaxed pattern graph P1

X Non-empty

X1 Non-empty

Original Pattern Graph P

Star-join views of P 
generated, evaluated
and cached

Unmarked star-join views of P1

generated, evaluated and cached 

X Non-empty

X1 Non-empty

Pattern graph 

Relaxed pattern graph P2

Common subexpression among  P1, P2 
and P3 detected, evaluated and cached

Relaxed pattern graph P3

Pattern graph 

Unmarked star-join views of P2

generated, evaluated and cached

.

.

.
Fig. 14. A global evaluation plan for relaxed queries



A. Dass, C. Aksoy, A. Dimitriou, and D. Theodoratos 389

Figure 14 shows an example of caching and utilization of different subqueries for the

successive evaluation of relaxed pattern graphs. The flow, from top to bottom, follows the

execution of our algorithm. On the top of the figure, the input original query is shown. Next

follow the based tables needed to compute relaxations of this query. The global evaluation

plan involves computing and caching the value matching constructs of the original query

and its star-join views which are shown in the next two layers. The fifth layer displays a

ranked list of relaxed pattern graphs produced by splitting the empty vertices of the original

pattern graph. The first relaxed pattern graph is considered and checked for empty vertices by

evaluating the star-join views of the unmarked entity variable vertices which are also cached.

As no empty vertex is found, this relaxed pattern graph is evaluated. Its evaluation involves

the computation of the maximal common subexpression of the relaxed pattern graphs and

the cached star-join views of the entity variable vertices. The process continues with the next

relaxed pattern graph.

7. Experimental Evaluation

We implemented our approach and run experiments to evaluate our system. The goal of our

experiments is to assess: (a) the effectiveness of the metrics introduced in ranking the relaxed

pattern graphs, and (b) the feasibility of our system in producing and presenting to the user

the relaxed pattern graphs and their answers in real time.

7.1. Datasets and queries

We used two real datasets Jamendob and YAGO 1.0.0c[28]. Jamendo is a large repository of

Creative Commons licensed music. It consists of 1.1M triples and its size is 85MB. It contains

information about musicians, records, music tracks and their licenses, music categories, track

lyrics and many other details related to music production. This dataset has nearly 300,000

entities belonging to 12 classes. Jamendo has 14 properties and 10 relationships. Much

larger, YAGO is an open domain dataset combining information about resources from different

aspects of life extracted from Wordnetd and Wikipediae. YAGO contains nearly 20 million

triples about approximately 2 million entities belonging to over 180,000 classes. The entities

in the YAGO dataset are characterized by 32 properties. The entities are associated to each

other with 58 relationships.

The structural summary of each dataset was stored in a relational database which con-

tained tables for classes, properties and relationships. The database also stored in a table the

set of values associated with each property of the dataset. The experiments are conducted on

a standalone machine with an Intel i7-5600U@2.60GHz processors and 8GB memory.

For the experiments, we employed three users who were computer science students able

to understand RDF graph notation and were not involved in the research for this paper. For

each of the two datasets we select queries which have no results or very few results. Users were

provided with different queries on those two datasets and in every instance they selected the

most relevant pattern graph among those provided by the system. We report on 20 queries

bhttp://dbtune.org/jamendo/
chttp://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
dhttps://wordnet.princeton.edu/
ehttps://www.wikipedia.org/
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(10 queries for each dataset). The queries cover a broad range of cases. They involve from 3 to

7 keywords, while the selected relevant pattern graphs form a star or a chain or a combination

of them and in the case of YAGO dataset, they also form a cycle. Table 1 shows the keyword

queries and information about their relevant pattern graph on both datasets.

Table 1. The keyword Queries in the two datasets

Query Keywords Structure Empty Empty
# of PG Vertex Result

Jamendo Dataset

J1 teenage, text, fantasie, Document star-chain N Y
J2 signal, onTimeLine, 10002, recorded as, sweet chain N Y
J3 kouki, recorded as, knees star-chain N Y
J4 briareus, reflectin, cool, girl star N Y
J5 kouki, revolution, electro, good star N Y
J6 nuts, spy4, chillout, track star Y Y
J7 biography, guitarist, track, lemonade chain N N
J8 divergence, track, obssession, format, mp32 star-chain N N
J9 fantasie, performance, recorded as, slipstream chain N Y
J10 signal, recorded as, fantasie, onTimeLine, 10001 chain N Y

YAGO Dataset

Y1 sonai, influences, poet, 1414, born, discovers, whirling chain Y Y
Y2 dunderberg, interested, nyc, industrialist, influences, victor star Y Y
Y3 richard, louis, pulitzer, award, american, book star-chain Y Y
Y4 delhi, actor, shahrukh, acted, produced, india, films cyclic Y Y
Y5 ridley, directed, gladiator, douglas, prize cyclic Y Y
Y6 married, actor, wrestler, produced, directed, movie, tripper cyclic N Y
Y7 aristotle, influences, heliocentrism, astronomer, cambridge star-chain N Y
Y8 yoko, artist, grammy, huckleberry star Y Y
Y9 neal, world, interface, cover, jensen star-chain Y Y
Y10 grammy, sonny, produced, howard, created, westlife, songs cyclic Y Y

7.2. Effectiveness in ranking relaxed pattern graphs

For our effectiveness experiments, we used three expert users to determine the ground truth.

For each query, the system produced the candidate pattern graphs. A user selected among

them the pattern graph which is most relevant to the query (refer to Section 4). This is

the original pattern graph. We then run our pattern graph relaxation algorithm until the

third relaxed pattern graph with a non-empty answer is produced and collected the relaxed

pattern graphs generated (which are many more). The generated relaxed pattern graphs are

ranked by our system in relaxation order as described in Section 5.3. In order to measure

the effectiveness of our technique in generating a ranked list of relaxed pattern graphs, we

provided the generated relaxed pattern graphs of each original pattern graph to the expert

users who rank them based on their closeness to the original pattern graph. A ground truth

ranking of the relaxed pattern graphs is produced from different user rankings based on the

sum of the ranks of the relaxed patterns in each ranking. For the comparison, we are using

two metrics: (a) normalized Discounted Cumulative Gain (nDCG) [29], and (b) Kendall tau-b

rank correlation coefficient [30]. Both of them allow comparing two ranked lists of items.

Note that the ground truth list and the one produced by our system might not form a strict

total order. That is, there might be ties (relaxed pattern graphs with the same rank). We
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call a set of relaxed pattern graphs that have the same rank in a ranked list equivalence class

of relaxed pattern graphs. Equivalence classes need to be taken into account in measuring

the similarity of the ranked lists.

The nDCG metric was first introduced in [31] based on two key arguments: (a) highly

important items are more valuable than marginally relevant items, and (b) the lower the

position of the relevant item in the ranked list, the less valuable it is for the user because

the less likely it is that the user will ever examine it. The first argument suggests that the

relevance score of an item in the ranked list be used as a gained value measure. Then, the

cumulative gain (CG) for position n in the ranked list is the sum of the relevance scores of

the items in the ranked positions 1 to n. The second argument emphasizes that an item

appearing at a lower position in the list should have a smaller share of its relevance score

added to the cumulative gain. Hence, a discounting function is used over cumulative gain

to measure discounted cumulative gain (DCG) for position n, which is defined as the sum of

the relevance scores of all the items at positions 1 to n, each divided by the logarithm of its

respective position in the ranked list. The DCG value of a ranked list is the DCG value at

position n of the list where n is the size of the list. The normalized discounted cumulative

gain (nDCG) is the result of normalizing DCG with the DCG of the list that is correctly

ranked (the ground truth list produced by the expert user), by dividing the DCG value of

the system’s ranked list by the DCG value of the correct ranked list. Thus, nDCG favors a

ranked list which is similar to the correct ranked list. The DCG at n is given by the following

formula:

DCGn =

n∑

i=1

2reli − 1

log2(i + 1)
(1)

where reli, the relevance score of the item at position i in the ranked list, is the rank of this

item’s equivalence class in the inverse ground truth equivalence class list. For instance, if an

item belongs to the 2nd equivalence class in a ground truth list of 5 equivalent classes, its

relevance score is 3.

In order to take into account equivalent classes of pattern graphs in the system’s ranked

lists, we have extended nDCG by introducing minimum, maximum and average values for it.

The nDCGmax value of a ranked list RLe with equivalence classes corresponds to the nDCG

value of a strictly ranked (that is, without equivalence classes) list obtained from RLe by

ranking the pattern graphs in the every equivalence classes correctly (that is, in compliance

with their ranking in the ground truth list). The nDCGmin value of RLe corresponds to the

nDCG value of a strictly ranked list obtained from RLe by ranking the pattern graphs in

every equivalence classes in reverse correct order. The nDCGavg value of RLe is the average

nDCG value over all strictly ranked lists obtained from RLe by ranking the pattern graphs

in every equivalence classes in all possible ways. The nDCG values range between 0 and 1.

Figure 15 shows the nDCGmin, nDCGmax and nDCGavg values for the queries of Table 1

on the Jamendo and YAGO datasets. As one can see, all the values are very close to 1 and

the min and max values of nDCG are close to each other. Specifically, the nDCGavg ranges

between 1 and 0.789 in the Jamendo dataset and between 1 and 0.955 in the Yago dataset.

The Yago dataset displays slightly better nDCG values. This is due to the fact that in the

Yago dataset, the original pattern graphs have empty vertices in most cases while the opposite
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is true in the Jamendo dataset. The empty vertices guide the relaxation process narrowing

the relaxation choices while in the absence of empty vertices, relaxed pattern graphs are

produced by splitting all the candidate split vertices. When multiple vertices are split, the

system creates larger equivalence classes and this negatively affects the nDCG values.

(a) Jamendo dataset (b) YAGO dataset

Fig. 15. nDCGmax, nDCGmin and nDCGavg for the queries on the Jamendo and YAGO datasets

The Kendall tau rank correlation coefficient [32] was proposed to address the problem

of measuring the association between two different rankings of the same set of items. For

example, suppose that a set of items is given an order A which is correctly defined with

reference to some quality q. An observer ranks the same set of items in an order B. A

characteristic question that arises here is if the comparison of the orders B and A suggests

that the observer possesses a reliable judgment of the quality q. In our context, we want to

see if the comparison of the ranked list produced by our system (the relaxation order) with

the correctly ranked list which is defined by the user suggests that the former possesses a

reliable judgment of the closeness of the relaxed pattern graphs to the original pattern graph

(which expresses the user’s intention). However, the Kendall tau coefficient is useful when

the ranked lists to be compared are strictly ranked. For this reason, we adopt here a variant

called Kendall tau-b coefficient [30], which can deal with equivalent classes of items in the

ranked lists. The Kendall tau-b coefficient is given by the following formula:

τb =
(number of concordant pairs)− (number of discordant pairs)√

Ng ×
√
Ns

(2)

where Ng and Ns are the number of pairs of items which do not belong to the same equivalence

class in the ground truth list and the system generated list, respectively. The value of τb
ranges from -1 to 1. If two items have the same (resp. different) relative rank order in the

two lists, then the pair is said to be concordant (resp. discordant) pair. If two items are in an

equivalence class in at least one of the lists then the pair is neither concordant nor discordant.

If the number of concordant pairs is much larger than the number of discordant pairs, then the

two lists are positively correlated (the coefficient is close to 1). If the number of concordant

pairs is much less than the discordant pairs, then the two lists are negatively correlated (the

coefficient is close to -1). Finally, if the number of discordant and concordant pairs are about

the same, then the two lists are weakly correlated (the coefficient is close to 0). In this case,
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there is no association between the lists. Figure 16 shows the Kendall tau-b rank correlation

coefficient for the queries of Table 1 on the Jamendo and YAGO datasets. As we can see, all

the values are positive and in most cases are 0.8 or higher (in the -1 to 1 scale).

(a) Jamendo dataset (b) YAGO dataset

Fig. 16. Kendall tau-b coefficient for the queries on the Jamendo and YAGO datasets

7.3. Efficiency of the system in producing relaxed results

In order to asses the feasibility of our system, we ran our algorithm on the pattern graphs

selected by the user for the queries of Table 1, and we measured the time needed to produce

the first three consecutive nonempty relaxed pattern graphs and their answers. Many more

relaxed pattern graphs are typically produced and ranked in the background, and a number

of them are checked for empty answers. The queries were selected so that the original pattern

graph for almost all of them has an empty answer. The Yago and the Jamendo datasets are

stored in a relational database with one fully indexed relation for every distinct property and

relationship in the datasets. To assess the efficiency of the system we evaluated the queries:

(a) over the base relations with a cold cache, and (b) using the multi-query optimization and

caching techniques presented in Section 6.3. Figure 17 shows the measured times.

(a) Jamendo dataset (b) YAGO dataset

Fig. 17. Efficiency improvement achieved my Multiquery optimization on the Jamendo and
YAGO datasets

One can see that the displayed times for all the queries are interactive. Further the opti-
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mization techniques are shown to substantially improve the execution time of the algorithm,

in most cases by more than one order of magnitude. The time for constructing and ranking

the relaxed pattern graphs are not significant compared to relaxed pattern graph evaluation

time and they are not shown in Figure 17.

8. Related Work

Over the years, different approaches have been proposed and algorithms have been designed

to deal with the challenges posed by keywords based search on graph data.

Results as Trees: A number of papers address keyword search on graph data and return

answers which are trees [1, 2, 3, 4, 5]. In [1], a backward search algorithm, called BANK

is presented for finding Steiner trees. The problem of finding Steiner trees is NP-complete.

Different techniques are used to work around NP-completeness. In [3], a dynamic program-

ming approach applicable to only few keywords and having an exponential time complexity is

employed. In [5], a polynomial delay algorithm is introduced. The algorithm in [2] produced

trees rooted at distinct vertices. This algorithm was supplemented by BLINK [4] with an

efficient indexing structure.

Results as Graphs: Although, tree-based methods produce succinct answers, answers from

graph-based methods are more informative. However, only few contributions [6, 7, 8] are

there in the literature which return answers as graphs, subgraphs of the data graph. A

recent graph-based approach [6] computes all possible r-radius Steiner graphs and indexes

them. This method is prone to produce redundant results since it is possible that a highly

ranked r-radius Steiner graph is included in another Steiner graph having a larger radius.

The algorithm in [7] finds multi-centered subgraphs called communities containing all the

keywords, such that there exists at least one path of distance less than or equal to Rmax

between every keyword instance and a center vertex. Later in [8], r-cliques containing all the

keywords are found such that the distance between any two keywords matching vertices is no

more than r. Finding r-clique with the minimum weight is an NP-hard problem. Hence, the

authors provided an algorithm with polynomial delay to find the top-k r-cliques where r is an

input to the algorithm. Predicting an optimal r for producing r-cliques is a challenge because

it is possible that there exists no clique with that r or less.

Keyword Search on RDF Graphs: All the above approaches are proposed for generic

graphs, and cannot be used directly for keyword search over RDF graph data. This is because,

the edges of an RDF graph represents predicates, and predicates can be matched by the

keywords of a keyword query. The approaches proposed for keyword search on RDF data can

be classified into two categories: (a) data-based approaches, and (b) schema-based approaches.

Data-based approaches [12, 33] explore the data graph and retrieve subtrees/subgraphs

connecting all the keywords of the query. It is to be noted that in contrast to structured

databases, in a semi-structured database setting there is a lot of work which adopts schema-

agnostic approaches. This is expected since unlike semi-structured data, the data stored in

relational databases must adhere to a specific schema. Although these approaches generate

precise answers, they are prone to produce a plethora of candidate results posing a challenge

in: (a) identifying relevant results and (b) scaling satisfactorily with a growing size of the data

and/or number of keywords in a query. Our approach avoids these problems by exploiting
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the structural summary of the data graph and user feedback in selecting a relevant pattern

graph.

Schema-based approaches [10, 11, 14, 19, 20, 34] rely also on a reduced size structural

summary graph extracted from the RDF data graph by mapping RDF classes to nodes and

the properties between the entities of two classes to edges between these class nodes labeled by

the property names. The process of keyword query evaluation with schema-based approaches

involve two phases. The first phase involves finding the schema elements that match the query

keywords and then generating the schema for all possible possible results of the query in the

form of pattern graphs. Since the structural summary of an RDF graph is typically much

smaller that its corresponding data graph, these approaches allow for an efficient exploration

of the structural summary and generation of all possible pattern graphs. These pattern

graphs can be expressed as structured queries (e.g., SPARQL). The second phase consists of

evaluating these structured queries over the data graph to retrieve query answers. Given that

keyword search is ambiguous these approaches often exploit relevance feedback from the users

in order to identify users’ intent [11, 14, 35]. A hierarchical clustering mechanism and user

interaction at multiple levels of the hierarchy can be used to facilitate disambiguation of the

keyword query and to support the computation of the relevant results. Such a mechanism

is suggested in [36, 37] in the context of tree data and in [14] in the context of RDF data.

Although summary based approaches proved to have better performance scalability compared

to data-based approaches, they provide an approximate solution and they might miss relevant

results for a given keyword query. As RDF data graphs are practically schema free, a summary

graph extracted from an RDF graph cannot capture completely all the information in the RDF

graph.

Result Space Expansion by Relaxation Techniques: In this paper we provide a pattern

graph relaxation technique to address the issue related to the use of the structural summary.

Relaxation techniques are studied in [38, 39, 40] in connection with XML data in order to

expand the result space of a query. These techniques have been developed in a different context

since they are applied to queries over tree data. Further, their goals and processes are different:

reference [40] relaxes weighted tree pattern queries with descendant edges in order to permit

approximate matching on XML data. Reference [39] provides a framework for generating

similar satisfiable queries, when the user tree pattern query is unsatisfiable. Reference [38]

relaxes the MaxMatch semantics [41] of keyword queries on XML data so that they also return

LCA nodes which are not SLCA nodes. In contrast, given a user keyword query on an RDF

graph, we use the structural summary to construct pattern graphs which represent different

interpretations of the keyword query. Then, we gradually generate and rank relaxed versions

of one of them selected by the user as the most relevant interpretation to her intent. The

goal is to expand the (possibly empty) result space of the relevant pattern graph with results

which are close to the user intent by evaluating relaxed pattern graphs according to their rank

on the RDF graph. Relaxing conjunctions of attribute-value pairs has been considered in [42].

However, this work does not consider at all relaxing structural information in pattern graphs

which is the focus of this paper. Relevant to our work are also the papers [43, 44] which

focus on relaxing a conjunctive SPARQL query. Their approach involves substituting class

or relationship labels in the query graph by related terms or variables. Instead, our approach

is a relaxation approach for a pattern graph produced from a keyword query. As such it is
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not comparable to existing relaxation approaches like [43, 44]: our query evaluation process

involves a disambiguation phase during which the user explicitly selects class and relationship

labels and the pattern graph reflecting his intent. That is, class and relationship labels are

invariants in our context. Our approach cannot be compared to previous RDF relaxation

approaches as they attempt to relax what in our approach is an invariant. Reference [45] is

a preliminary version of part of the work presented in the current paper.

9. Conclusion

Exploiting the structural summary has emerged in recent years as a promising technique for

evaluating keyword queries over RDF graphs. Structural summary-based approaches compute

pattern graphs (structured queries) as possible interpretations of the unstructured keyword

query and often rely on user feedback to identify the pattern graph which is most relevant to

the user intent. However, since summaries are approximate representations of the data, these

approaches might return empty answers or miss results which are relevant to the user intent.

To address the drawback while maintaining the advantages of these approaches, we have

presented a novel approach that permits the relaxation of the most relevant pattern graph

selected by the user and expands its result space with similar results. We used pattern graph

homomorphisms to introduce relaxed pattern graphs. We then defined an operation on pattern

graphs and we prove that it is sound and complete with respect to relaxed pattern graphs. In

order to characterize the semantic closeness of relaxed pattern graphs to the original pattern

graph, we introduced different syntax and semantic-based metrics that allow us to compare

the degree of relaxation of relaxed pattern graphs. We provided results to identify the reasons

for a pattern graph having an empty answer and we use them to design an algorithm which

computes relaxed pattern graphs with non-empty answers in ascending relaxation order. We

design optimization techniques that exploit subquery caching and multiquery optimization to

support the computation of relaxed pattern graphs. Our experimental results demonstrate the

effectiveness of our approach in ranking the relaxed pattern graphs and the efficiency of our

system and optimization techniques in producing relaxed pattern graphs and their answers.

We are currently working on comparing results from different relaxed pattern graphs. The

goal is to identify results which turn out to be more relevant to the original pattern graph due

to additional connections between their vertices discovered in the result sets of other relaxed

pattern graphs.
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