
Journal of Web Engineering, Vol. 16, No.3&4 (2017) 293-310
© Rinton Press

PREDICTION OF DEFECT DENSITY FOR OPEN SOURCE SOFTWARE USING
REPOSITORY METRICS

DINESH VERMA

Jaypee University of Engineering and Technology, Guna, India

dinesh.hpp@gmail.com

SHISHIR KUMAR

Jaypee University of Engineering and Technology, Guna, India
dr.shishir@yahoo.com

Received September 9, 2015
Revised December 26, 2016

Open source software refers to software with unrestricted access for use or modification. Many software

development organizations are using this open source methodology in their development process. Many

software developers can work in parallel with the open source project using the web as a shared resource.

The defect density of such projects is often required to be predicted for the purpose to ensure quality

standards. Static metrics for defect density prediction require extraction of abstract information from the

code. Repository metrics, on the other hand, are easy to extract from the repository data sets. In this paper,

an analysis has been performed over repository metrics of open source software. Further, defect density is

being predicted using these metrics individually and jointly. Sixty two open source software are

considered for analysis using Simple and Multiple Linear Regression methods as statistical procedures.

The results reveal a statistically significant level of acceptance for prediction of defect density using few

repository metrics individually and jointly.

Key words: Defect Density, Repository Metrics, Simple and Multiple Linear Regressions.
Communicated by: M. Gaedke & Y. Deshpande

1 Introduction

Open source software becoming important for software industries. These types of software system are
being used by both business professionals and academician in their work. Such projects are mostly
developed outside the companies, by the volunteers. The development methodologies of such type of
projects are quite different from the methodology used for commercial projects. The developers of
these projects can work in parallel using the different shared resources during development,
consequently, more individuals and companies are involved in the development process for open
source projects. Unlike traditional commercial development methodologies, deadlines and number of

294 Prediction of Defect Density for Open Source Software using Repository Metrics

assignments are not fixed in the development of open source software. Using open source software
development methodology, high level of quality can be achieved in comparison to traditional
commercial development methodology [1, 22]. Defect density is the parameter that can be used to
assess sensitivity of defect for specific software. The predication of defect density for open source
software helps in maintaining an acceptable level of quality for further versions of software. Most of
the researches for defect density prediction of open source software are based on the static metrics of
projects. Chidamber and Kemerer defined object oriented static metrics of the software [3]. The
analysis of such type of metrics required lots of information from the source code files of the project.
Extraction of information for these static metrics from the abstracted data requires lots of efforts. An
approach for prediction of defect density of open source software with analysis of information that can
be easily extracted from the project is need of time. Repository metrics like, size of project, number of
bugs, total number of downloads, number of developers, etc. are easily available on the project pages.
This information can be easily made available for analyzing the approach for defect density prediction.
In this paper relationship between different repository metrics of open source software with defect
density has been established. This relationship can be used by the developer of open source software to
predict the defect density of next version and maintain the acceptable level of quality. In this paper five
repository metrics have been identified to predict the defect density of open source software. Initially,
the prediction of defect density by individual metrics, and then prediction with all metrics jointly has
been discussed. The proposed approach has been analyzed with 62 open source software projects
available at SourceForge.net [2]. The simple linear regression method has been used to predict defect
density by repository metrics independently. The multiple linear regression method has been used to
predict the defect density by repository metrics jointly. Both simple and multiple regression results
show a statistically significant prediction of defect density by repository metrics independently and
jointly.

This paper is organized as follows. In section 2, the related work carried out in terms to defect density
prediction by the different factors of open source software is discussed. In section 3, repository metrics
of open source software used in this research are discussed. In section 4, formulation of research
hypotheses, data collection, and research methodology are discussed. In section 5, experimentation on
the collected data for proving the research hypotheses is discussed. In section 6, the summary of results
comes from different experimentation have been discussed and compared with the previous works
discussed in section 2. In section 7, possible threats to validity for this research are discussed.
Conclusions and future works directions are mentioned in section 8.

2 Related Work

Static metrics have been used in most of the research with open source software for prediction of
defect density. In the study of Verma and Kumar [19], the module size of software has been used to
predict the defect density. In another study Verma and Kumar [20] shows exponential relationship of
defect density with module size where the power of size is not restricted to integer values.

In another research, static code metrics have been used to predict the defect density using available
public data sets [24]. Very limited work has been carried out in the establishment of a relationship
between defect density and repository metrics of open source software. Study by Weyuker, Ostrand,
and Bell [4] concludes that many developers do not have a significant impact on the prediction of

D. Verma and S. Kumar 295

defect density. They rely on their analysis of four large software projects from the industries. In this
approach negative binomial regression method has been used for prediction of faults. A significance
impact on software quality by risk assessment has been modeled based on Model-View-Controller
(MCV) software architecture [25].

Subramanyam and Krishnan [7] mentioned significant association of object oriented metrics given
by Chidamber and Kemerer [3] object oriented metrics suite with defects. They have concluded that
even after controlling the size of software, these metrics show the implications on software defects.

In a study, suitable method to calculate the object oriented metrics of open source software have
been described [5]. Using logical and linear regression statistical methods they assess the applicability
of the different object oriented metrics to predict the number of bugs in classes. Their analysis was
based on the seven released versions of Mozilla’s. A semi-supervised learning ROCUS has been
proposed that address the two major practical issues in software defect detection. First, it is rather
difficult to collect a large amount of labeled training data for learning a well-performing model;
second, in a software system there are usually much fewer defective modules than defect-free modules,
so learning would have to be conducted over an imbalanced data set [23].

Knab, Pinzger, and Bernstien [6] used source code, modification, and defect measure to predict the
defect density of Mozilla’s open source projects. They have applied the Data mining approaches on
these metrics for analysis of their hypothesis. The study shows a small prediction of defect density
based on lines of code.

Mockus, Fielding, and Herbsleb [8] show the importance of developer participation in the
development of two large open source software projects the Apache web server and Mozilla browser.
Five user’s perspective naming Users’ expectations, Usability bug reporting, Interactive Help Features,
Usability learning and, usability guidelines have great influence on the open source software usability
[21].

Sherriff, Williams, and Vouk [9] proposed a method for estimating defect density of Haskell
programs by using in-process metrics suite. The multiple linear regression statistical analysis shows a
significant prediction of defect density by static metrics.

Rahmani and Khazanchi [10]used the repository metrics of open source software to predict the
defect density. They have used only three repository metrics as a predictor of defect density. The
number of commit of projects has not been considered in their study.

In another study of open source projects Caglayan, Bener, and Koch [11] focused on improving
the prediction performance of achieving lower probability of false alarm rate of defect predictor. They
also discuss the importance of repository metrics over the other metrics of software.

In all the research work mentioned above on open source software, prediction of defect density
does not indicate the relationship of defect density with other repository metrics. In proposed work, the
relationship has been established of defect density with some important repository metrics of open
source software.

296 Prediction of Defect Density for Open Source Software using Repository Metrics

3 Repository Metrics

Static metrics have been used in most of the research with open source software for prediction of
defect density. In the study of Verma and Kumar [19], the module size of software has been used to
predict the defect density. In another study Verma and Kumar [20] shows exponential relationship of
defect density with module size where the power of size is not restricted to integer values.

In most of the previous research, traditional static code attributes are used for modelling software
data for their research analysis. Although, static code attributes can automatically be extracted from the
source code, the information is abstracted in the database in terms to maintain the authenticity of
information. Extraction of static code attributes requires more effort; there is a need to explore
alternative metric sets such as repository metrics that can be easily extracted from the project web
pages. In the proposed approach, five metrics have been identified, and analysis has been performed to
establish the relationship between these metrics and defect density of open source software. The
conceptual definition of each metric is as follows:

a. Software Size: - Size measures of software have direct application to the planning, tracking,
and estimating the software projects [12]. Software size can be measured in Lines of Code
(LOC) or can be measured in number of Function Points (FPs). In the work presented through
this paper Lines of Code has been used to measure the size of software. The size has been
considered for analysis that is available on the project page at the time of data collection.

b. Defects: - According to the IEEE standard classification of software anomalies [13], defects
are imperfection or deficiency in a work product that work product does not meet its
requirement or specifications and needs to be either repaired or replaced. The total number of
software defects has been taken from the project statistics page for analysis of this study.
Total numbers of defects are the numbers that have been collected at the time of data
collection.

c. Number of Developers: - Developers of the open source software are defined as the total
number of persons those download the project and contribute some modification/updating in
the project. Individual developers make modification/updating in the project according to
their own experience and expectation of the project. These types of modifications vary when
the developers varies. The total number of developers of project for analysis has been taken
from the project page at the time of data collection.

d. Number of Downloads: - This is the total number of downloads for the particular projects
given in the project statistics at the time of data collection.

e. Commits: - In open source software commits basically record the changes made by developers
in the source code of the project [14]. These changes take place when the developer makes
any addition, deletion, and/or modification in the source code.

f. Defect Density: - Defect density of software can be defined as the ratio of total number of
defects with total size of software. In this study the size has been taken as a KLOC for
calculating defect density.

D. Verma and S. Kumar 297

4 Research Hypotheses

As mentioned in previous sections, the work presented through this paper focused to establish the
relationship between repository metrics of open source software with the defect density. The
relationship further used to predict the value of defect density with these predictors individually and
jointly. This prediction can be used to control the quality of open source software at an acceptable
level. In the proposed approach five repository metrics have been used such that software size, total
defects, number of developers, number of downloads, and number of commits. To accomplish the
objective, six hypotheses have been designed to address the relationship of repository metrics with
defect density in concern with open source software.

4.1. Formulation of Research Hypotheses

Following six hypotheses have been formulated to analyze the impact of five repository metrics on the
defect density:

Hypothesis 1 (H1): - Software size of open source software has a negative relationship with Defect
Density.

In open source software the size measured as a Kilo line of code (KLOC). Most of study shows that
when the size of traditional software increases, defect density will also increase. In a research by Basili
and Perricone [15] shows that defect density will decrease when the size is increasing at a certain level.
The analysis proposed by Basili’s study deals with the small size of modules only. So a relationship
needs to be developed which can cater to the need for all possible sizes of models and used for
prediction of defect density for further similar projects. In the proposed work a relationship of the size
of project has been established with defect density.

Hypothesis 2 (H2): - Number of defects has a positive relationship with Defect Density in Open Source
Software.

Open source software is openly used and modify by the many numbers of users/developers. Although,
the number of defects is increasing as the modifications are made to the project’s, defects are found
and fixed very quickly in open source software because there are more user / developers looking for
the problem. These activities may lead to increase the size of updated version of open source project in
terms to solve the problem or fixing the defects. So a relationship required to be established between
the total numbers of defects with the defect density.

Hypothesis 3 (H3): - More Number of developers in an Open source project has lower defect density.

Number of developers increases with time in open source projects. These developers focus to identify
the problem and make some changes to repair or fix the problem in the projects. Individual developers
make modification/updating in the projects according to their own experience and expectation of the
project. These types of modifications vary when the developers varies. To evaluate the impact of

298 Prediction of Defect Density for Open Source Software using Repository Metrics

different developers on defect density, a relationship of defect density required to be established with
numbers of developers in open source projects.

Hypothesis 4 (H4): - More downloads of open source software increase the defect density.

Number of downloads for a particular open source software, indicate the usability and effectiveness of
projects among the software users. A relationship of defect density required to be established with the
number of downloads.

Hypothesis 5 (H5): - Number of commits has a positive relationship with defect density in open source
projects.

During the software evaluation, continues changes are made to the systems those are stored in the
version control systems of the software. These changes are termed as the commits made by different
developers. These changes may lead to insert new defects in the software. So these commits can
directly affect the defect density of the software. A relationship required to be established between
defect density and number of commits make by different developers.

Hypothesis 6 (H6): - Software size, number of defects, number of developers, number of downloads
and number of commit are jointly related to defect density.

The combined effect of software size, number of defects, number of developers, number of downloads,
and number of commits on the defect density needs to be analyzed. Composite predictions of defect
density by all the metrics jointly, need to be discussed. So the model has been formulated that uses all
the five repository metrics as predictors for the defect density.

4.2. Data Collection

In this study six hypotheses have been formulated in section 4.1, these hypotheses required to be
analyzed on the real data from the open source projects. For analysis of proposed hypotheses 62 open
source projects have been randomly collected from the SourceFourge.net (“SorceForge”, 2015), with
the following considerations:

a) Projects having the 80% and above recommendation have been selected.

 This recommendation means that the project has been used by 100 persons, and 80 persons have
rated this project as a good project and recommend it.

b) Projects developed using programming languages as JAVA.

 There are so many projects available in different languages. In this study, we have filtered out
only JAVA based projects.

D. Verma and S. Kumar 299

c) Software size has been calculated for Windows environment.

 The projects developed on the windows environment have been selected. Size of projects is not
dependent on operating environments.

d) Bugs data are clearly available on the project statistics page.

 The project those satisfying above three conditions, but the details of bugs data are not clearly
available, have been rejected.

The data collected from the project web page as an overall project not for a single release, such as Size
of project, total number of defects, total number of commits, total number of downloads, and total
number of downloads. All the metrics values taken from the project web pages are available on the
date of data collection.

The summary of descriptive statistics for Sixty two projects is given in Table 1.

Table 1: Descriptive statistics of dataset of 62 projects

Metric Mean Median Standard
deviation

Maximum Minimum

Software Size 178.56 84.2 262.78 1391 3

Number of Defects 873.36 408.5 1123.8 4912 18

Number of Developers 14.98 10 14.01 61 1

Number of Downloads 2238.86 1563.5 2165.9 9389 277

Number of Commits 3063.36 1136.5 4315.36 18121 9

Defect Density 7.28 4.19 7.15 42.89 1.06

4.3. Research Methodology

To analyze above six hypotheses, linear regression statistical method has been used to prove these
hypotheses. For linear regression method SPSS tool [16] has been used. In the above mentioned
relationship, simple linear regression method has been used for establishing the relationship of each
individual predictor. Further, multiple linear regression method has been used for showing the joint
impact of predictors on defect density.

Before performing the linear regression with the data set, first normality test has to be performed
[17,18]. The information randomly collected from the SourceFourge, could not clear the normality test.

300 Prediction of Defect Density for Open Source Software using Repository Metrics

So initially the logarithm value of each metric has been taken and checked for the normality. All the
metrics data pass the normality test with their logarithmic value.

After performing the normality test simple linear regression and multiple linear regressions have been
performed for individual and joint effect respectively.

5 Experimental Result

As discussed in the previous section, first the normality test has to be performed with the logarithmic
value of each metrics data set. The normality tests are supplementary to the graphical assessment of
normality. The main tests for normality are Kolmogorov-Smirnov (K-S) test and Shapiro-Wilk (S-W)
test (Elliot & Woodward, 2007). The K-S test is performed if the sample size is more than 2000, and
the S-W test is performed for the sample size less than 2000 (Elliot & Woodward, 2007). The sample
size in this research is only 62, so only S-W values for normality are considered.

The result of normality tests for all considered metrics are summarized in Table-2 and corresponding
Graph for Normality Test of all metrics shown in Figure 1.

Table 2: Normality Test Results of all metrics

Metric Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Size of Project .072 61 .200 .985 61 .669

No. of Defects .089 61 .200 .974 61 .216

No. of Developers .055 61 .200 .976 61 .265

No. of Downloads .106 61 .080 .965 61 .077

No. of Commits .085 61 .200 .961 61 .048

The Table-2 indicates the statistical result of normality test. In this result Sig. Value (also call this
as p value) is greater than 0.05 (Elliot & Woodward, 2007), it indicates that the concern metrics values
are normally distributed. Figure 1 shows the graphs of normal distribution of all metrics values. In each
graph most of the points are conceding on the line that indicates the normal distribution.

According to the result of normality tests of individual metrics data set, the p value for all metrics
data set is equal or greater than 0.05. Now linear regression statistical test can be performed on the
logarithmic value of each metrics data set.

The regression tool in SPSS provides the result for linear regression test in terms of different
parameters. Regression analysis is used to describe the response of a dependent variable which
changes according to magnitude of the independent variables. It is one of the form of inferential
statistical analysis which indicates the relationship between one dependent variable and one or more
independent variables.

D. Verma and S. Kumar 301

R2 is a statistical measure of how close the data are to the fitted regression line, 100% indicates
that the model explains all the variability of the response data around its mean. Like R2 adjusted R2
also indicates how well terms fit a curve or line, but unlike it adjusts for the number of terms in a
model. Adding more number of useless variables to a model, adjusted R2 will decrease and adding
more useful variables will result an increase in adjusted R2 value. The Standard Error of the Estimate
is the standard deviation of the data about the regression line. It is a measure of the variability of
predictions in regression.

Analysis of Variance (ANOVA) provides information about levels of variability within a
regression model and forms a basis for tests of significance. Sum of Squares represents the measure of
variation from the mean. The degree of freedom (df) is the number of variables that are free to vary. It
is one less than the number of parameters being estimated. Mean squares are estimates of variance
across groups. The F ratio is the ratio of two mean square values.

Figure 1: Normality Graph for all Metrics

 Unstandardized regression coefficients (B) show the average change in the dependent variable
associated with a 1 unit change in the dependent variable, other variables being constant. However,

302 Prediction of Defect Density for Open Source Software using Repository Metrics

Standardized beta coefficients (Beta) are the estimations that have been standardized so that the
variances of dependent and independent variables are 1. T statistic is a ratio of the departure of an
estimated factor from its theoretical value and its standard error. It represents the change between the
mean scores of two groups, while considering any variation in scores. R-squared value, significance of
the observed regression line (p- value). The p- value is the significance level that is used to accept or
reject the hypothesis. P-value defined as a probability of error that involved in accepting our observed
result as a valid result.

 To accept the hypothesis, the p-value must be less than or equal to 0.05, otherwise reject the
hypothesis (Elliot & Woodward, 2007). The R-squared value represents the percentage extent of
variation in the dependent variable presented by the independent variable (Elliot & Woodward, 2007).
For example, in a linear regression result, the p-value 0.03 indicates that, accepting variability of
dependent variable by independent variable, only 3% of the population does not valid. The R-squared
value 0.16 indicates that 16% of variability presented by the independent variable.

Now each hypothesis have been analyzed using the linear regression statistical method and following
results have been generated:

5.1 Analysis for H1

After performing the regression on the SPSS tool with taking Defect Density as dependent variable
and Size of Project as predictor, the results are shown in Table 3.

Table 3: Simple Linear Regression result for H1

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.294 0.86 0.071 0.82990

ANOVA

Model
Sum of
Squares

df Mean Square F Sig.

1

Regression 3.896 1 3.896 5.656 0.021

Residual 41.324 60 0.689

Total 45.220 61

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1
(Constant) 2.383 0.342 6.974 0.000

Size of project -0.178 0.075 -0.294 -2.378 0.021

D. Verma and S. Kumar 303

As shown in the Table-3, the R-Squared value indicates that 8.6% of variability of defect density
predicted by the Size of Project. It also indicates that some other factors predict the remaining 91.4%
of variability. The p- value is 0.021 that is less than 0.05. So this hypothesis can be accepted. The
negative value of B for Size of the project indicated that defect density has the negative relation with
Size of the project. So when the sizes will increases the defect density will be decreases.

5.2 Analysis for H2

Now performing the regression on the SPSS tool with taking Defect Density as dependent variable and
No. of Defects as predictor, the results are shown in Table 4.

As shown in Table-4, the R-Squared value indicates that 9.7% of variability of defect density predicted
by the No. of Defects. It also indicates that some other factors predict the remaining 90.3% of
variability. The p- value is 0.014 that is less than 0.05. So this hypothesis can be accepted. The
negative value of B for Number of Defects indicated that defect density has the negative relation to
Number of defects.

5.3 Analysis for H3

Now performing the regression on the SPSS tool with taking Defect Density as dependent variable and
No. of Developers as predictor, the results are shown in Table 5.

As shown in Table-5, the R-Squared value indicates that 7.4% of variability of defect density predicted
by the Number of developers. The p- value is 0.032 that is less than 0.05 indicates this hypothesis can
be accepted. The negative value of B for Number of developers the project indicated that defect
density is negatively related with this metric.

5.4 Analysis for H4

For analyzing H4, No. of Downloads has been used as a predictor on SPSS tool. The dependent
variable will remain Defect Density. The results of this analysis are shown in Table-6.

According to the Table-6, the p-value is 0.353 that is greater than 0.05, hence the hypothesis has been
rejected. The significance of this relationship is very less that indicates the inability in defect density
prediction by number of downloads.

5.5 Analysis for H5

For analyzing H5, No. of Commits has been used as a predictor on SPSS tool. The dependent variable
will remain Defect Density. The results of this analysis are shown in Table-7.

According to results from Table-7, the p-value is greater than 0.05, hence the hypothesis has been
rejected. This is similar to the hypothesis H4, indicating the inability of Number of commits to predict
the defect density.

304 Prediction of Defect Density for Open Source Software using Repository Metrics

Table 4: Simple Linear Regression result for H2

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.312 0.097 0.082 0.82475

ANOVA

Model
Sum of
Squares

df Mean Square F Sig.

1

Regression 4.407 1 4.407 6.479 0.014

Residual 40.813 60 0.680

Total 45.220 61

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1
(Constant) 0.489 0.453 1.081 0.284

No. of Defects 0.189 0.074 0.312 2.545 0.014

Table 5: Simple Linear Regression result for H3

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.272 0.074 0.059 0.83530

ANOVA

Model
Sum of
Squares

df Mean Square F Sig.

1

Regression 3.365 1 3.365 4.810 0.032

Residual 41.864 60 0.698

Total 45.220 61

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1
(Constant) 2.134 0.261 8.168 0.000

No. of Developer -0.231 0.106 -0.272 -2.193 0.032

D. Verma and S. Kumar 305

Table 6: Simple Linear Regression result for H4

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.120 0.014 -0.002 0.86187

ANOVA

Model
Sum of
Squares

df Mean Square F Sig.

1

Regression 0.651 1 0.651 0.876 0.353

Residual 44.569 60 0.743

Total 45.220 61

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1
(Constant) 0.805 0.868 0.927 0.358

No. of Downloads 0.110 0.118 0.120 0.936 0.353

Table 7: Simple Linear Regression result for H5

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.143 0.021 0.004 0.85918

ANOVA

Model
Sum of
Squares

df Mean Square F Sig.

1

Regression 0.928 1 0.928 1.257 0.267

Residual 44.292 60 0.738

Total 45.220 61

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1
(Constant) 2.042 0.400 5.106 0.000

No. of commits -0.064 0.057 -0.143 -1.121 0.267

306 Prediction of Defect Density for Open Source Software using Repository Metrics

5.6 Analysis for H6

In the previous linear regression analysis, only one predictor has been considered for predicting the
defect density. In the hypothesis 6, joint impacts of all five predictors on the defect density need to be
analyze. For this analysis, multiple linear regression has been performed on the SPSS by selecting all
five predictor together for finding the prediction rate of defect density. The multiple linear regression
results have been shown in the Table 8.

From the Table-8 it is indicated that all the metrics jointly predict the 38.3% variability of defect
density. This multiple regression gives a model in which all the predictor shows the relationship with
defect density. This model is depicted by following Equation

Defect Density = 6.126 + 0.001(No. of Downloads) – 0.005(Size of project) + 0.004(No. of Defect) -

 0.210 (No. of Developers) + 0.000(No. of Commits) ……. (1)

From the equation (1), it can be inferred that all the metrics predict the variability of defect density
jointly, but the No. of Commits plays a very small role to predict the variation in defect density. The
multiplicative factor of the Number of commits is very small that is 0.000004.

Table 8: Multiple Linear Regression result for H6

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.619 0.383 0.328 5.86264

ANOVA

Model
Sum of
Squares

df Mean Square F Sig.

1

Regression 11195.567 5 239.113 6.975 0.000

Residual 1924.752 56 34.371

Total 3120.319 61

Coefficients

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1

(Constant) 6.126 1.482 4.134 0.000

No. of Downloads 0.001 0.000 0.192 1.763 0.083

Size of project -0.005 0.007 -0.194 -0.794 0.431

No. of Defects 0.004 0.001 0.614 4.865 0.000

No. of Developer -0.210 0.124 -0.412 -1.698 0.095

No. of Commits 0.000 0.000 0.082 0.512 0.611

D. Verma and S. Kumar 307

According to the Table-8, R-squared value indicates that 38.3% variability of defect density predicted
by the all the five metrics jointly, and the relationship of all these five metrics with defect density is
indicated in equation (1). This equation can be treated as a model for predicting defect density by all
five metrics discussed in this research.

6 Summary of Results and Performance Evaluation

In this section, on the basis of analysis performed in the previous sections, summary of acceptance for
each hypothesis has been tabulated in the Table 9.

According to the result for H1, the hypothesis cannot be rejected because of p-value that is nearly
acceptable value. The analysis of H1 indicates that the Software Size is directly related to the Defect
density. The percentage of defect density prediction by Size is very low because in the smaller size of
software, it shows the declining trend with defect density [15].

Table 9: Summary of Hypotheses Results

Hypothesis ID R-squared Value p-value Result

H1 0.086 0.021 Not Rejected

H2 0.097 0.014 Not Rejected

H3 0.074 0.032 Not Rejected

H4 0.014 0.353 Rejected

H5 0.021 0.267 Rejected

H6 0.383 0.000 Not Rejected

According to the result for H1, the hypothesis cannot be rejected because of p-value that is nearly
acceptable value. The analysis of H1 indicates that the Software Size is directly related to the Defect
density. The percentage of defect density prediction by Size is very low because in the smaller size of
software, it shows the declining trend with defect density [15].

Similar to the result of H1, the H2 hypothesis p-value is also at the acceptable level. Thought this
hypothesis is not rejected and the analysis result indicates that number of defects positively related to
defect density. The percentage of defect density prediction by defects is more than by the size.

The analysis results for hypothesis H3 shows acceptable p-value and Number of Developer
predicts the significant percentage of Defect density. More number of developers of open source
software increases the defect density. This approach establishes the positive relationship between
Number of Developer and defect density, but it was opposed by Weyuker Alaine J. et al. [4].

On the basis of the analysis result for H4, it inferred that the Number of Download does not affect
the defect density at the significant level. The R-squared value also indicates a very small percentage
of prediction for defect density. Hence the hypothesis has to be rejected. The similar relationship
shows by the study [10], but the significant improved result has been proposed in this paper.

308 Prediction of Defect Density for Open Source Software using Repository Metrics

Similar to hypothesis H4, result for H5 is not at an acceptable level and shows a very weak
relationship between Number of Commits and Defect density. The predicted percentage of defect
density by Number of Commits is more than the Number of Downloads because the number of
commits indicates the more changes in the code that may lead to newer defects in the code. This metric
has not been considered before in relation to the defect density. Because the analysis results for this
metric are not acceptable, hence the hypothesis has to be rejected.

In previous all five hypotheses, metrics show the impact on defect density independently. In
hypothesis H6, a combined impact on defect density by all five metrics has been analyzed. The result
shows the acceptable value and more percentage of defect density prediction by all five metrics jointly.
In the work done by Rahmani C. et al. [10], they have only discussed the relationship between four
repository metrics independently and they have only joined maximum two metrics for combined effect
on defect density. The result of our proposed approach shows more improvement in prediction
percentage of defect density by all metrics jointly.

7 Threats to Validity

Since this is an empirical study, there are some potential threats to the validity of the results that
require a discussion:

 In this work, defect density was calculated using two measures: total number of defects in
each project and, the size of the project itself. These two data have been taken from the
CVS repository of project entered by the developers. Few issues may arise such as: some
defects may not surface, some defects may surface, but not get fixed and, some defects
may not be recorded in the repository. The community of users and developers of the
projects used in this study is very large, so it may be confined that the defects were
identified and fixed adequately.

 The programming language of the project affects the size of the project. In this study
JAVA projects have filtered out for analysis amongst a very large number of projects on
the SourceForge.net, considering most of the community uses projects with JAVA as a
programming language.

 Some other factors such as developers’ skills, working conditions, and understanding of
the project may affect the complexity of the project as well as number of defects in the
project. This type of information is not available on the project’s web page.

8 Conclusions and Future Work

In this work, a relationship of defect density with different repository metrics of open source software
has been established with the significance level. Five repository metrics namely Size of project,
Number of defects, Number of developers, Number of downloads, and the Number of commits have
been identified for predicting the defect density of open source project. This relationship can be used to
predict the defect density of open source software. An analysis has been performed on 62 open source
software available at sourceforge.net. Simple and multiple linear regression statistical methods have
been used for analysis. The result reveals a statistically significant level of acceptance for prediction of
defect density by some repository metrics individually and jointly. Further, other repository metrics

D. Verma and S. Kumar 309

can be combined to analyze the prediction. Some static metrics may also be used in combination of
repository metrics to predict the defect density of open source software.

References
1. Trung T. D. & James M. B.(2005). The FreeBSD Project: A Replication Case Study of Open

Source Development. IEEE transaction on software engineering, 31, 6, 481-494.
2. Sourceforge, http://sourceforge.net/. [Accessed: on April 19, 2015].
3. Chidamber S. & Kemerer C. (1994). A metrics suite for object oriented design. IEEE

Transaction of software engineering, 20, 6, 476-493.
4. Weyuker E.J., Ostrand T.J., & Bell R. M. (2008). Do too many cooks spoil the broth? Using

the number of developers to enhance defect predication models. Empirical software
engineering, 13, 5, 539-559.

5. Gyimothy T., Ferenc R., & Siket I. (2005). Empirical validation of object oriented metrics on
open source software for fault prediction. IEEE Transaction on software engineering, 31, 10,
897-910.

6. Knab P., Pinzger M., & Bernstein A. (2006). Predicting Defect Densities in source code files
with Decision Tree Learners. Proceedings of the 2006 international workshop on Mining
software Repositories, 119-125.

7. Subramanyam R. and Krishnan M.S. (2003). Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects. IEEE Transactions on
Software Engineering, 29, 4, 297-310.

8. Mockus A., Fielding R.T., & Herbsleb J.D. (2002). Two case studies of open source software
development: Apache and Monzilla. ACM Transaction on software engineering methodology,
11, 3, 309-346.

9. Sherriff M., Williams L., & Vouk M. (2004). Using In-Process Metrics to predict Defect
Density in Haskell Programs. The 15th International Symposium on Software Reliability
Engineering.

10. Rahmani C. and Khazanchi D. (2010). A Study on Defect Density of Open source software.
The 9th International conference on Computer and Information Science, 679-683.

11. Caglyan B., Bener A., & Koch S. (2009). Merits of Using Repository Metrics in Defect
Prediction for Open Source Projects. International Conference on Software Engineering, 31-
36.

12. Park, R. (1992). Software Size Measurement: A Framework for Counting Source Statements.
CMU/SEI-92-TR-20, Software Engineering Institute, Pittsburgh, PA.

13. Institute of Electrical and Electronics Engineers 1044-2009 (2010), “IEEE Standards
Classification for Software Anamolies,” Available at
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5399061.

14. Alali A., Kagdi H., & Maletic J.I. (2008). What’s Typical Commit? A Characterization of
Open Source Software Repository. Proceedings of 16th IEEE International Conference on
Program Comprehension, 182-191.

15. Basili V. R. & Perricone B. T. (1982). Software Errors and Complexity: An Empirical
Investigation. Communication of ACM, 27, 1, 42-54.

16. Statistical Package for Social Sciences (n.d.). Available at http://www.spss.com/statistics.
IBM SPSS Statistics Version 20 64-bit.

17. Poole M.A. & O’Ferrell P.N. (1971). The assumptions of the linear regression model,” Inst.
Brit. Geogr., Trans., 52, 145–158.

18. Elliott A.C. & Woodward W.A. (2007). Statistical analysis quick reference guidebook with
SPSS examples. 1st ed. London, Sage Publications.

310 Prediction of Defect Density for Open Source Software using Repository Metrics

19. Verma D. & Kumar S. (2014). An Improved Approach for Reduction of Defect Density Using
Optimal Module Sizes. Hindwai Publishing Corporation, Advances in Software Engineering,
Volume 2014, Article ID 803530.

20. Verma D. & Kumar S. (2015). Exponential Relationship Based Approach For Predictions Of
Defect Density Using Optimal Module Sizes. Proceedings Of National Academy Of Sciences
Section A: Physical Sciences, DOI 10.1007/s40010-015-0261-x.

21. Raza A., Capretz L.F., & Ahmed F. (2012). Users’ perception of open source usability: an
empirical study. Journal of Engineering and Computers, 28, 2, 109-121.

22. Keng S. & Yuhong T. (2013). Open Source Software Development Process Model: A
Grounded Theory Approach. Journal of Global Information Management, 21, 4, 103-120.

23. Jiang Y., Li M., & Zhou Z. (2011). Software Defect Detection with Rocus. Journal of
Computer Science and Technology, 26, 2, 328-342.

24. Verma D., Mandhan N., & Kumar S. (2015). Analysis of Approach for Predicting Software
Defect Density using Static Metrics. International Conference on Computing, Communication
and Automation, 880-886.

25. Deepak N. & Kumar S. (2015). Flexible Self-Managing Pipe-line Framework Reducing
Development Risk to Improve Software Quality. International Journal of Information
Technology and Computer Science, 7, 7, 35-47.

