
Journal of Web Engineering, Vol. 16, No.3&4 (2017) 293-310 
© Rinton Press 
 

 

PREDICTION OF DEFECT DENSITY FOR OPEN SOURCE SOFTWARE USING 
REPOSITORY METRICS 

DINESH VERMA  

Jaypee University of Engineering and Technology, Guna, India 

dinesh.hpp@gmail.com 

SHISHIR KUMAR 

Jaypee University of Engineering and Technology, Guna, India 
dr.shishir@yahoo.com 

 
Received September 9, 2015 
Revised December 26, 2016 

Open source software refers to software with unrestricted access for use or modification. Many software 

development organizations are using this open source methodology in their development process. Many 

software developers can work in parallel with the open source project using the web as a shared resource.  

The defect density of such projects is often required to be predicted for the purpose to ensure quality 

standards. Static metrics for defect density prediction require extraction of abstract information from the 

code. Repository metrics, on the other hand, are easy to extract from the repository data sets. In this paper, 

an analysis has been performed over repository metrics of open source software. Further, defect density is 

being predicted using these metrics individually and jointly. Sixty two open source software are 

considered for analysis using Simple and Multiple Linear Regression methods as statistical procedures. 

The results reveal a statistically significant level of acceptance for prediction of defect density using few 

repository metrics individually and jointly. 
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1 Introduction  

Open source software becoming important for software industries. These types of software system are 
being used by both business professionals and academician in their work. Such projects are mostly 
developed outside the companies, by the volunteers. The development methodologies of such type of 
projects are quite different from the methodology used for commercial projects. The developers of 
these projects can work in parallel using the different shared resources during development, 
consequently, more individuals and companies are involved in the development process for open 
source projects. Unlike traditional commercial development methodologies, deadlines and number of 
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assignments are not fixed in the development of open source software. Using open source software 
development methodology, high level of quality can be achieved in comparison to traditional 
commercial development methodology [1, 22]. Defect density is the parameter that can be used to 
assess sensitivity of defect for specific software. The predication of defect density for open source 
software helps in maintaining an acceptable level of quality for further versions of software. Most of 
the researches for defect density prediction of open source software are based on the static metrics of 
projects. Chidamber and Kemerer defined object oriented static metrics of the software [3]. The 
analysis of such type of metrics required lots of information from the source code files of the project. 
Extraction of information for these static metrics from the abstracted data requires lots of efforts. An 
approach for prediction of defect density of open source software with analysis of information that can 
be easily extracted from the project is need of time. Repository metrics like, size of project, number of 
bugs, total number of downloads, number of developers, etc. are easily available on the project pages. 
This information can be easily made available for analyzing the approach for defect density prediction. 
In this paper relationship between different repository metrics of open source software with defect 
density has been established. This relationship can be used by the developer of open source software to 
predict the defect density of next version and maintain the acceptable level of quality. In this paper five 
repository metrics have been identified to predict the defect density of open source software. Initially, 
the prediction of defect density by individual metrics, and then prediction with all metrics jointly has 
been discussed.  The proposed approach has been analyzed with 62 open source software projects 
available at SourceForge.net [2]. The simple linear regression method has been used to predict defect 
density by repository metrics independently. The multiple linear regression method has been used to 
predict the defect density by repository metrics jointly. Both simple and multiple regression results 
show a statistically significant prediction of defect density by repository metrics independently and 
jointly. 

This paper is organized as follows. In section 2, the related work carried out in terms to defect density 
prediction by the different factors of open source software is discussed. In section 3, repository metrics 
of open source software used in this research are discussed. In section 4, formulation of research 
hypotheses, data collection, and research methodology are discussed. In section 5, experimentation on 
the collected data for proving the research hypotheses is discussed. In section 6, the summary of results 
comes from different experimentation have been discussed and compared with the previous works 
discussed in section 2. In section 7, possible threats to validity for this research are discussed. 
Conclusions and future works directions are mentioned in section 8. 

2 Related Work 

Static metrics have been used in most of the research with open source software for prediction of 
defect density. In the study of Verma and Kumar [19], the module size of software has been used to 
predict the defect density. In another study Verma and Kumar [20] shows exponential relationship of 
defect density with module size where the power of size is not restricted to integer values. 

In another research, static code metrics have been used to predict the defect density using available 
public data sets [24]. Very limited work has been carried out in the establishment of a relationship 
between defect density and repository metrics of open source software. Study by Weyuker, Ostrand, 
and Bell [4] concludes that many developers do not have a significant impact on the prediction of 
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defect density. They rely on their analysis of four large software projects from the industries. In this 
approach negative binomial regression method has been used for prediction of faults. A significance 
impact on software quality by risk assessment has been modeled based on Model-View-Controller 
(MCV) software architecture [25]. 

Subramanyam and Krishnan [7] mentioned significant association of object oriented metrics given 
by Chidamber and Kemerer [3] object oriented metrics suite with defects. They have concluded that 
even after controlling the size of software, these metrics show the implications on software defects.  

In a study, suitable method to calculate the object oriented metrics of open source software have 
been described [5]. Using logical and linear regression statistical methods they assess the applicability 
of the different object oriented metrics to predict the number of bugs in classes. Their analysis was 
based on the seven released versions of Mozilla’s. A semi-supervised learning ROCUS has been 
proposed that address the two major practical issues in software defect detection. First, it is rather 
difficult to collect a large amount of labeled training data for learning a well-performing model; 
second, in a software system there are usually much fewer defective modules than defect-free modules, 
so learning would have to be conducted over an imbalanced data set [23]. 

Knab, Pinzger, and Bernstien [6] used source code, modification, and defect measure to predict the 
defect density of Mozilla’s open source projects. They have applied the Data mining approaches on 
these metrics for analysis of their hypothesis. The study shows a small prediction of defect density 
based on lines of code. 

Mockus, Fielding, and Herbsleb [8] show the importance of developer participation in the 
development of two large open source software projects the Apache web server and Mozilla browser. 
Five user’s perspective naming Users’ expectations, Usability bug reporting, Interactive Help Features, 
Usability learning and, usability guidelines have great influence on the open source software usability 
[21]. 

Sherriff, Williams, and Vouk [9] proposed a method for estimating defect density of Haskell 
programs by using in-process metrics suite. The multiple linear regression statistical analysis shows a 
significant prediction of defect density by static metrics.  

Rahmani and Khazanchi  [10]used the repository metrics of open source software to predict the 
defect density. They have used only three repository metrics as a predictor of defect density. The 
number of commit of projects has not been considered in their study. 

In another study of open source projects Caglayan, Bener, and Koch [11] focused on improving 
the prediction performance of achieving lower probability of false alarm rate of defect predictor. They 
also discuss the importance of repository metrics over the other metrics of software.  

In all the research work mentioned above on open source software, prediction of defect density 
does not indicate the relationship of defect density with other repository metrics. In proposed work, the 
relationship has been established of defect density with some important repository metrics of open 
source software. 
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3 Repository Metrics 

Static metrics have been used in most of the research with open source software for prediction of 
defect density. In the study of Verma and Kumar [19], the module size of software has been used to 
predict the defect density. In another study Verma and Kumar [20] shows exponential relationship of 
defect density with module size where the power of size is not restricted to integer values. 

In most of the previous research, traditional static code attributes are used for modelling software 
data for their research analysis. Although, static code attributes can automatically be extracted from the 
source code, the information is abstracted in the database in terms to maintain the authenticity of 
information. Extraction of static code attributes requires more effort; there is a need to explore 
alternative metric sets such as repository metrics that can be easily extracted from the project web 
pages.  In the proposed approach, five metrics have been identified, and analysis has been performed to 
establish the relationship between these metrics and defect density of open source software. The 
conceptual definition of each metric is as follows: 

a. Software Size: - Size measures of software have direct application to the planning, tracking, 
and estimating the software projects [12]. Software size can be measured in Lines of Code 
(LOC) or can be measured in number of Function Points (FPs). In the work presented through 
this paper Lines of Code has been used to measure the size of software. The size has been 
considered for analysis that is available on the project page at the time of data collection. 

b. Defects: -   According to the IEEE standard classification of software anomalies [13], defects 
are imperfection or deficiency in a work product that work product does not meet its 
requirement or specifications and needs to be either repaired or replaced. The total number of 
software defects has been taken from the project statistics page for analysis of this study. 
Total numbers of defects are the numbers that have been collected at the time of data 
collection. 

c. Number of Developers: - Developers of the open source software are defined as the total 
number of persons those download the project and contribute some modification/updating in 
the project. Individual developers make modification/updating in the project according to 
their own experience and expectation of the project. These types of modifications vary when 
the developers varies. The total number of developers of project for analysis has been taken 
from the project page at the time of data collection. 

d. Number of Downloads: - This is the total number of downloads for the particular projects 
given in the project statistics at the time of data collection. 

e. Commits: - In open source software commits basically record the changes made by developers 
in the source code of the project [14]. These changes take place when the developer makes 
any addition, deletion, and/or modification in the source code. 

f. Defect Density: - Defect density of software can be defined as the ratio of total number of 
defects with total size of software. In this study the size has been taken as a KLOC for 
calculating defect density. 
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4     Research Hypotheses 

As mentioned in previous sections, the work presented through this paper focused to establish the 
relationship between repository metrics of open source software with the defect density. The 
relationship further used to predict the value of defect density with these predictors individually and 
jointly. This prediction can be used to control the quality of open source software at an acceptable 
level. In the proposed approach five repository metrics have been used such that software size, total 
defects, number of developers, number of downloads, and number of commits. To accomplish the 
objective, six hypotheses have been designed to address the relationship of repository metrics with 
defect density in concern with open source software. 

4.1. Formulation of Research Hypotheses 

Following six hypotheses have been formulated to analyze the impact of five repository metrics on the 
defect density: 

Hypothesis 1 (H1): - Software size of open source software has a negative relationship with Defect 
Density. 

In open source software the size measured as a Kilo line of code (KLOC). Most of study shows that 
when the size of traditional software increases, defect density will also increase. In a research by Basili 
and Perricone [15] shows that defect density will decrease when the size is increasing at a certain level. 
The analysis proposed by Basili’s study deals with the small size of modules only. So a relationship 
needs to be developed which can cater to the need for all possible sizes of models and used for 
prediction of defect density for further similar projects. In the proposed work a relationship of the size 
of project has been established with defect density. 

Hypothesis 2 (H2): - Number of defects has a positive relationship with Defect Density in Open Source 
Software. 

Open source software is openly used and modify by the many numbers of users/developers. Although, 
the number of defects is increasing as the modifications are made to the project’s, defects are found 
and fixed very quickly in open source software because there are more user / developers looking for 
the problem. These activities may lead to increase the size of updated version of open source project in 
terms to solve the problem or fixing the defects. So a relationship required to be established between 
the total numbers of defects with the defect density.  

Hypothesis 3 (H3): - More Number of developers in an Open source project has lower defect density. 

Number of developers increases with time in open source projects. These developers focus to identify 
the problem and make some changes to repair or fix the problem in the projects. Individual developers 
make modification/updating in the projects according to their own experience and expectation of the 
project. These types of modifications vary when the developers varies. To evaluate the impact of 
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different developers on defect density, a relationship of defect density required to be established with 
numbers of developers in open source projects. 

Hypothesis 4 (H4): - More downloads of open source software increase the defect density. 

Number of downloads for a particular open source software, indicate the usability and effectiveness of 
projects among the software users.  A relationship of defect density required to be established with the 
number of downloads.  

Hypothesis 5 (H5): - Number of commits has a positive relationship with defect density in open source 
projects. 

During the software evaluation, continues changes are made to the systems those are stored in the 
version control systems of the software. These changes are termed as the commits made by different 
developers. These changes may lead to insert new defects in the software. So these commits can 
directly affect the defect density of the software.  A relationship required to be established between 
defect density and number of commits make by different developers. 

Hypothesis 6 (H6): - Software size, number of defects, number of developers, number of downloads 
and number of commit are jointly related to defect density. 

The combined effect of software size, number of defects, number of developers, number of downloads, 
and number of commits on the defect density needs to be analyzed. Composite predictions of defect 
density by all the metrics jointly, need to be discussed. So the model has been formulated that uses all 
the five repository metrics as predictors for the defect density.   

4.2. Data Collection 

In this study six hypotheses have been formulated in section 4.1, these hypotheses required to be 
analyzed on the real data from the open source projects. For analysis of proposed hypotheses 62 open 
source projects have been randomly collected from the SourceFourge.net (“SorceForge”, 2015), with 
the following considerations: 

a) Projects having the 80% and above recommendation have been selected. 

 This recommendation means that the project has been used by 100 persons, and 80 persons have 
rated this project as a good project and recommend it. 

b) Projects developed using programming languages as JAVA. 

 There are so many projects available in different languages. In this study, we have filtered out 
only JAVA based projects.  
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c) Software size has been calculated for Windows environment. 

 The projects developed on the windows environment have been selected. Size of projects is not 
dependent on operating environments.  

d) Bugs data are clearly available on the project statistics page. 

 The project those satisfying above three conditions, but the details of bugs data are not clearly 
available, have been rejected. 

The data collected from the project web page as an overall project not for a single release, such as Size 
of project, total number of defects, total number of commits, total number of downloads, and total 
number of downloads. All the metrics values taken from the project web pages are available on the 
date of data collection.  

The summary of descriptive statistics for Sixty two projects is given in Table 1. 

Table 1: Descriptive statistics of dataset of 62 projects 

 

Metric Mean Median Standard 
deviation 

Maximum Minimum 

Software Size 178.56 84.2 262.78 1391 3 

Number of Defects 873.36 408.5 1123.8 4912 18 

Number of Developers 14.98 10 14.01 61 1 

Number of Downloads 2238.86 1563.5 2165.9 9389 277 

Number of Commits 3063.36 1136.5 4315.36 18121 9 

Defect Density 7.28 4.19 7.15 42.89 1.06 

 

4.3. Research Methodology 

To analyze above six hypotheses, linear regression statistical method has been used to prove these 
hypotheses. For linear regression method SPSS tool [16] has been used. In the above mentioned 
relationship, simple linear regression method has been used for establishing the relationship of each 
individual predictor. Further, multiple linear regression method has been used for showing the joint 
impact of predictors on defect density. 

Before performing the linear regression with the data set, first normality test has to be performed 
[17,18]. The information randomly collected from the SourceFourge, could not clear the normality test. 
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So initially the logarithm value of each metric has been taken and checked for the normality. All the 
metrics data pass the normality test with their logarithmic value.  

After performing the normality test simple linear regression and multiple linear regressions have been 
performed for individual and joint effect respectively. 

5     Experimental Result 

As discussed in the previous section, first the normality test has to be performed with the logarithmic 
value of each metrics data set. The normality tests are supplementary to the graphical assessment of 
normality. The main tests for normality are Kolmogorov-Smirnov (K-S) test and Shapiro-Wilk (S-W) 
test (Elliot & Woodward, 2007). The K-S test is performed if the sample size is more than 2000, and 
the S-W test is performed for the sample size less than 2000 (Elliot & Woodward, 2007). The sample 
size in this research is only 62, so only S-W values for normality are considered.  

The result of normality tests for all considered metrics are summarized in Table-2 and corresponding 
Graph for Normality Test of all metrics shown in Figure 1. 

Table 2: Normality Test Results of all metrics 
 

Metric Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Size of Project .072 61 .200 .985 61 .669 

No. of Defects .089 61 .200 .974 61 .216 

No. of Developers .055 61 .200 .976 61 .265 

No. of Downloads .106 61 .080 .965 61 .077 

No. of Commits .085 61 .200 .961 61 .048 

 

The Table-2 indicates the statistical result of normality test. In this result Sig. Value (also call this 
as p value) is greater than 0.05 (Elliot & Woodward, 2007), it indicates that the concern metrics values 
are normally distributed. Figure 1 shows the graphs of normal distribution of all metrics values. In each 
graph most of the points are conceding on the line that indicates the normal distribution. 

According to the result of normality tests of individual metrics data set, the p value for all metrics 
data set is equal or greater than 0.05. Now linear regression statistical test can be performed on the 
logarithmic value of each metrics data set.  

The regression tool in SPSS provides the result for linear regression test in terms of different 
parameters. Regression analysis is used to describe the response of a dependent variable which 
changes according to magnitude of the independent variables. It is one of the form of inferential 
statistical analysis which indicates the relationship between one dependent variable and one or more 
independent variables. 
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R2 is a statistical measure of how close the data are to the fitted regression line, 100% indicates 
that the model explains all the variability of the response data around its mean. Like R2 adjusted R2 
also indicates how well terms fit a curve or line, but unlike it adjusts for the number of terms in a 
model. Adding more number of useless variables to a model, adjusted R2 will decrease and adding 
more useful variables will result an increase in adjusted R2 value.  The Standard Error of the Estimate 
is the standard deviation of the data about the regression line. It is a measure of the variability of 
predictions in regression.  

Analysis of Variance (ANOVA) provides information about levels of variability within a 
regression model and forms a basis for tests of significance.  Sum of Squares represents the measure of 
variation from the mean. The degree of freedom (df) is the number of variables that are free to vary. It 
is one less than the number of parameters being estimated. Mean squares are estimates of variance 
across groups. The F ratio is the ratio of two mean square values.  

 

Figure 1:  Normality Graph for all Metrics 

 Unstandardized regression coefficients (B) show the average change in the dependent variable 
associated with a 1 unit change in the dependent variable, other variables being constant. However, 
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Standardized beta coefficients (Beta) are the estimations that have been standardized so that the 
variances of dependent and independent variables are 1.  T statistic is a ratio of the departure of an 
estimated factor from its theoretical value and its standard error. It represents the change between the 
mean scores of two groups, while considering any variation in scores. R-squared value, significance of 
the observed regression line (p- value). The p- value is the significance level that is used to accept or 
reject the hypothesis. P-value defined as a probability of error that involved in accepting our observed 
result as a valid result. 

 To accept the hypothesis, the p-value must be less than or equal to 0.05, otherwise reject the 
hypothesis (Elliot & Woodward, 2007). The R-squared value represents the percentage extent of 
variation in the dependent variable presented by the independent variable (Elliot & Woodward, 2007). 
For example, in a linear regression result, the p-value 0.03 indicates that, accepting variability of 
dependent variable by independent variable, only 3% of the population does not valid. The R-squared 
value 0.16 indicates that 16% of variability presented by the independent variable. 

Now each hypothesis have been analyzed using the linear regression statistical method and following 
results have been generated:  

5.1 Analysis for H1 

After performing the regression on the SPSS tool with taking Defect Density as dependent variable 
and Size of Project as predictor, the results are shown in Table 3. 

Table 3: Simple Linear Regression result for H1 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.294 0.86 0.071 0.82990 

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

1 

Regression 3.896 1 3.896 5.656 0.021 

Residual 41.324 60 0.689   

Total 45.220 61    

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 
(Constant) 2.383 0.342  6.974 0.000 

Size of project -0.178 0.075 -0.294 -2.378 0.021 
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As shown in the Table-3, the R-Squared value indicates that 8.6% of variability of defect density 
predicted by the Size of Project. It also indicates that some other factors predict the remaining 91.4% 
of variability. The p- value is 0.021 that is less than 0.05. So this hypothesis can be accepted. The 
negative value of B for Size of the project indicated that defect density has the negative relation with 
Size of the project. So when the sizes will increases the defect density will be decreases. 

 

5.2 Analysis for H2 

Now performing the regression on the SPSS tool with taking Defect Density as dependent variable and 
No. of Defects as predictor, the results are shown in Table 4. 

As shown in Table-4, the R-Squared value indicates that 9.7% of variability of defect density predicted 
by the No. of Defects. It also indicates that some other factors predict the remaining 90.3% of 
variability. The p- value is 0.014 that is less than 0.05. So this hypothesis can be accepted. The 
negative value of B for Number of Defects indicated that defect density has the negative relation to 
Number of defects. 

 

5.3 Analysis for H3 

Now performing the regression on the SPSS tool with taking Defect Density as dependent variable and 
No. of Developers as predictor, the results are shown in Table 5. 

As shown in Table-5, the R-Squared value indicates that 7.4% of variability of defect density predicted 
by the Number of developers. The p- value is 0.032 that is less than 0.05 indicates this hypothesis can 
be accepted. The negative value of B for Number of developers the project indicated that defect 
density is negatively related with this metric. 

 

5.4 Analysis for H4 

For analyzing H4, No. of Downloads has been used as a predictor on SPSS tool. The dependent 
variable will remain Defect Density. The results of this analysis are shown in Table-6. 

According to the Table-6, the p-value is 0.353 that is greater than 0.05, hence the hypothesis has been 
rejected. The significance of this relationship is very less that indicates the inability in defect density 
prediction by number of downloads. 

 

5.5 Analysis for H5 

For analyzing H5, No. of Commits has been used as a predictor on SPSS tool. The dependent variable 
will remain Defect Density. The results of this analysis are shown in Table-7. 

According to results from Table-7, the p-value is greater than 0.05, hence the hypothesis has been 
rejected. This is similar to the hypothesis H4, indicating the inability of Number of commits to predict 
the defect density. 
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Table 4: Simple Linear Regression result for H2 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.312 0.097 0.082 0.82475 

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

1 

Regression 4.407 1 4.407 6.479 0.014 

Residual 40.813 60 0.680   

Total 45.220 61    

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 
(Constant) 0.489 0.453  1.081 0.284 

No. of Defects 0.189 0.074 0.312 2.545 0.014 

Table 5: Simple Linear Regression result for H3 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.272 0.074 0.059 0.83530 

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

1 

Regression 3.365 1 3.365 4.810 0.032 

Residual 41.864 60 0.698   

Total 45.220 61    

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 
(Constant) 2.134 0.261  8.168 0.000 

No. of Developer -0.231 0.106 -0.272 -2.193 0.032 
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Table 6: Simple Linear Regression result for H4 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.120 0.014 -0.002 0.86187 

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

1 

Regression 0.651 1 0.651 0.876 0.353 

Residual 44.569 60 0.743   

Total 45.220 61    

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 
(Constant) 0.805 0.868  0.927 0.358 

No. of Downloads 0.110 0.118 0.120 0.936 0.353 

Table 7: Simple Linear Regression result for H5 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.143 0.021 0.004 0.85918 

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

1 

Regression 0.928 1 0.928 1.257 0.267 

Residual 44.292 60 0.738   

Total 45.220 61    

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 
(Constant) 2.042 0.400  5.106 0.000 

No. of commits -0.064 0.057 -0.143 -1.121 0.267 
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5.6 Analysis for H6 

In the previous linear regression analysis, only one predictor has been considered for predicting the 
defect density. In the hypothesis 6, joint impacts of all five predictors on the defect density need to be 
analyze. For this analysis, multiple linear regression has been performed on the SPSS by selecting all 
five predictor together for finding the prediction rate of defect density. The multiple linear regression 
results have been shown in the Table 8. 

From the Table-8 it is indicated that all the metrics jointly predict the 38.3% variability of defect 
density.  This multiple regression gives a model in which all the predictor shows the relationship with 
defect density. This model is depicted by following Equation 

Defect Density = 6.126 + 0.001(No. of Downloads) – 0.005(Size of project) + 0.004(No. of Defect) -  

                0.210 (No. of Developers) + 0.000(No. of Commits)          ……. (1) 

From the equation (1), it can be inferred that all the metrics predict the variability of defect density 
jointly, but the No. of Commits plays a very small role to predict the variation in defect density. The 
multiplicative factor of the Number of commits is very small that is 0.000004. 

Table 8: Multiple Linear Regression result for H6 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 0.619 0.383 0.328 5.86264 

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

1 

Regression 11195.567 5 239.113 6.975 0.000 

Residual 1924.752 56 34.371   

Total 3120.319 61    

Coefficients 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

B Std. Error Beta 

1 

(Constant) 6.126 1.482  4.134 0.000 

No. of Downloads 0.001 0.000 0.192 1.763 0.083 

Size of project -0.005 0.007 -0.194 -0.794 0.431 

No. of Defects 0.004 0.001 0.614 4.865 0.000 

No. of Developer -0.210 0.124 -0.412 -1.698 0.095 

No. of Commits 0.000 0.000 0.082 0.512 0.611 
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According to the Table-8, R-squared value indicates that 38.3% variability of defect density predicted 
by the all the five metrics jointly, and the relationship of all these five metrics with defect density is 
indicated in equation (1). This equation can be treated as a model for predicting defect density by all 
five metrics discussed in this research. 

6     Summary of Results and Performance Evaluation 

In this section, on the basis of analysis performed in the previous sections, summary of acceptance for 
each hypothesis has been tabulated in the Table 9.  

According to the result for H1, the hypothesis cannot be rejected because of p-value that is nearly 
acceptable value. The analysis of H1 indicates that the Software Size is directly related to the Defect 
density. The percentage of defect density prediction by Size is very low because in the smaller size of 
software, it shows the declining trend with defect density [15]. 

Table 9: Summary of Hypotheses Results 

Hypothesis ID R-squared Value p-value Result 

H1 0.086 0.021 Not Rejected 

H2 0.097 0.014 Not Rejected 

H3 0.074 0.032 Not Rejected 

H4 0.014 0.353 Rejected 

H5 0.021 0.267 Rejected 

H6 0.383 0.000 Not Rejected 

 

According to the result for H1, the hypothesis cannot be rejected because of p-value that is nearly 
acceptable value. The analysis of H1 indicates that the Software Size is directly related to the Defect 
density. The percentage of defect density prediction by Size is very low because in the smaller size of 
software, it shows the declining trend with defect density [15]. 

Similar to the result of H1, the H2 hypothesis p-value is also at the acceptable level. Thought this 
hypothesis is not rejected and the analysis result indicates that number of defects positively related to 
defect density. The percentage of defect density prediction by defects is more than by the size.  

The analysis results for hypothesis H3 shows acceptable p-value and Number of Developer 
predicts the significant percentage of Defect density. More number of developers of open source 
software increases the defect density. This approach establishes the positive relationship between 
Number of Developer and defect density, but it was opposed by Weyuker Alaine J. et al. [4].       

On the basis of the analysis result for H4, it inferred that the Number of Download does not affect 
the defect density at the significant level. The R-squared value also indicates a very small percentage 
of prediction for defect density. Hence the hypothesis has to be rejected. The similar relationship 
shows by the study [10], but the significant improved result has been proposed in this paper. 
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Similar to hypothesis H4, result for H5 is not at an acceptable level and shows a very weak 
relationship between Number of Commits and Defect density. The predicted percentage of defect 
density by Number of Commits is more than the Number of Downloads because the number of 
commits indicates the more changes in the code that may lead to newer defects in the code. This metric 
has not been considered before in relation to the defect density. Because the analysis results for this 
metric are not acceptable, hence the hypothesis has to be rejected.  

In previous all five hypotheses, metrics show the impact on defect density independently. In 
hypothesis H6, a combined impact on defect density by all five metrics has been analyzed. The result 
shows the acceptable value and more percentage of defect density prediction by all five metrics jointly. 
In the work done by Rahmani C. et al. [10], they have only discussed the relationship between four 
repository metrics independently and they have only joined maximum two metrics for combined effect 
on defect density. The result of our proposed approach shows more improvement in prediction 
percentage of defect density by all metrics jointly. 

7     Threats to Validity 

Since this is an empirical study, there are some potential threats to the validity of the results that 
require a discussion: 

 In this work, defect density was calculated using two measures: total number of defects in 
each project and, the size of the project itself. These two data have been taken from the 
CVS repository of project entered by the developers. Few issues may arise such as: some 
defects may not surface, some defects may surface, but not get fixed and, some defects 
may not be recorded in the repository. The community of users and developers of the 
projects used in this study is very large, so it may be confined that the defects were 
identified and fixed adequately.  

 The programming language of the project affects the size of the project. In this study 
JAVA projects have filtered out for analysis amongst a very large number of projects on 
the SourceForge.net, considering most of the community uses projects with JAVA as a 
programming language. 

 Some other factors such as developers’ skills, working conditions, and understanding of 
the project may affect the complexity of the project as well as number of defects in the 
project. This type of information is not available on the project’s web page. 

8     Conclusions and Future Work 

In this work, a relationship of defect density with different repository metrics of open source software 
has been established with the significance level. Five repository metrics namely Size of project, 
Number of defects, Number of developers, Number of downloads, and the Number of commits have 
been identified for predicting the defect density of open source project. This relationship can be used to 
predict the defect density of open source software. An analysis has been performed on 62 open source 
software available at sourceforge.net. Simple and multiple linear regression statistical methods have 
been used for analysis. The result reveals a statistically significant level of acceptance for prediction of 
defect density by some repository metrics individually and jointly. Further, other repository metrics 
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can be combined to analyze the prediction. Some static metrics may also be used in combination of 
repository metrics to predict the defect density of open source software. 
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