<table>
<thead>
<tr>
<th>A-H</th>
<th>H-M</th>
<th>M-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Alagic, Quantum invariants of 3-manifolds and NP vs #P (1&2) 125</td>
<td>W. Hai, see K. Hai</td>
<td>M.A. Moustafa, see E.C. Behrman</td>
</tr>
<tr>
<td>P. Arrighi, Quantum walking in curved spacetime: (3+1) dimensions, and beyond (9&10) 810</td>
<td>T. Haner, Factoring using $2n+2$ qubits with Toffoli based modular multiplication (7&8) 673</td>
<td>H. Nishimura (I), see T. Morimae (I)</td>
</tr>
<tr>
<td>S. Arunachalam, Optimizing the number of gates in quantum search (3&4) 251</td>
<td>A-L Hashagen, Universal asymmetric quantum cloning revisited (9&10) 747</td>
<td>H. Nishimura (II), see T. Morimae (II)</td>
</tr>
<tr>
<td>Z-F Bai, see S-P Du</td>
<td>M.B. Hastings (I), Turning gate synthesis errors into incoherent errors (5&6) 488</td>
<td>L. Novo, Improved Hamiltonian simulation via a truncated Taylor series and corrections (7&8) 623</td>
</tr>
<tr>
<td>D. Berry, see L. Novo</td>
<td>M.B. Hastings (II), Small Majorana fermion codes (13&14) 1191</td>
<td>C. Okay, Topological proofs of contextuality in quantum mechanics (13&14) 1135</td>
</tr>
<tr>
<td>C.M. van Bommel, see G. Coutinho (II)</td>
<td>M.B. Hastings (III), Weight reduction for quantum codes (15&16) 1307</td>
<td>A. Paler, Online scheduled execution of quantum circuits protected by surface codes (15&16) 1335</td>
</tr>
<tr>
<td>N.P. Breuckmann, Local decoders for the 2D and 4D toric code (3&4) 181</td>
<td>Y. Higuchi, Spreading behavior of quantum walks induced by random walks (5&6) 399</td>
<td>M.D. Penney, see D.E. Koh (II)</td>
</tr>
<tr>
<td>S. Brierley, Efficient implementation of quantum circuits with limited qubit interactions (13&14) 1096</td>
<td>C.D. Hill, see K.J. Wolfe</td>
<td>S. Piddock, The complexity of antiferromagnetic interactions and 2D lattices (7&8) 636</td>
</tr>
<tr>
<td>D.E. Browne, see N. Usher</td>
<td>L.C.L. Hollenberg, see K.J. Wolfe</td>
<td>M. Ostaszewski, see K. Domino</td>
</tr>
<tr>
<td>K-F Bu, see J-H Fan</td>
<td>F-Y Hong, Electrical control of strong spin-phonon coupling in a carbon nanotube (1&2) 117</td>
<td>S. Pirandola, see C. Lupo</td>
</tr>
<tr>
<td>Y-D Cao, see J-H Fan</td>
<td>N. Hosseinidehaj, CV-MDI quantum key distribution via satellite (5&6) 361</td>
<td>X-F Qi, see S-P Du</td>
</tr>
<tr>
<td>R. Chatterjee, Generalized coherent states, reproducing kernels, and quantum support vector machines (15&16) 1292</td>
<td>M-H Hsieh, see J-H Fan</td>
<td>R. Raussendorf, see C. Okay</td>
</tr>
<tr>
<td>H-W Chen, see J-H Fan</td>
<td>R. Jozsa, see I.S.B. Sardharwalla</td>
<td>S. Roberts, see C. Okay</td>
</tr>
<tr>
<td>A.M. Childs, Efficient simulation of sparse Markovian quantum dynamics (11&12) 901</td>
<td>S. Kais, see Y-D Cao</td>
<td>M. Roetteler, see T. Haner</td>
</tr>
<tr>
<td>G. Chong, see K. Hai</td>
<td>M. Kempton, Perfect state transfer on graphs with a potential (3&4) 303</td>
<td>RV. Ramos, see F.F.S. Rios</td>
</tr>
<tr>
<td>G. Coladangelo, Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH and the magic square game (9&10) 831</td>
<td>D.E. Koh (II), Computing quopit Clifford circuit amplitudes by the sum-over-paths technique (13&14) 1081-1095</td>
<td>T. Santoli, Using Simon’s algorithm to attack symmetric-key cryptographic primitives (1&2) 65</td>
</tr>
<tr>
<td>G. Coutinho, (I) Perfect state transfer is poly-time (5&6) 495</td>
<td>R. Konig, see M. Idel</td>
<td>I. Sato, see N. Konno</td>
</tr>
<tr>
<td>A.H. K-C Yip, Quantum error tolerant quantum walks with strong spin-phonon coupling in a carbon nanotube (1&2) 117</td>
<td>S. Piddock, see F.F.S. Rios</td>
<td>C. Schaffner, see T. Santoli</td>
</tr>
<tr>
<td></td>
<td>X-F Qi, see S-P Du</td>
<td>E. Segawa, see Y. Higuchi</td>
</tr>
<tr>
<td></td>
<td>D. Solenov, see I.S.B. Sardharwalla</td>
<td>Y. Shi, see C.A. Miller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. Solenov, Quantum gates via continuous time quantum walks in multiqubit systems with non-local auxiliary states (5&6) 415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.D. Somma, see A.N. Chowdhury</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.W. Spekkens, see D.E. Koh (II)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.E. Steck, see E.C. Behrman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Streltchuk, see I.S.B. Sardharwalla</td>
</tr>
</tbody>
</table>
| | | M.Z. Tani, *A fast exact quantum
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Article Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Delgado</td>
<td>Two-qubit quantum gates construction via unitary factorization</td>
<td>(9&10)</td>
<td>721</td>
<td></td>
</tr>
<tr>
<td>K. Domino</td>
<td>Superdiffusive quantum stochastic walk definable on arbitrary directed graph</td>
<td>(11&12)</td>
<td>973</td>
<td></td>
</tr>
<tr>
<td>S-P Du</td>
<td>Erratum to Coherence measures and optimal conversion for coherent states</td>
<td>(QIC Vol. 15 (2015), 1307-1316)</td>
<td>503</td>
<td></td>
</tr>
<tr>
<td>R. Duan</td>
<td>Robustness of QMA against witness noise</td>
<td>(13&14)</td>
<td>1167</td>
<td></td>
</tr>
<tr>
<td>S. Facchini</td>
<td>On quantum tensor product codes</td>
<td>(13&14)</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>M. Farkas</td>
<td>Qudit homological product codes</td>
<td>(11&12)</td>
<td>948</td>
<td></td>
</tr>
<tr>
<td>A.G. Fowler</td>
<td>Randomness in nonlocal games between mistrustful players</td>
<td>(7&8)</td>
<td>595</td>
<td></td>
</tr>
<tr>
<td>J-L Fu</td>
<td>Better protocol for XOR game using communication protocol and nonlocal boxes</td>
<td>(15&16)</td>
<td>1261</td>
<td></td>
</tr>
<tr>
<td>F. Le Gall</td>
<td>Modified group non-membership is in promise-AWPP relative to group oracles</td>
<td>(3&4)</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>H. Guo</td>
<td>Analytical evidence of ultrafast generation of spin-motion entanglement</td>
<td>(5&6)</td>
<td>456</td>
<td></td>
</tr>
<tr>
<td>C.F. Lardizabal</td>
<td>Open quantum random walks and the mean hitting time formula</td>
<td>(1&2)</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>T. Li</td>
<td>Super-additivity and entanglement assistance in quantum reading</td>
<td>(7&8)</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>R. Malaney</td>
<td>Efficient rate-adaptive reconciliation for CV-QKD protocol</td>
<td>(13&14)</td>
<td>1123</td>
<td></td>
</tr>
<tr>
<td>H. Mitsuhashi</td>
<td>Can small quantum systems learn</td>
<td>(7&8)</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>T. Morimae</td>
<td>Modified group non-membership is in promise-AWPP relative to group oracles</td>
<td>(3&4)</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Y. Wu</td>
<td>Efficient rate-adaptive reconciliation for CV-QKD protocol</td>
<td>(15&16)</td>
<td>1261</td>
<td></td>
</tr>
<tr>
<td>C-H Xiong</td>
<td>Efficient quantum algorithms for analyzing large sparse electrical networks</td>
<td>(11&12)</td>
<td>987</td>
<td></td>
</tr>
<tr>
<td>X-Y Wang</td>
<td>Algorithm for solitude verification</td>
<td>(1&2)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>N. Usher</td>
<td>Noise in one-dimensional measurement-based quantum computing</td>
<td>(15&16)</td>
<td>1372</td>
<td></td>
</tr>
<tr>
<td>P. Vrana</td>
<td>Better protocol for XOR game using communication protocol and nonlocal boxes</td>
<td>(15&16)</td>
<td>1261</td>
<td></td>
</tr>
<tr>
<td>R. Wille</td>
<td>Merlinization of complexity classes above BQP</td>
<td>(7&8)</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>R. de Wolf</td>
<td>Scaling and efficient classical simulation of the quantum Fourier transform</td>
<td>(1&2)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Y. Wu</td>
<td>Efficient rate-adaptive reconciliation for CV-QKD protocol</td>
<td>(15&16)</td>
<td>1261</td>
<td></td>
</tr>
<tr>
<td>J. Zuiddam</td>
<td>Analytical evidence of ultrafast generation of spin-motion entanglement</td>
<td>(5&6)</td>
<td>456</td>
<td></td>
</tr>
</tbody>
</table>

* in the order: first Author’s name, article title, (issue no.) starting page number