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Corollary 5 The general solution of Ly = 0 is the linear span of the n
solutions in Proposition 14.

We now look at systems of equations of the shape

Dyi =
nX

j=1

aijyj (yi in V ):(37)

We agree to use the following notation for the derivative of a vector: Dy =
(Dy1; : : : ; Dyn) for y = (y1; : : : ; yn), each yi in V . The system to be solved
is

Dy = Ay:(38)

If it happens that A is diagonalizable over C ,

A = PBP�1;

with P invertible and

B =

2
64
b1

. . .

bn

3
75 ;

the situation is simple, since

Dy = PBP�1y; P�1(Dy) = B(P�1y):

Obviously P�1(Dy) = D(P�1y). Writing z = P�1y,

Dz = Bz ; or Dzj = bjzj for each j;

which has solution

zj = kje
bj t; kj in C :(39)

Now y is given by y = Pz, z as in (39).

Example 30 Find the general real solution of

Dy1 = 3y1 � 4y2

Dy2 = y1 + 3y2:
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Solution. Here A =

�
3 �4
1 3

�
with characteristic polynomial (c � 3)2 + 4.

We proceed to �nd the complex solutions y �rst.

Eigenspace for c = 3+ 2i. The coeÆcient matrix for ((3 + 2i)I �A)x = 0 is

�
2i 4
�1 2i

�
�
�
1 �2i
0 0

�
I � 1

2i
II + I:

A basis of the eigenspace is (2i; 1).
Repeat this calculation with �i in place of i to get a basis (�2i; 1) of the

eigenspace for c = 3� 2i.
Now A = PBP�1,

P =

�
2i �2i
1 1

�
; B =

�
3 + 2i

3� 2i

�
:

The general complex solution is

y =

�
2i �2i
1 1

� �
ke3+2i)t

`e(3�2i)t

�
(k; ` in C )

=

�
2ike(3+2i)t � 2i`e(3�2i)t

ke(3+2i)t + `e(3�2i)t

�
:

To get a real solution we certainly need y2e
�3t real. That is, we need

k1; k2; `1; `2 to satisfy

Imf(k1 + ik2)(cos 2t+ i sin 2t) + (`1 + i`2)(cos 2t� i sin 2t)g = 0:

Explicitly,

(k1 � `1) sin 2t+ (k2 + `2) cos 2t = 0:

So `2 = �k2; `1 = k1, and so ` = �k. Now, since z + �z = 2Re z,

y = 2Re

�
2ike(3+2i)t

ke(3+2i)t

�
=

�
4e3t(�k1 sin 2t� k2 cos 2t)
2e3t(k1 cos 2t� k2 sin 2t)

�

with arbitrary real k1; k2.
The method needs modi�cation if A is not diagonalizable over C .
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Example 31 Find the general complex solution of

Dy1 = �y2
Dy2 = y1 � y2 � y3(40)

Dy3 = y1 � 2y3:

Solution. Here A =

2
40 �1 0
1 �1 �1
1 0 �2

3
5 has characteristic polynomial

det

2
4 c 1 0
�1 c+ 1 1
�1 0 c+ 2

3
5 = c(c+ 1)(c+ 2) + (c+ 1)

(expanding by row 1)

= (c+ 1)(c2 + 2c+ 1) = (c+ 1)3:

So �1 is the only eigenvalue. The coeÆcient matrix of (�I � A)x = 0 is

2
4�1 1 0
�1 0 1
�1 0 1

3
5 �

2
41 �1 0
0 �1 1
0 0 0

3
5 III � II

I �� 1
II + I �

2
41 0 �1
0 1 �1
0 0 0

3
5 I � II

II �� 1:

A basis for the eigenspace is (1; 1; 1); A is not diagonalizable. The Jordan
form cannot be

J1 =

2
4�1 1 0
0 �1 0
0 0 �1

3
5 ;

since if AP = PJ1 the �rst and third columns of P are linearly independent
eigenvectors of A. So the Jordan form is

J2 =

2
4�1 1 0
0 �1 1
0 0 �1

3
5 :

Let P = [v1 v2 v3], AP = PJ2. Then Av1 = �v1; Av2 = v1 � v2,
Av3 = v2 � v3. Take v1 = (1; 1; 1). To avoid repetition, we work with the


