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4 Orthogonal diagonalization
Our excursion into orthogonality was motivated by the following result.

Proposition 7 Let v and w be vectors from distinct eigenspaces of the sym-
metric matriz A. Then
v-w=0.

Proof. We have Av = ¢yv, Aw = cow, and ¢; # ¢3. Now
w - (Av) =v - (Aw)

from Proposition 1 (ii). The left side is w - ¢jv = c;w - v = ¢;v - w and the
right side is v - cow = v - w. So

(Cl — CQ)’U -w = 0.
Since ¢; — ¢y # 0, we must have v - w = 0.
Example 11 Verify the result of Proposition 7 for
_|\f g
ey
where g # 0.

Solution. The characteristic equation is
& —(f+h)c+ fh—g*=0.

The solutions of the quadratic equation are

. F+h+/(f+h)Z—4fh+ 442 . fh=(f+h)?—Afh+4g?
1 — 9 y L2 — 9

which we rewrite as

R A e DR T sl VA DR s
- 2 y L2 — 2 .

C1

Since the number D under the square root sign is positive, ¢; # co.
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Figenspace for ¢;. The first equation of the system (¢;/ — A)x = 0 is

(%—i—?) x1 — gre = 0.

=

A basis of the eigenspace is v; = (g, % + D).

Eigenspace for ¢;. Repeating the above calculation with v/D replaced by

—+/ D, a basis of the eigenspace is vy = (g, % — Q) Now

, (=[P D°
. e - — = 0
V1 Vo g + 4 4
Definition 4 Let A be n x n and let V' be a subspace of R*. We write

A:V =2V if Avisin V whenever v isin V.

Example 12 Let A be the matrix of a rotation of R® about the axis L.
Then A:L — Land A: L+ — L*.
We now come to an interesting result with a geometrical flavor.

Proposition 8 Let V be a subspace of R*. Write S for the set of v in V
with |v| = 1. Let A be a symmetric matriz, A :V — V. The vector vy in S
where v Av is largest is an eigenvector of A.

Proof.  The result is obvious if dimV = 1; Awv; is in V and must be a
multiple of v;. So we may suppose that dim V" > 2.

Firstly, there is a point v in S where v'Av is largest. This follows from a
standard result in calculus about a continuous function on a closed bounded
set. Pick any w in S with w - v, = 0.

Let

z =wvicosy +wsiny,

where y is an arbitrary angle. We have |z|?> = |v,]?cos?y + |w|?sin*y =
cos’y +sin’y = 1, so z is also in S. Consequently z’Az has a maximum
value when y = 0 and z = v;. Now

2'Az = (v cosy + wsin y)'A(v, cos y + wsin y)

= vt Av; cos® y + 20 Aw siny cos y + w' Aw sin y
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using Proposition 1 (ii). The derivative of the right side is
—2v! Av siny cos y + 2vt Aw(cos? y — sin® y) + 2w Aw sin y cos y.
The derivative at y = 0 is 2vt Aw. Since this is where the maximum occurs,
viAw =0=w- Av,.

Summarizing, any w in S that is orthogonal to vy is orthogonal to Av,. Let
V1, V2, ... ,v; be an orthonormal basis of V. Then Awv, is a vector in V' that
is orthogonal to vy, ... ,v,. So

Avy = (Avy - vy)vy + (Avy - vo)vy + -+ - + (Avy - v,)v,
(Proposition 5)
= (A’Ul . ’Ul)’Ul.
This proves that v, is an eigenvector of A.

Example 13 Let

A=
-3
and V = Span{es, e3,es}. Then A:V — V. Now
v' Av = 5v3 + Tvi — 3v}

for v = (0, vy, v3,v4) in V. If S is the set of (0, vy, v, vy) With v2+v2i+0v? =1,
then
v'Av = 503 + Tvs — 3vs < T(v3 +vi+ui) =7

with equality at (0,0,+1,0). The proposition tells us that the vectors
(0,0,41,0) are eigenvalues of A, which is easy to verify.

Proposition 8 is a stepping stone to the following important result.

Proposition 9 Let A be n x n symmetric. There is an orthonormal basis
of R" consisting of eigenvectors of A.
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Proof. ~ We apply Proposition 8 repeatedly. In the first step, V = R".
Obviously, A : V' — V, so Proposition 8 supplies an eigenvector v;. In the
next step, V = (Span{wv;})*; Proposition 8 supplies an eigenvector v, in V,
as we see in the next paragraph. In the jth step, V = (Span{vy,... ,v;_1})*;

where the unit vectors vy,...,v;_; have been chosen already and satisfy
A’UZ' = C;U;.

We need to be sure that Proposition 8 is applicable to
V = (Span{vy, ...,v; 1})*, for each j = 2,...,n. If v is in V, then

Proposition 1 (ii) gives
virAv=v-Av,=v-¢qu;=0 (i=1,...,57—1).

So Aw is orthogonal to vy,...,v; 1, and is a vector in V. This gives the
required hypothesis A : V' — V. Now Proposition 8 supplies a unit eigenvec-
tor v; in V. By definition of V', v, - v; = 0 for 7+ < j. The process concludes
when 7 = n.

Example 14 Let A = . Find an orthonormal basis of R® consist-

N DN &~
NSRS V]
= DN DN

ing of eigenvectors of A.

Solution. The characteristic polynomial of A is

c—4 =2 -2 c—2 2—c¢c 0 |[1-1
det | =2 c—4 -2 |=det| -2 c—4 -2 |"7H
-2 -2 c—4 0 2—¢c c—2

1 -1 0

= (c—2)*det | -2 ¢—4 —2| (factors from rows 1, 3)
0o -1 1

1 =1 0o+

=(c—2)?det |0 c—6 —2 = (c—2)*(c—28).

-2 -2 =2 1 11
-2 -2 2|~ |0 0 0
-2 -2 =2 000
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A basis of the eigenspace is wy = (—1,1,0),ws = (—1,0,1). Let

wso - V1
V1 = W1,V =Wy — U1
V-0
1 1 1
=(-1,0,1)— = (-1,1,0) = [ ==, ==, 1] .
( 77) 2( 77) ( 27 27)

This gives an orthogonal basis (—1,1,0), (=1, —1,2) of the eigenspace. Nor-

malize to obtain an orthonormal basis u; = (—%, %, 0) , Uy = (—%, —%, %)

FEigenspace for ¢ = 8. The coefficient matrix of (8 — A)xz =0 is

4 -2 =2 1 1 -2 h“i IIH 1 0 —1]m+n
2 4 92/ ~10 6 =6 m+2 ~ 10 1 —1 I“jila )
—2 -2 4 0 -6 6| "> 00 0

A basis of the eigenspace is uz = (%, %, %), which is orthogonal to w;, us,
as predicted in Proposition 7.
Proposition 9 tells us that when A is symmetric, there is a diagonalization

A=PDP!

where the columns of P are an orthonormal basis of eigenvectors and D is
diagonal. Of course P is an orthogonal matrix, so P~' = P!, and

A= PDP".

This equation (with D diagonal, P orthogonal) is an orthogonal diagonal-
ization of A. In Example 14, we obtain

1 _1 1 _1L 1L

Vi TVe V3| |2 Vi V3
A— | L L L 9 1 1L
| Vi Ve V3 Ve V6 V6
0 2 1 gl | L L
Ve V3 Vi V3 V3

Are there any nonsymmetric matrices that have an orthogonal diagonal-
ization? The answer is a resounding no. If A = PDP" (P orthogonal, D
diagonal), then

A! = (PDP")' = (P")'D'P' = PDP" = A,
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and A is symmetric!

It is interesting that Proposition 9 contains the statement that the char-
acteristic polynomial of a symmetric matrix has n real zeros, counted with
multiplicity. If there were less than n real zeros, we would not be able to pick
n linearly independent eigenvectors, because of Proposition 5 of Chapter 6.
In the next chapter we examine this again, from the point of view of complex
numbers.

5 Diagonalizing a quadratic form

Let Q(y) be a quadratic form in y = (yi,...,¥y,) and let vy,...,v, be any
basis of R". Let
y=>5Szx

be the change of coordinates corresponding to
(14) y1er+ -+ ype, = T + -0+ U,
If we write () as a function of «,
Q(y) = (Sz)'ASz = z'(S'AS)x = Q,(z), say.

Of course S'AS is symmetric, so the change of coordinates gives a quadratic
form @, with matrix S*AS. Note that Q,(x) = Q(Sz).

Example 15 Let v; = (1,3), v, = (2,5),

Q(yl; y2) = y% —3y1y2 — yg.

Then S = B g] VA = [_5/2 __3{2], Thus Q(y) = Q1(x) where Q; has

BB E A

In other words,

matrix

Q1(x1,29) = —172%3 — 597179 — 5125,
You should check that this expression matches

Q(Sx) = (w1 + 232)* — 3(x1 + 222) 3wy + 5x) — (31 + Ha2)”.



