Proof. Both $(AB)^t$ and B^tA^t are $p \times m$ matrices. The *i*, *j* entry of AB is

$$\sum_{k=1}^{n} a_{ik} b_{kj}$$

Thus the i, j entry of $(AB)^t$ is $\sum_{k=1}^n a_{jk}b_{ki}$. This is the inner product of the *i*-th row (b_{1i}, \ldots, b_{ni}) of B^t with the *j*-th column (a_{j1}, \ldots, a_{jn}) of A^t , which is the *i*, *j* entry of B^tA^t .

Proposition 14 Let A be an invertible matrix. Then A^t is invertible and

$$(A^t)^{-1} = (A^{-1})^t.$$

Proof. By Proposition 13,

$$(A^{-1})^t A^t = (AA^{-1})^t = I^t = I,$$

and similarly,

$$A^{t}(A^{-1})^{t} = (A^{-1}A)^{t} = I.$$

This proves that $(A^{-1})^t$ is the inverse of A^t .

6 Change of basis

Let $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ and $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$ be two bases of \mathbb{R}^n . Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be linear. If $T\left(\sum_{j=1}^n y_j \boldsymbol{v}_j\right)$ has coordinate vector $A\boldsymbol{y}$ for the basis $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$, we say that **the matrix of** T is A **for the basis** $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$. 'The matrix of T is A' now becomes a shorthand for 'The matrix of T is A for the standard basis.'

Proposition 15 (Change of basis). Let T have matrix A for the basis v_1, \ldots, v_n . Suppose

$$(17) y = Pz$$

where \boldsymbol{y} and \boldsymbol{z} are coordinate vectors for $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ and $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$ respectively. Then T has matrix $P^{-1}AP$ for the basis $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$. In particular $P = [\boldsymbol{w}_1 \cdots \boldsymbol{w}_n]$ if $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ is the standard basis. *Proof.* The change of coordinates can also be written

$$\boldsymbol{z} = P^{-1} \boldsymbol{y}$$

(multiply both sides of (17) by P^{-1}). The coordinate vector of $T\left(\sum_{i=1}^{n} z_i \boldsymbol{w}_i\right)$ is $A(P\boldsymbol{z}) = AP\boldsymbol{z}$ for $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$. Hence the coordinate vector of $T\left(\sum_{i=1}^{n} z_i \boldsymbol{w}_i\right)$ is $P^{-1}(AP\boldsymbol{z})$ for $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$. Since

$$P^{-1}(AP\boldsymbol{z}) = (P^{-1}AP)\boldsymbol{z},$$

this proves the proposition. (The final sentence is simply a reminder of a fact from Proposition 13 of Chapter 3.)

In Chapter 6 we shall see that the matrix of T for a suitably chosen basis can have a much simpler appearance than the matrix of T for the standard basis.

Example 19 Find the matrix of the mapping

$$T(\boldsymbol{x}) = (2x_1 - x_2, x_1 - 4x_2)$$

for the basis $w_1 = (1, 2), w_2 = (2, 5).$

Solution. T has matrix $A = \begin{bmatrix} 2 & -1 \\ 1 & -4 \end{bmatrix}$ for the basis $\boldsymbol{e}_1, \boldsymbol{e}_2$. The matrix B of T for $\boldsymbol{w}_1, \boldsymbol{w}_2$ is $P^{-1}AP$ where $P = [\boldsymbol{w}_1 \ \boldsymbol{w}_2]$. So

$$B = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -1 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 8 & 3 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 14 & 31 \\ -7 & -16 \end{bmatrix}$$

Thus

$$T(z_1 \boldsymbol{w}_1 + z_2 \boldsymbol{w}_2) = (14z_1 + 31z_2) \boldsymbol{w}_1 + (-7z_1 - 16z_2) \boldsymbol{w}_2$$

(check this for z = (1, 0), (0, 1)!).