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3 Subspaces of Rn

De�nition 3 Let V be a set of vectors in Rn , not the empty set. V is a
subspace of Rn if

au + bv is in V for all u and v in V and real a; b:(7)

We call the property (7) the closure property .
The set consisting of 0 alone is a subspace. We call it the zero subspace.

We write 0 for this subspace. This is not good `grammar' since 0 is a vector
rather than a set of vectors, but it is convenient.

A subspace in general turns out to be the linear span of some set.

Proposition 3 Let V be a set of vectors in Rn . The following two assertions
are equivalent.

(i) V is a subspace of Rn .

(ii) V = Spanfv1; : : : ; vkg for some v1; : : : ; vk in Rn .

Proof. Suppose that (i) holds. If V is the zero subspace, then V = Spanf0g
and we get (ii). If V is not the zero subspace, pick v1 6= 0 in V . Of course
Spanfv1g is a subset of V because of (7) (with v1 = u; v2 = 0). If there are
vectors in V , not in Spanfv1g, pick v2 in V , v2 not in Spanfv1g.

We continue this game in the following way. Once we have got k vectors
v1; : : : ; vk in V , pick vk+1 in V but not in Spanfv1; : : : ; vkg if possible. If
this is not possible, stop the game. The game must stop after at most n steps,
because Proposition 1 shows that v1; : : : ; vk are independent, which is impos-
sible with k = n+ 1. When we stop with v1; : : : ; vk, then Spanfv1; : : : ; vkg
is a subset of V because of (7). Spanfv1; : : : ; vkg is, in fact, equal to V ,
otherwise the game would continue. Thus (ii) holds.

Now suppose that (ii) holds. Take any u and v in V and real a; b. Then

u = a1v1 + � � �+ akvk; v = b1v1 + � � �+ bkvk

for some real ai and bi;

au+ bv = (aa1 + bb1)v1 + � � �+ (aak + bbk)vk:

So au+ bv is in V , and (i) holds.
For the subspace in the following example, the closure property is easier

to perceive than the property (ii) of Proposition 3.
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Example 11 The solution set U of a homogeneous linear system with m�n
coeÆcient matrix A,

a11x1+ � � �+ a1nxn = 0

� � �
am1x1+ � � �+ amnxn = 0

is a subspace of Rn . We say that U is the null space of A, and write,

U = Nul A:

To see that U is a subspace, take x and y in U . Then ai �x = 0 = ai �y,
where ai = (ai1; : : : ; ain). Consequently ai � (ax+ by) = 0. Here i is any of
1; : : : ; m. This shows that ax+ by is in U , and U is a subspace.

We do, in fact, know how to write down v1; : : : ; vk in U which satisfy
U = Spanfv1; : : : ; vkg. In Chapter 2 we gave the general solution of the
system in the form

xm(1)v1 + � � �+ xm(k)vk

where xm(1); : : : ; xm(k) are free variables. This is equivalent to

U = Spanfv1; : : : ; vkg:

For example, just after Proposition 4 we noted that with A as in Example
10, the general solution of Ax = 0 is

x3v1 + x4v2; v1 = (�5; 1; 1; 0; 0); v2 = (2; 3; 0; 1; 0):

Here the null space is U = Spanfv1; v2g.
The only subspaces of R3 are the zero subspace, lines through 0, planes

through 0, and R3 itself. The last three alternatives correspond to the game
in Proposition 3 stopping when k = 1; 2; 3 respectively.

The game we used in the proof of Proposition 3 generates a set v1; : : : ; vk
that is a basis, as de�ned below.

De�nition 4 Let V be a subspace of Rn , not the zero subspace. A basis of
V is a linearly independent set v1; : : : ; vk such that

V = Spanfv1; : : : ; vkg:
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For any nonzero subspace V of Rn , the set v1; : : : ; vk obtained in the proof
of Proposition 3 is linearly independent. This follows from Proposition 1,
since vj is not a combination of v1; : : : ; vj�1. Accordingly this set v1; : : : ; vk
is a basis of V .

Of course, there are in�nitely many choices of basis. For example, if V is
a plane in R3 , the last paragraph assures us that any nonproportional pair
of vectors v1; v2 in V could be chosen as a basis of V .

A crucial observation is that any two bases of V have the same number
of vectors. (`Bases,' pronounced bayseas, is the plural of basis.)

Proposition 4 Let V be a subspace of Rn . Any two bases of V have the
same number of vectors.

Proof. Let u1; : : : ;uk and v1; : : : ; vj be two bases of V . We have j linearly
independent elements v1; : : : ; vj in V = Spanfu1; : : : ;ukg. Proposition 2
assures us that j � k. Reversing roles, we get k � j. So k = j.

Proposition 4 enables us to de�ne dimension.

De�nition 5 The dimension of a subspace V of Rn is the number of vectors
in any basis of V . We write dimV for the dimension of V .

Naturally dimV � n, since Rn cannot contain n+1 linearly independent
vectors.

For completeness, the zero subspace is assigned dimension 0. The zero
subspace does not have a basis.

We can now deduce that the dimension of Rn is n. For the set e1; : : : ; en
in Example 4 is independent. The vector equation x1e1 + � � � + xnen = 0

reads x1 = 0; x2 = 0; : : : ; xn = 0. So e1; : : : ; en is one basis of Rn ; we call it
the standard basis . Now we know, of course, that

dimRn = n:

The dimension of a plane V through 0 in R3 is 2; we noted a few para-
graphs ago that we can �nd (many) bases of V with 2 elements. The dimen-
sion of a line through 0 in Rn is 1.

It seems reasonable that the dimension of a hyperplane W in Rn , with
equation

a1x1 + a2x2 + � � �+ anxn = 0;(8)
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should be n � 1. The easiest demonstration is to provide a basis. Suppose,
for instance, that a1 6= 0. The general solution of the linear system (8) is

x1 =

�
�a2
a1

�
x2 + � � �+

�
�an
a1

�
xn

or

x = x2

2
666664

�a2=a1
1
0
...
0

3
777775 + � � �+ xn

2
666664

�an=a1
0
...
0
1

3
777775 = x2v2 + � � �+ xnvn;(9)

say. Here x2; : : : ; xn are free. The hyperplane W is Spanfv2; : : : ; vng. Now
v2; : : : ; vn are independent. To see this, set x2v2+ � � �+xnvn = 0 in (9). We
get a linear system which includes the equations x2 = 0; x3 = 0; : : : ; xn = 0.
Therefore v2; : : : ; vn is a basis of W , and

dimW = n� 1:

This suggests a general result on the dimension of the space Nul A. The
general solution to

Ax = 0

is

v = xm(1)v1 + � � �+ xm(k)vk (xm(1); : : : ; xm(k) free)(10)

as we recalled in Example 5. Now k of the coordinates of v are actually
xm(1); : : : ; xm(k). For instance, let n = 5, and suppose that the general solu-
tion is

v =

2
66664
�2x2 � 3x3 � x5

x2
x3

4x2 + 6x3 + 2x5
x5

3
77775 = x2v1 + x3v2 + x5v3

(x2; x3; x5 free). Here v1 = (�2; 1; 0; 4; 0); v2 = (�3; 0; 1; 6; 0); v3 = (�1; 0; 0; 2; 1).
Three coordinates of v are x2; x3; x5. If x2v1+x3v2+x5v3 is 0, then x2; x3; x5
are 0. In the general case, if we set v equal to 0 in (10), then xm(1); : : : ; xm(k)

are 0. It follows that v1; : : : ; vk not only have span equal to Nul A, but are
linearly independent. Since v1; : : : ; vk is a basis of Nul A, we have estab-
lished:
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Proposition 5 dim(Nul A) is the number of non-pivot columns of A.

Here we use the simple fact that there is a free variable for each non-pivot
column.

The nullity of A, or nullity A, is another expression used for dim(Nul A).

Example 12 Find a basis of Nul A, and determine the nullity of A, where

A =

2
664
1 0 1 2 0 0
�4 1 1 �11 0 �1
�7 0 �7 �14 1 �2
6 0 6 12 0 1

3
775 :

Solution. You will �nd that the reduced echelon form of A is

B =

2
664
1 0 1 2 0 0
0 1 5 �3 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3
775 :

The general solution of Ax = 0, in which x3 and x4 are free variables, is2
6666664

�x3 � 2x4
�5x3 + 3x4

x3
x4
0
0

3
7777775
= x3

2
6666664

�1
�5
1
0
0
0

3
7777775
+ x4

2
6666664

�2
3
0
1
0
0

3
7777775
= x3v1 + x4v2; say:

Now v1; v2 is a basis of Nul A. The linear independence of v1; v2 is obvious.
By de�nition, the nullity of A is 2.

4 General propositions about bases

The following propositions are very general and useful.

Proposition 6 Let v1; : : : ; vj be linearly independent vectors in a subspace
V of Rn . Suppose dimV = r. We can �nd r�j vectors vj+1; : : :vr to obtain
a basis v1; : : : ; vj; vj+1; : : : ; vr of V .


