or about 6.1 kilometers. The distance is easily seen to be initially decreasing, so that the minimum distance occurs for a positive value of t.

## 3 Three dimensional Euclidean space $\mathbb{R}^3$

Consider a third directed segment  $e_3$  of length 1 along with the pair  $e_1, e_2$ discussed in Section 1, which is orthogonal to both  $e_1, e_2$ . We can now label any point in space as  $(x_1, x_2, x_3)$ : this is the point reached by starting at the origin, moving distance  $x_1$  (with appropriate interpretation according to sign) in direction  $e_1$ , then  $x_2$  in direction  $e_2$  and then  $x_3$  in direction  $e_3$ . See Figure 16.



Figure 16. Points of three-dimensional space as ordered triples.

Think of  $e_1, e_2$  as pointing east and north on the (flat) earth and  $e_3$  as pointing skywards. Now identify points in space with triples of real numbers to get  $\mathbb{R}^3$ . Formally,  $\mathbb{R}^3$  is the set of ordered triples  $\boldsymbol{x} = (x_1, x_2, x_3)$  with each  $x_i$  real. Again, we do not distinguish points from directed segments from **0** to  $\boldsymbol{x}$ , so  $\mathbb{R}^3$  consists of vectors; and again, we may not always distinguish  $\boldsymbol{x}$  from the translate whose initial point is  $\boldsymbol{a} = (a_1, a_2, a_3)$  and terminal point  $(x_1 + a_1, x_2 + a_2, x_3 + a_3)$  (Figure 17). A double use of Pythagoras's theorem, for the triangles with vertices  $\mathbf{0}, (0, x_2, 0), (x_1, x_2, 0)$ , and vertices  $\mathbf{0}, (x_1, x_2, 0), (x_1, x_2, x_3)$  leads to the formula for the length  $|\boldsymbol{x}|$  of vector  $\boldsymbol{x}$ (Figure 18):

(8) 
$$|\boldsymbol{x}| = (x_1^2 + x_2^2 + x_3^2)^{1/2}$$

For, in the second triangle,  $|\boldsymbol{x}|^2 = ((x_1^2 + x_2^2)^{1/2})^2 + x_3^2 = x_1^2 + x_2^2 + x_3^2$ .



Figure 17. Translate of a vector in  $\mathbb{R}^3$ .



Figure 18. Double application of Pythagoras's theorem.

**Definition 5** The sum of  $\boldsymbol{a} = (a_1, a_2, a_3)$  and  $\boldsymbol{b} = (b_1, b_2, b_3)$  is

$$a + b = (a_1 + b_1, a_2 + b_2, a_3 + b_3).$$

Geometrically,  $\mathbf{a} + \mathbf{b}$  is at the terminal point of the vector  $\mathbf{b}$  if  $\mathbf{b}$  is placed with initial point at  $\mathbf{a}$ . Alternatively, the description of  $\mathbf{a} + \mathbf{b}$ , as the fourth vertex of the parallelogram with vertices  $\mathbf{0}, \mathbf{a}, \mathbf{b}$ , that we used in  $\mathbb{R}^2$ , is valid. This is often referred to as the **parallelogram law of addition**. Subtraction of  $\boldsymbol{z}$  from  $\boldsymbol{y}$  is defined by

$$(\boldsymbol{y} - \boldsymbol{z}) + \boldsymbol{z} = \boldsymbol{y}$$

Thus

$$m{y} - m{z} = (y_1 - z_1, y_2 - z_2, y_3 - z_3).$$

It is clear that the distance from z to y is |y - z|.

**Definition 6** The scalar product cx, where c is real and x is in  $\mathbb{R}^3$ , is

$$c\boldsymbol{x} = (cx_1, cx_2, cx_3).$$

We can, as before, describe  $c\mathbf{x}$  as the vector pointing in the same direction as  $\mathbf{x}$ , but with length c times that of  $\mathbf{x}$ , if c > 0; or the opposite direction, with length -c times that of  $\mathbf{x}$ , if c < 0. This depends on the formula

$$|c\boldsymbol{x}| = |c| |\boldsymbol{x}|$$

which we can get in a very similar way to the proof in  $\mathbb{R}^2$ :

$$|c\boldsymbol{x}| = ((cx_1)^2 + (cx_2)^2 + (cx_3)^2)^{1/2} = |c|(x_1^2 + x_2^2 + x_3^2)^{1/2} = |c| |\boldsymbol{x}|.$$

You can probably guess the formula that we use to define inner product. It is

## **Definition 7** The inner product of u and v is

$$\boldsymbol{u}\cdot\boldsymbol{v}=u_1v_1+u_2v_2+u_3v_3.$$

This is consistent with Definition 4 if we think of  $\mathbb{R}^2$  as being the same as the set of all  $(x_1, x_2, 0)$  (or, the set of all  $x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ ) where  $x_1$  and  $x_2$  are real.

Note that the equation (4) from  $\mathbb{R}^2$ ,

$$|\boldsymbol{u}| = (\boldsymbol{u} \cdot \boldsymbol{u})^{1/2},$$

holds good in  $\mathbb{R}^3$ .

The angle *a* between nonzero vectors  $\boldsymbol{u}, \boldsymbol{v}$  can be defined by drawing a plane that contains  $\boldsymbol{0}, \boldsymbol{u}, \boldsymbol{v}$  and measuring *a* (between 0 and  $\pi$ ) in that plane.

18

**Proposition 5** We have

$$\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}| |\boldsymbol{v}| \cos a.$$

*Proof.* We may repeat the proof of Proposition 3 verbatim.

'Verbatim' means 'word for word.' When you want to use for yourself a proof along these lines, bear in mind that students regularly arrive at wrong conclusions this way. If you try it with Proposition 4, you arrive at the false conclusion that

$$\boldsymbol{u}\cdot\boldsymbol{x} = \boldsymbol{u}\cdot\boldsymbol{a}$$

is the equation of a line in  $\mathbb{R}^3$  (it is a plane; see below!). Thus you have to be very careful that arguments still work in a new context.

As in  $\mathbb{R}^2$ , for *nonzero* vectors  $\boldsymbol{u}$  and  $\boldsymbol{v}$  the relation

(9) 
$$\boldsymbol{u} \cdot \boldsymbol{v} = 0$$

is equivalent to  $\boldsymbol{u}, \boldsymbol{v}$  being perpendicular. We say  $\boldsymbol{u}$  and  $\boldsymbol{v}$  are **orthogonal** if (9) holds.

**Example 8** The angle between the vectors (1,7,b) and (-2,2,1) is  $a = \cos^{-1}(1/3)$ . Find b.

Solution. We know that

$$(1,7,b) \cdot (-2,2,1) = |(1,7,b)| |(-2,2,1)| \cos a$$
  
=  $|(1,7,b)| |(-2,2,1)|1/3.$ 

Thus

$$-2 + 14 + b = (1^2 + 7^2 + b^2)^{1/2} (2^2 + 2^2 + 1)^{1/2} 1/3;$$
  
$$b + 12 = (b^2 + 50)^{1/2}.$$

If we square both sides and cancel  $b^2$  we find that

$$24b + 144 = 50; \ b = -47/12.$$